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 A B S T R A C T

RGB-Thermal (RGB-T) semantic segmentation has attracted great attention in the research community of au-
tonomous driving. Full fine-tuning pre-trained networks is a common strategy in RGB-T semantic segmentation. 
However, as model size grows, updating all parameters becomes expensive and impractical, which hinders the 
wide applications of pre-trained networks despite their effectiveness. To efficiently adapt pre-trained single-
modality networks to the multi-modal RGB-T task, we design a module named multi-view adapter-pair. The 
multi-view adapter-pair bridges the gap between pre-trained features and the features required for RGB-T 
semantic segmentation. It achieves this by approximating high-dimensional updates to the hidden state during 
full fine-tuning within low-dimensional spaces. Moreover, we propose cross-modal self-attention, constructed 
using the self-attention operations in pre-trained transformer models. The cross-modal self-attention is designed 
to fuse RGB and thermal data by expanding the self-attention mechanism in the pre-trained model from a 
single modality to multiple modalities. Due to the permutation invariance of the attention mechanism and 
the differences between the two modalities, we introduce modality bias to guide the attention mechanism 
in learning dependencies inter- and intra-the two modalities. Leveraging these innovations, our network 
outperforms state-of-the-art methods on the MFNet dataset, as well as the FMB dataset and PST900 dataset, 
while maintaining parameter efficiency.
. Introduction

Semantic image segmentation is an essential capability for au-
onomous vehicles. Deep learning has significantly improved this field 
1]. However, conventional deep learning networks, designed for 3-
hannel RGB images, often degrade under unsatisfactory lighting con-
itions, such as total darkness. To overcome this problem, researchers 
ave turned to fusing thermal imaging data with RGB images, which 
as been demonstrated to enhance the overall segmentation perfor-
ance across varying lighting conditions [2–5].
Training deep neural networks by fully fine-tuning pre-trained mod-

ls through updating all the model’s parameters has been prevalent in 
omputer vision. This method has been demonstrated to be successful 
ue to the effective transferability from well-pre-trained models to 
pecific tasks. However, this method updates all the parameters of a 
re-trained model for downstream tasks, which becomes costly and 
nefficient as the size of pre-trained models grows.
To mitigate this issue, several efforts have been paid to update only 

 small amount of extra parameters while keeping most pre-trained 
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parameters frozen in training. Adapter Tuning [6] inserts lightweight 
adapters into each transformer layer, with only these adapters being 
updated. Prefix Tuning [7] prepends additional 𝑙 prefix tokens to 
the input or hidden layers and trains only these tokens for down-
stream tasks. Another approach, LoRA [8], approximates parameter 
updates of fully-connected layers with low-rank matrices. These meth-
ods make it possible to transfer pre-trained models to downstream 
Natural Language Processing tasks in a parameter-efficient way, with-
out or with minimal performance sacrifice. Given the success of the 
parameter-efficient fine-tuning paradigm in Natural Language Process-
ing, researchers have introduced these ideas into computer vision [9–
13].

Although the parameter-efficient fine-tuning methods have proven 
effective, strategies for designing them are less frequently discussed. As 
the mainstream parameter-efficient fine-tuning methods [6–8] can be 
formulated as indirect updates to the hidden states [14], we propose 
designing modules to indirectly mimic the direct updates to the hidden 
states during full fine-tuning in low-dimensional spaces. Based on this 
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Fig. 1. The illustration of learning inter- and intra-modal dependencies by our cross-
modal self-attention. RGB input (top left) and thermal input (top right) correspond to 
RGB output (bottom left) and thermal output (bottom right). The blue lines denote data 
flows from the RGB modality, while the red lines denote data flows from the thermal 
modality.

strategy, we introduce an additive module, named multi-view adapter-
pair, to efficiently transfer the pre-trained model to semantic segmen-
tation tasks. The experimental results demonstrate the effectiveness of 
our strategy.

