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Abstract— Powered lower-limb orthoses and prostheses are
attracting an increasing amount of attention in assisting daily
living activities. To safely and naturally collaborate with human
users, the key technology relies on an intelligent controller to
accurately decode users’ movement intention. In this work, we
proposed an innovative locomotion recognition system based
on depth images. Composed of a feature extraction subsystem
and a finite-state-machine based recognition subsystem, the
proposed approach is capable of capturing both the limb
movements and the terrains right in front of the user. This
makes it possible to anticipate the detection of locomotion
modes, especially at transition states, thus enabling the as-
sociated wearable robot to deliver a smooth and seamless
assistance. Validation experiments were implemented with nine
subjects to trace a track that comprised of standing, walking,
stair ascending, and stair descending, for three rounds each.
The results showed that in steady state, the proposed system
could recognize all four locomotion tasks with approximate
100% of accuracy. Out of 216 mode transitions, 82.4% of
the intended locomotion tasks can be detected before the
transition happened. Thanks to its high accuracy and promising
prediction performance, the proposed locomotion recognition
system is expected to significantly improve the safety as well as
the effectiveness of a lower-limb assistive device.

I. INTRODUCTION

In recent years, the advancement of powered lower-limb

wearable robots is gaining increasing attention [1], [2]. They

are considered to be a novel active assistive and rehabilitation

technology for those who have gait disorders [3], weakened

mobility [4], [5], or even loss of locomotion functionality [6],

[7]. Given a close human interaction, the wearable robots

are designed to act compliantly and consistently with users’

natural movements [8]. For the purpose of assisting users

with their daily living activities, the wearable robot should

be encoded with a skilled and delay-free controller that could

accurately decode wearers’ locomotion intention. Particu-

larly, a prediction of the locomotion modes is of significance

to ensure seamless and smooth assistive actions [9].

A number of strategies with various sensory systems have

been developed in the state of the art [10]. One widely

adopted approach is detecting the locomotion modes with

surface electromyography (sEMG). Promising results with

95% of recognition accuracy have been reported by an

active prosthesis when assisting amputees’ locomotion [11].

However, the sEMG-based solution is limited by its low
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accuracy in detecting mode transitions and its mandatory

calibration procedure for each user. Furthermore, its perfor-

mance can also be easily affected by the placement position

of electrodes and skin temperature. In [6], a brain-machine

interface based on measuring electroencephalogram (EEG)

activities is proposed to control lower-limb exoskeletons in

assisting the movements of people with paraplegia. Nev-

ertheless, the difficulty of acquiring clean and stable EEG

signals limits its range of applications. Locomotion detection

based on mechanical sensors is another commonly adopted

strategy. The most commonly used sensory systems include

accelerometer, gyroscope [12], [13], pressure sensors [14],

or a combination of different sensors [15]. The detection

accuracy is quite promising, being 98.8% in [14]. Despite

of the high accuracy, a delay is intrinsically involved in

the transition detections. This is because each detection

happens only after a critical feature of biomechanical signals

is detected, for instance, foot placement.

Inspired by the motion control strategy of humans and an-

imals, a subject-independent and environmental-aware strat-

egy has been recently conceived for locomotion recognition.

Seeing the terrain conditions in front the user could reinforce

the decision-making of a locomotion mode recognition sys-

tem and enable a seamless conversion of assistance delivery.

A laser and IMU based sensory system is constructed in [16]

to detect the terrain conditions, thus recognizing users’

locomotion tendency. The classification method is a two-

layer decision tree. In the first layer, the terrain is roughly

divided into upper terrain, level ground and lower terrain.

The uneven terrains are further recognized as ramp or stair in

the second layer. The thresholds used in this work are taken

from literature, which is not adaptive to the complicated real-

life enviornments. In addition, the angle beween the laser

and the stairs should be alligned. Then, to close the loop of

user and environment, the authors of [17] used depth sensing

technology to segment and recognize stairs. Their system

is capable to estimate the intersection angle and distance

between the RGB-Depth camera and stairs, the number of

steps, and the stair height and depth. The stair detection accu-

racy is greater than 98% in different environment conditions.

But this system is only validated with upstairs segmentatoin.

In [18], five different locomotion modes are detected with

a depth camera mounted on the shank of one limb. The

decision is made based on a support vector machine (SVM).

This means that the detection accuracy will be affected by the

sample size of training data for the SVM. Then, the camera

mounted on the shank would bring huge variations and noises

to the depth images, which will increase the difficulty of

achieving an accurate detection.
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The objective of this study is to design and validate an

innovative locomotion mode recognition method by means

of depth images. The proposed system is capable of: i)

detecting different locomotion tasks with high accuracy,

including standing, ground-level walking, and stair climbing;

ii) during mode transition states, identifying the intended

locomotion before the transition is completed; iii) carrying

out locomotion recognition without pre-training; iv) being

adaptive and robust to different users. For the sake of

validating the prediction performance and detection accuracy

of the proposed system, experiments have been implemented

with nine subjects.
A detailed description of the depth image-based locomo-

tion recognition system is presented in Section II. The valida-

tion experiments and results are discussed in Section III and

Section IV respectively. At the end of the work, conclusions

and future work are drawn in Section V.

II. LOCOMOTION MODE RECOGNITION SYSTEM

A depth image-based locomotion mode recognition sys-

tem is proposed in this study. The system consists of two

subsystems: depth feature extraction and locomotion mode

recognition. Before the detailed explanations of each subsys-

tem, a brief overview of the setup for acquiring depth images

is described at the beginning of this section.

A. Depth Image Acquisition
In this study, the depth images are captured by Xtion PRO

LIVE camera (ASUS), as shown in Fig. 1(a). The camera

runs at 30 Hz and outputs depth images with a resolution

of 640x480. Based on infrared sensors, the depth camera

is capable to accurately estimating a distance between 0.8

m and 3.5 m. Its field of view angles are 58, 45 and 70

degrees in the horizontal, vertical, and diagonal directions,

respectively. Fig. 1(b) illustrates the view field: HcOH repre-

sents the maximum horizontal view angle, HcOV represents

the maximum vertical view angle, and HcOD represents the

maximum diagonal view angle.
For the purpose of predicting the locomotion modes and

identifying gait phase, we propose to fix the camera in front

of users waist by means of a belt. The direction of the camera

is tuned in a way that only a small portion of the user’s feet

is seen by the camera when the user is standing upright. As

demonstrated in Fig. 1(c), when the camera is placed at the

center of user’s waist at Hc = 106 cm, it could provide the

depth values in the field highlighted by the red square. The

distance from the toe to the edge of the view field is around

72 cm, which is within 1 stride length of walking [19].

B. Depth Feature Extraction
To conceive an accurate locomotion detection system

without introducing a heavy computation workload, we

propose to extract two features: the local average depth

values and stair edges. The first feature is used to obtain

an initial locomotion mode classification while the second

feature is expected to further improve the accuracy of the

recognition. Details of each feature extraction are presented

in the following text.

Fig. 1. Overview of the system setup for acquiring the depth images: (a)
Xtion Pro Live camera; (b) The field of view angles of the depth camera:
O is the position of the camera, Hc is the height of the camera regarding
to the view plane, V, D, and H are vectors in the horizontal, vertical, and
diagonal directions respectively; c) Placement of the depth camera and its
view field in standing still mode.

1) Local average depth values: Examples of the depth

images captured during standing still (SS), ground level

walking (GLW), stair ascending (SA), and stair descending

(SD) modes are provided in Fig. 2. The darker colour is

related to a smaller distance. When the distance is smaller

than the view range of the camera (0.8 m), the depth value

is 0. The example in Fig. 2 shows that in SA mode, the

depth value at the top of the image is the smallest while in

SD mode, it is the biggest. Although the top part the depth

images in SS and GLW modes are quite similar, the two

modes could be distinguished by referring to the bottom part

of the image. When subject is walking on a level ground, the

depth values at the bottom of the image change periodically

because of the lower-limb movements.

Hence, we propose to divide the whole image into small

blocks and then compute their depth values. In this study,

the image is segmented into 3 rows and 4 columns, resulting

in 12 blocks, as displayed in Fig. 3. The mean and standard

deviations of each depth block are calculated and labelled as

Mi,j and STDi,j for the block in the i-th row j-th column,

respectively.