Another critical aspect of RGB-T semantic segmentation is the fu-
sion method. The current methods for RGB-T fusion can be gener-
ally categorized into non-learnable and learnable methods. The non-
learnable fusion methods, such as element-wise addition [5], element-
wise weighted addition [15], element-wise maximum [16], and fea-
ture concatenation [17–19], are popular due to their simplicity. How-
ever, these methods usually suffer from inferior performance because 
they could not adaptively fuse information from different modalities. 
Therefore, the learnable fusion methods have been introduced to ad-
dress this issue by incorporating manually designed fusion modules 
into the network [4,20,21]. These fusion modules can be classified 
into convolution-based modules and cross-attention-based modules. 
The convolution-based modules, being insensitive to the input, can 
achieve multi-scale fusion. However, these modules offer limited ex-
plainability, which complicates the analysis of the fusion process. On 
the other hand, the cross-attention-based modules enhance explainabil-
ity, but are limited to fusion at the semantic-level due to the substantial 
computational cost of external cross-attention modules, which also 
hinders their ability to fuse low-level features [21].

To address these limitations, we propose a novel and interpretable 
fusion method called cross-modal self-attention (see Fig.  1). This ap-
proach fuses RGB and thermal data by constructively learning the de-
pendencies between modalities based on query-key similarities. Using 
attention maps, this method allows for the analysis of relationships be-
tween modalities. The scalability of the attention mechanism also elimi-
nates the obstacle to scale the cross-modal self-attention to more modal-
ities. Most importantly, we implement the cross-modal self-attention 
in a parameter-efficient way by reusing the self-attention module in 
the pre-trained backbone, allowing for multi-scale fusion. Our code 
is open-sourced1. The contributions of this work are summarized as 
follows:

1. We introduce the multi-view adapter-pair as an efficient method 
to transfer pre-trained single-modality image models to RGB-T 
semantic segmentation.

2. We design the cross-modal self-attention to fuse RGB and ther-
mal information in a simple, explainable, scalable, and effective 
way.

3. We achieve superior performance compared to state-of-the-art 
methods on the MFNet dataset, as well as the FMB and PST900 
datasets, while requiring significantly fewer parameter updates.

1 https://github.com/lab-sun/PEAFusion.
2 
4. We demonstrate that the transfer from an upstream single
modality model to a downstream multi-modal task, such as RGB-
T semantic segmentation, can be implemented in a parameter-
efficient way.

The remainder of this paper is structured as follows. Section 2 re-
views the related work. Section 3 outlines some preliminaries. Section 4 
presents the details of our proposed network. Section 5 discusses the 
experimental results. Section 6 discusses the limitations. Conclusions 
are drawn in the last section.

2. Related work

2.1. Pre-trained backbone

Since the introduction of AlexNet [22], which marked a shift in 
the computer vision community from feature engineering and shal-
low models to deep neural networks, Convolutional Neural Networks 
(CNNs) [23] have dominated the field for a long time. However, 
the emergence of the Vision Transformer (ViT) [24] has challenged 
CNNs’ longstanding dominance by demonstrating exceptional perfor-
mance in image classification tasks. Subsequently, various adaptations 
of ViT [25–27] have extended the success of transformer to numerous 
other computer vision tasks.

The success of deep learning stems not only from ingenious structure 
design but also from meticulously collected datasets, such as Ima-
geNet [28]. Thanks to the vast size and diversity of the ImageNet [28], 
models trained on ImageNet are able to learn a comprehensive set of 
features that can be applied to a wide range of downstream computer 
vision tasks. In our work, we build our deep model based on the Swin 
Transformer [25,26] pre-trained on ImageNet [28], due to its proven 
excellent performance in semantic segmentation.