2) Stair Edge Detection: As shown in Fig. 2, when the

user is proceeding forward, there could be walls, handrails or

other obstacles entering the camera’s view and causing depth

variations. In order to distinguish whether the variation is

caused by locomotion transitions or obstacles, we propose

to detect the stair edges by means of the Hough Line

Transform [20].

Generally, a straight line in the Cartesian coordinates can

be represented by two parameters, slope a and intercept b.
The line equation is formed as follows:

y = a · x+ b (1)

However, when the slope a approaches infinity, it is

difficult to describe the straight line clearly with (1). Thus,
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Fig. 2. Examples of the depth images captured in different locomotion modes. The four images in the second row are the depth images captured in (a)
standing still mode, (b) level ground mode, (c) stair ascending mode, and (d) stair descending mode. The color gradient from dark blue to light yellow
corresponds to a distance from 0 to 4 m.

Fig. 3. Each depth image is divided into 12 blocks, having 3 rows and 4
columns.

it is proposed to convert the line parameterization to Polar

coordinates(see Fig. 4(a)):

ρ = x · cos θ + y · sin θ (2)

where ρ is the perpendicular distance from the origin to

the straight line and θ is angle of ρ measured in degrees

clockwise from the positive x-axis. The range of θ is −90◦ ≤
θ ≤ 90◦. The Hough Line Transform algorithm can be

implemented directly with MATLAB or OpenCV functions.

Thus, we will not repeat the details here. Fig. 4(b) has

presented an example of the detected stair edges in a depth

image. The approach is realized in MATLAB with a list

of functions, including edge(), hough(), houghpeaks(), and

Fig. 4. Stair edge detection by means of Hough Line Transform: (a) line
parameterization in Hough Transform, (b) the black straight lines are the
detected stair edges in a depth image, and the magenta points indicate the
end points of each line.

houghlines(). The final outputs are θ, ρ, and the end points

positions of each line. When |θ| > 65◦ and the difference of

depth values at the two sides of the line is greater than 0.1

m, the detected straight line is considered to be a stair edge.

C. Locomotion Mode Detection

A finite state machine is designed to manage the detections

and transitions of the four locomotion tasks: SS, GLW, SA,

and SD. The task labels and transition conditions among

tasks are shown in Fig. 5 and TABLE I respectively. In Fig. 5,

the locomotion tasks are distinguished between static tasks,

which include SS, and dynamic tasks, which include GLW,

SA, and SD. To filter initial noises, two sliding windows

are added on the top of the static task and dynamic task

detection. The window sizes are 50 samples and 5 samples

respectively.
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Fig. 5. Finite state machine for the locomotion detection system: T1, T2,
T3, T4, and T5 are task labels for standing still, dynamic tasks, ground level
walking, stair ascending, and stair descending, respectively.

According to the field of view graph displayed in Fig. 1,

the depth camera has quite a big horizontal view, which

will bring some noise to the depth image. In other words,

the block depth values of the first and fourth columns may

also vary due to obstacles entering the camera’s view. To

avoid these disturbances, only depth blocks of second and

third columns, which mainly capture the terrain informa-

tion and limb movements, are utilized to determine task

transitions. Considering that the top two blocks, Block(1,2)

and Block(1,3), represent the maximum view distance of the

camera, we use them to estimate the terrain condition in front

the user, thus enabling a prediction of the user’s locomotion

task. Block(3,2) and Block(3,3) always capture user’s limbs

and feet, so it is difficult to detect a stair edge in these

two blocks. Therefore, instead of detecting stair edges in

a whole depth image, the stair edge extraction only take part

of the image. Here, the input image for stair edge extraction

consists of four blocks: Block(1,2), Block(1,3), Block(2,2),

and Block(2,3).

In TABLE I, the thresholds in T1, Thss1 and Thss2, are

set to be 0.02 m and 0.1 m respectively. Both values are

selected by referring to the maximum standard deviations in

the corresponding depth blocks in SS mode. As a result of the

user’s feet in Block(3,2), Thss1 is smaller than Thss2. The

thresholds Thsa1,j and Thsd1,j are calculated as follows:

Thsa1,j = Mss1,j − 3 ∗ STDss1,j −Hstair (3)

Thsd1,j = Mss1,j + 3 ∗ STDss1,j +Hstair (4)

where Mss1,j and STDss1,j are the mean and standard

deviations of corresponding depth blocks in SS mode re-

spectively. Hstair is the height of each stair.