2.2. RGB-only semantic segmentation

The goal of semantic segmentation is to label each pixel in an image 
into different semantic classes. Early approaches, such as Fully Convo-
lutional Networks (FCNs) [29], laid the foundation by replacing fully-
connected layers with convolution layers for pixel-wise predictions. 
Further advancements were made with U-Net [30], which incorporated 
skip connections to combine low- and high-level features, enhancing 
segmentation performance, particularly in medical imaging. To cap-
ture multi-scale context, Dilated Convolutions [31] expanded receptive 
fields without losing resolution, a technique utilized by models like 
DeepLab [32]. Subsequent models, such as SegFormer [27], focused on 
integrating global context through pyramid structures and transform-
ers, respectively, to capture multi-scale information and achieve state-
of-the-art results.  In more recent developments, models like Mask-
Former [33] and Mask2Former [34] were introduced. MaskFormer [33] 
employed mask classification to effectively address both semantic and 
instance segmentation tasks, demonstrating superior performance over 
traditional per-pixel classification methods, especially in datasets with 
a large number of classes. Similarly, Mask2Former [34] utilized masked 
attention within a Transformer framework to handle various image 
segmentation tasks, including panoptic, instance, and semantic seg-
mentation. Building on this foundation, our method leveraged the 
pixel decoder and mask decoder of Mask2Former [34] to address 
RGB-Thermal segmentation tasks. 

2.3. RGB-depth semantic segmentation

RGB cameras provide rich color information but lack spatial depth 
data, while depth cameras offer abundant spatial depth information. 
The combination of these two modalities enables the model to achieve 
a more comprehensive 3D understanding of the scene, which has led 
to the emergence of the RGB-Depth semantic segmentation task. A key 

https://github.com/lab-sun/PEAFusion
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Fig. 2. The structure of our PEAFusion (Tiny). It mainly consists of three components: (a) Backbone, (b) Pixel Decoder, and (c) Transformer Decoder. The Backbone contains a 
sequence of Fusion Swin Blocks (FSB). Within these Fusion Swin Blocks, cross-modal interaction between the RGB and thermal modalities is achieved via Cross-Modal Self-Attention.
challenge in this field is how to effectively integrate RGB and depth 
information.

Methods in this area can be broadly categorized into three classes 
[35]. The first class [36,37] treats depth information as a separate 
modality, using distinct backbones to extract features from both RGB 
and depth data, followed by their fusion. The second class [38] incor-
porates depth information as a bias within the RGB network, thereby 
aiding in the learning of depth-related features. The third class [39,40] 
uses depth information as labels, enabling the model to learn both 
semantic and depth information from a single RGB image. 

2.4. RGB-thermal semantic segmentation

Thermal cameras have the unique ability to detect infrared radiation 
emitted by all objects with a temperature above absolute zero [41]. 
This capability allows vehicle systems to address the limitations of 
standard grayscale and RGB cameras, catalyzing the creation of RGB-T 
semantic segmentation networks. Most RGB-T semantic segmentation 
networks focus on developing multi-modal fusion modules [4,5,20]. 
While these modules have greatly improved segmentation accuracy, 
the mechanisms driving them remain largely unclear, which obstructs 
efforts to analyze and enhance these fusion modules further.

In our research, we conceptualize the fusion process as the learning 
of interdependencies between RGB and thermal data and introduce 
cross-modal self-attention to establish relationships between different 
modalities. This fusion approach not only offers better performance 
than previous methods but also saves parameters by being implemented 
based on the self-attention module in a transformer-based backbone.

2.5. Parameter-efficient fine-tuning

Parameter-efficient fine-tuning technologies [6–8,14] are initially 
introduced in Natural Language Processing tasks to reduce training 
costs while maintaining or even surpassing the performance of full fine-
tuning. With the recent escalation in model sizes, such as the Swin V2 
Giant [26] which possesses 3 billion parameters, the computer vision 
community has begun to adopt these techniques [9–13,42].

Among the various innovations, AdaptFormer [11] and AIM [9] 
have implemented the initial adapter concept from Adapter Tuning [6] 
directly into the ViT layers, facilitating more efficient transfer of pre-
trained ViT models. The Convolutional Bypass Adapter [12] integrates 
the inductive bias of the convolutional layer into the adapter, making 
it better suited for computer vision tasks. Additionally, LoRand [10] 
minimizes the parameters of the adapter further using a low-rank ap-
proximation approach, employing multiple low-dimensional tensors to 
represent the relatively high-dimensional fully-connected layer within 
3 
the adapter. Meanwhile, ViT-Adapter [13] introduces image-related 
inductive biases to standard ViTs, boosting their performance on dense 
prediction tasks.

In our study, we investigate parameter-efficient fine-tuning from a 
different perspective by developing additive parameters that simulate 
the modifications of the hidden state typically achieved through full 
fine-tuning. These additive parameters are based on the adapter in 
Adapter Tuning [6] due to its simplicity.

3. Preliminaries

3.1. A brief review of swin transformer

Models based on the Swin Transformer (Swin) [26] have gained 
significant popularity in computer vision, particularly in the tasks that 
require dense prediction, such as RGB-T semantic segmentation [16]. 
Similar to ViT [24], Swin processes an image as a sequence of small 
patches. For an image of size 𝐻 × 𝑊 , Swin divides the input into 𝑁
non-overlapping patches and projects them into a specified dimension 
(denoted as 𝐶). Several Swin blocks are applied on these patches. As 
these Swin blocks maintain the number of patches, a hierarchical rep-
resentation is produced by reducing the number of patches through a 
patch merging layer as the network gets deeper. The Swin architecture 
consists of four stages, each containing of 2𝑛 successive Swin blocks.

A Swin block consists of a shifted window-based multi-head self-
attention (MHSA) module and a feed forward network (FFN) module. 
It computes self-attention within localized windows and employs a shift 
window operation to facilitate connections across windows.

To enhance the initial Swin’s capacity and window resolution, Swin 
V2 [26] was developed. The computation of two successive Swin V2 
blocks can be written as 

𝑧𝑙 = LayerNorm{𝑊 -MHSA(𝑧𝑙−1)} + 𝑧𝑙−1 (1)

𝑧𝑙 = LayerNorm{FFN(𝑧𝑙)} + 𝑧𝑙 (2)

𝑧𝑙+1 = LayerNorm{SW-MHSA(𝑧𝑙)} + 𝑧𝑙 (3)

𝑧𝑙+1 = LayerNorm{FFN(𝑧𝑙+1)} + 𝑧𝑙+1 (4)

where 𝑧𝑙 and 𝑧𝑙 represent the output features of the (S)W-MHSA 
module and the FFN module for block 𝑙, respectively. W-MHSA and SW-
MHSA refer to window-based multi-head self-attention using regular 
and shifted window partitioning configurations, respectively. Layer-
Norm denotes the LayerNorm [43] layer.
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Fig. 3. The structures of multi-view adapter-pair (composed of the multi-view adapter and the adapter) and the conv bypass adapter. The outputs from these adapters are scaled 
before being added to the main branch.
3.2. An overview of adapter tuning

Adapter Tuning [6] offers a parameter-efficient and effective strat-
egy for fine-tuning pre-trained models on downstream tasks by inte-
grating several adapters into the existing model framework. During 
training, only the newly added adapters and LayerNorm [43] modules 
are updated, preserving the integrity of the rest of the model. Adapter 
Tuning [6] is later reframed as modification to specific hidden state 
within the pre-trained model [14].

Each adapter employs a bottleneck architecture, consisting of two 
fully-connected (FC) layers with an activation layer situated between 
them, see Fig.  3(a). The first FC layer reduces the dimensionality of the 
input, while the second FC layer restores it to its original dimension. 
In Adapter Tuning [6], a standard transformer block includes two 
adapters: one following the MHSA module and the other following the 
FFN module.

4. The proposed method

This section begins with a concise overview of our proposed method 
(Section 4.1). Subsequently, we provide a detailed explanation of the 
multi-view adapter-pair (Section 4.2) and the cross-modal self-attention 
(Section 4.3).

4.1. Method overview

In this work, we propose a method to adapt pre-trained single-
modality Swin Transformer models [25,26] for RGB-T semantic seg-
mentation, treating thermal information as an additional modality 
to enhance scene understanding. Our approach addresses two core 
components: the efficient transfer of knowledge from single-modality 
models to multi-modal tasks and the effective fusion of multi-modal 
information.