III. EXPERIMENTS

A. Experimental Protocol

This experiment aimed to validate the accuracy of the

depth image-based locomotion mode recognition system.

Particularly, the timing of task transition detection was

evaluated. The experimental setup was as presented in Sub-

section II-A and Fig. 1(c).

Nine healthy young subjects (4 female and 5 male, height

171 ± 9.5 cm, age 25.2 ± 1.2 yrs) were recruited. Each

subject was asked to follow a set path continuously three

TABLE I

TRANSITION CONDITIONS AMONG THE LOCOMOTION TASKS

Task Label Transition Conditions

T1
STD2,2 < Thss1 ∧ STD2,3 < Thss1 ∧ STD3,2 < Thss2

∧STD3,3 < Thss2

T2 NOT T1

T3
Thsa1,2 < M1,2 < Thsd1,2 ∨ Thsa1,3 < M1,3 < Thsd1,3

∧ No Stair Edge

T4
M1,2 ≤ Thsa1,2 ∧M1,3 ≤ Thsa1,3

∧ Stair Edge

T5
M1,2 ≥ Thsd1,2 ∧M1,3 ≥ Thsd1,3

∧ Stair Edge

times at his/her preferred speed. Each track was composed

of 10 seconds of SS, then GLW, SA, GLW to turn 90

degrees, SA, GLW to turn 180 degrees, SD, GLW to turn 90

degrees, SD, GLW, and finally 10 seconds of SS. Thus each

trace test covered transitions between SS and GLW, between

GLW and SA, and between GLW and SD. All depth images

were captured at a frequency of 30 Hz and saved for offline

recognition and data analysis with MATLAB R2016a.

B. Data Analysis

The recognition performance was evaluated using two

indexes: the recognition accuracy (RA) during steady state

and the timing of transition detection. RA was defined as

follows:

RA =
Nc

Nt
× 100%

where Nc is the number of steps that were correctly detected;

Nt is the number of total steps. Here, it is worth highlighting

that steps during transition strides were not used to calculate

RA.

To evaluate the timing of locomotion recognition during

mode transitions, we proposed to segment the transition gait

into several phases. According to the human locomotion

biomechanics defined in [21], [22], the stride cycle in GLW

could be segmented into six phases: initial swing (ISW),

middle swing (MSW), terminal swing(TSW), initial stance

(IST), middle stance (MST), and late stance (LST); the stride

cycle in SA could be broken into five gait phases: weight

acceptance (WA), pull up (PU), forward continuance (FCN),

foot clearance (FCL), and foot placement (FP); the stride

cycle in SD could be segmented into 5 phases as well: weight

acceptance (WA), forward continuance (FCN), controlled

lowering (CL), leg pull-through (LP), and foot placement

(FP). Based on the above gait segmentation rules, we defined

the locomotion transition gait phases of the leading limb as

follows:

• transition from GLW to SA was broken into ISW, MSW,

FCL, and FP;

• transition from GLW to SD was broken into ISW, MSW,

LP, FP;

• transition from SA to GLW was broken into FCL, MSW,

TSW;
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Fig. 6. Sketch view of the segmented gait phases during locomotion mode
transition. The solid line indicates the leading limb while the dashed line
indicates the lagging limb. These gait phases correspond to transitions: (a)
from GLW to SA, (b) from GLW to SD, (c) from SA to GLW, (d) from
SD to GLW.

• transition from SD to GLW was broken into CL, MSW,

TSW.

A sketch view of these transition gait phases was drawn

in Fig. 6. If a transition was detected before the foot lift of

the leading limb, it was tagged as one-step early (OSE). If

a transition was detected after the foot placement or heel

strike of the leading limb, it was tagged as one-step delay

(OSD). The OSE and OSD steps were not used to calculate

RA during steady state.

All true gait phases and locomotion mode were obtained

through referring to the recorded depth images.

IV. RESULTS AND DISCUSSION

The average depth values during different locomotion

modes were illustrated in Fig. 7(a). A focused view on the

depth value variations during task transitions was displayed

in Fig. 7(b). It could be found that the average depth values in

Block(1,2) and Block(1,3) were clearly differentiated among

dynamic locomotion modes, i.e. GLW, SA, and SD. When

the subject was in SS, the standard deviations of depth values

in Block(3,2), Block(3,3), Block(2,2), and Block(2,3) were

around zero, while reaching a much greater value in dynamic

modes. Recognition results showed that the SS mode could

always be accurately recognized when the subjects stood still.

When subjects started moving from SS, the GLW was always

detected when the leading limb started moving.

The accuracy and transition timing of the proposed loco-

motion recognition system were listed in TABLE II. Despite

of high variability among the nine subjects, during the steady

state, i.e. except transition strides, the RA of GLW, SA,

and SD was 100% except for the SA of Subject #5. One

SA step of Subject #5 was detected to be GLW due to the

viewed angle of the stair θ was smaller than 65 degree. This

kind of wrong detection could be corrected by measuring

the orientation of the camera, for instance, based on an

gyroscope sensor.

According the human locomotion biomechanics [21], [22],

the latest transition gait phase should happen at MSW. After

MSW, the kinematics and dynamics of both limbs were

adapted to the coming new locomotion mode. Taking the

transition from GLW to SA as an example, the hip and knee

joint angles of the leading limb were much greater in FLC of

SA than TSW of GLW while the lagging limb would provide

a higher supporting force for the FP of SA than for the heel

strike of GLW. According to the transition phases shown in

TABLE II, all the transitions were detected during or before

the foot placement of the leading limb, i.e. there was no OSD

detection. Furthermore, out of the 216 transitions, 82.4%

of detections happened no later than the critical transition

gait phase, i.e. MSW. These results confirmed that the mode

recognition timing of the proposed system was superior

compared with classical locomotion detection method based

on ground reaction force or mechanical inertia sensors [23],

[24], [14]. The later method usually recognizes the transition

at the foot placement of the leading limb or with one-step

delay.

Among all the locomotion transitions of SA-GLW and

SD-GLW, more than 75% of detections were tagged with

OSE. This meant that the GLW was triggered when the first

limb contacted the ground. At this moment, the trailing limb

was in FCN phase, which should have been in LST phase

if it was a true GLW transition. Thus, whether a transition

was triggered with OSE could be figured out by referring to

the posture of the trailing limb. The limb’s posture can be

captured by means of inertia sensors. Similar strategies could

be applied to detect an OSE during transitions of GLW-SA

and GLW-SD. Once a transition detection was confirmed to

be OSE, the triggering signal could be utilized to predict

the true transition, which was expected to happen when the

trailing limb reach MSW phase.

Despite the promising prediction performance in transi-

tions of GLW-SD, SA-GLW, and SD-GLW, half transitions

of GLW-SA were detected after MSW. By referring to the

raw depth images, we found that when the leading limb was

lifted to a relatively high position at the end of MSW, the

limb would cover the stair line. Without an effective stair

edge detection within the predefined dynamic sliding window

(Subsection II-C), SA would not be triggered. In the future

work, a time-of-flight (ToF) camera could be utilized, which

could provide larger range of view with higher sampling rate

than the Xtion PRO LIVE camera used in this study.

As a result of the placement strategy of the depth camera

(Fig. 1), the depth blocks of the third row would only capture

the limb movements. Along with the cyclic movements of

the two limbs, the average depth values of these blocks

change periodically. In Fig. 7(a), Block(3,1) and Block(3,4)

demonstrated a stable periodicity during all dynamic loco-

motion tasks. This periodic feature offers us an opportunity
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TABLE II

THE RECOGNITION ACCURACY DURING STEADY STATE AND THE GAIT PHASES AT LOCOMOTION TRANSITIONS.

Subject
GLW SA SD GLW-SA GLW-SD SA-GLW SD-GLW

Nt RA[%] Nt RA[%] Nt RA[%] No. Phase No. Phase No. Phase No. Phase

#1 265 100 66 100 66 100 6 1 ISW, 2 MSW, 3 FCL 6 3 IWS,2 MSW, 1 LP 6 4 MSW,2 TSW 6 5 OSE, 1 MSW
#2 265 100 66 100 66 100 6 1 OSE,1 ISW,2 MSW,2 FCL 6 6 OSE 6 6 OSE 6 6 OSE
#3 260 100 66 100 66 100 6 1 ISW, 2 MSW, 3 FCL 6 6 OSE 6 4 OSE,2 FCL 6 6 OSE
#4 247 100 66 100 66 100 6 2 MSW, 4 FCL 6 3 OSE,1 MSW, 2 LP 6 5 OSE, 1 FCL 6 4 OSE, 2 CL
#5 228 100 66 98.5 66 100 6 4 FCL, 2 FP 6 4 OSE,2 MSW 6 6 OSE 6 6 OSE
#6 249 100 66 100 66 100 6 1 ISW, 2 MSW, 3 FCL 6 6 OSE 6 6 OSE 6 2 OSE, 3 CL, 1 MSW
#7 268 100 66 100 66 100 6 1 MSW, 3 FCL, 2 FP 6 2 OSE, 2 IWS, 1 MSW, 1 LP 6 6 OSE 6 5 OSE, 1 CL
#8 207 100 66 100 66 100 6 1 MSW, 3 FCL, 2 FP 6 2 OSE, 2 IWS, 1 MSW, 1 LP 6 6 OSE 6 5 OSE, 1 CL
#9 244 100 66 100 66 100 6 4 ISW, 2 MSW 6 6 OSE 6 2 OSE, 4 FLC 6 4 OSE, 2 CL

All 2233 100 594 99.8 594 100 54
1 OSE, 8 ISW, 14 MSW

54
35 OSE, 7 IWS

54
41 OSE, 7 FCL

54 43 OSE, 9 CL, 2 MSW
25 FCL, 6 FP 7 MSW, 5 LP 4 MSW,2 TSW

Fig. 7. Example of the average depth values during one track trial. The data
was taken from one subject. (a) The average depth values of each image
block. The red vertical lines separated the trial into the following tasks: 1
SS, 2 GLW, 3 SA, 4 GLW, 5 SA, 6 GLW, 7 SD, 8 GLW, 9 SD, 10 GLW,
11 SS. (2) A detailed view of the depth values during locomotion mode
transitions, which was taken from Block(1,2). The green line marked the
transition moments detected by the proposed algorithm.

to estimate the gait frequency and gait phase, which could

be further utilized to improve the accuracy of locomotion

detection.

A major limitation of this study lies on the absence of

a real-time evaluation. In fact, the computation workload

of the detection algorithm is quite low. The average time

to process one depth image is about 5 ms with MATLAB

R2016a running on Intel(R)Core(TM)i7-7820HQ CPU, 2.90

Hz. Therefore, the algorithm can be easily transferred to a

real-time system thus detecting the locomotion mode online.

V. CONCLUSIONS

In this work, a depth image-based environment-aware

system has been developed for locomotion mode recognition.

The system consists of two subsystems: a depth feature

extraction subsystem and a finite-state-machine based loco-

motion recognition subsystem. Nine healthy young subjects

participated in the validation experiments and each of them

was asked to perform a continuous locomotion track three

times at normal speed. During the experiments, four locomo-

tion modes, including SS, GLW, SA, and SD, and six loco-

motion transition conditions, including SS-GLW, GLW-SS,

GLW-SA, SA-GLW, GLW-SD, and SD-GLW, were analyzed.

An approximate 100% RA was reported for steady state

locomotion tasks. Among the 216 mode transitions, 82.4%

of the intended locomotion task could be detected before

the transition happened, which outperforms most methods

in the current literature. The promising results are expected

to significantly improve the decision making regarding lo-

comotion transitions of lower-limb wearable robots. Thus,

a seamless and smooth assistance could be ensured when

the users change their locomotion tasks. In the future work,

we will firstly evaluate the performance of the proposed

method in real time, which is expected to run smoothly due

to the low computation workload. Then, we will validate

the locomotion recognition system with elderly subjects who

have very different gait patterns. Finally, the system will

be tested with a lower-limb exoskeleton system and in an

ecological environment.
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