4.1.1. Parameter-efficient transfer of pre-trained models
Full fine-tuning could be regarded as direct update of the hidden 

states in a pre-trained model, achieved by optimizing all parameters to 
adapt the model to downstream tasks. In our work, we have designed 
an additive module referred to as multi-view adapter-pair and inserted 
it into each transformer block. These modules approximate the updates 
to hidden states achieved through full fine-tuning while operating 
within a low-dimensional space to reduce computational complexity 
and improve parameter efficiency. Within the multi-view adapter-pair, 
the multi-view adapter emulates the role of the attention module, 
while the adapter functions as part of the feed-forward network [44]. 
By employing these modules, we achieve parameter-efficient adapta-
tion of the pre-trained single-modality Swin Transformer [25,26] to 
4 
downstream tasks, enabling effective adaptation from upstream RGB 
modality to both downstream RGB and thermal modalities in the 
context of RGB-Thermal semantic segmentation.

4.1.2. Fusion of multimodal information
For modality integration, we leverage the flexibility of the self-

attention mechanism [44] in the pre-trained Swin Transformer [25,
26] to adaptively fuse modalities without extra fusion modules. Self-
attention is well-suited for this task as it captures dependencies among 
elements, which is crucial for effective modality fusion, enabling an ef-
fective transition from single-modality to multi-modality by integrating 
diverse input sources dynamically. However, given the permutation in-
variance of self-attention and the distinct characteristics of modalities, 
we introduce modality-bias, a learnable term specific to each modality. 
This mechanism effectively guides the learning of intra-modality de-
pendencies and inter-modality interactions, addressing the limitations 
of basic token concatenation methods, which model dependencies by 
combining input sources along the token dimension. 

4.2. Multi-view adapter-pair

4.2.1. Structure of multi-view adapter-pair
In full fine-tuning, the MHSA constructs both spatial and channel re-

lationships, while the FFN focuses specifically on channel connections. 
The MHSA module processes a sequence of feature tokens, represented 
as 𝑋 ∈ R𝑁×𝐶 , by first projecting these tokens into a number of 
lower-dimensional spaces, defined as 𝑋 ∈ Rℎ𝑒𝑎𝑑𝑠×𝑁× 𝐶

ℎ𝑒𝑎𝑑𝑠 . Within these 
spaces, the MHSA learns varying dependencies between tokens through 
attention operations. Then it projects the tokens back to their original 
dimensions, returning to 𝑋 ∈ R𝑁×𝐶 . Meanwhile, the FFN first projects 
the input tokens to a certain channel dimension, usually higher than 
the input dimension, using a fully-connected layer. This is followed by 
an activation function to introduce non-linearity. Finally, the hidden 
state is restored to its initial dimension through another fully-connected 
layer.

Here we design distinct adapters for the MHSA and the FFN modules 
within a transformer block, individually, to mimic the update of hidden 
state in full fine-tuning. For the adapter attached parallel to the MHSA 
module, which we refer to as the multi-view adapter (as shown in Fig. 
3(c)), the process begins with a down-sampling fully-connected layer 
that projects the input into a lower-dimensional space. The features are 
then divided evenly along the channel dimension into four segments, 
each processed by convolution layers of different kernel sizes: 3 × 3 
conv, 3 × 3 conv, 5 × 5 conv, and 7 × 7 conv respectively, drawing in-
spiration from the multi-head mechanism in the MHSA. Subsequently, 
the features are recombined along the channel dimension and the 
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Fig. 4. Visualization of central window attention maps focuses on the first head in the first block of each stage, with the average computed over the MFNet test set to capture 
the overall distribution. The rows represent: (1) with modality bias; (2) without modality bias; and (3) their differences. Color bar ranges are not standardized to better show 
attention distribution. PEAFusion-tiny is used with a window size of 16 and an input resolution of 640 × 480.
Table 1
The per-class and average results (%) on the MFNet Dataset. IoU (Intersection over Union), mIoU (mean Intersection over Union), Acc (Accuracy), and mAcc (mean Accuracy) are 
the evaluation metrics used in this comparison. The best results are highlighted in bold. The symbol ‘–’ denotes missing data. The main comparative data come from the article 
[16].
 Method Venue Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU mAcc 

IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc  
RTFNet [5] RAL 2019 87.4 93.0 70.3 79.3 62.7 76.8 45.3 60.7 29.8 38.5 0 0 29.1 45.5 55.7 74.7 53.2 63.1  
ABMDRNet [45] CVPR 2021 84.8 94.3 69.6 90.0 60.3 75.7 45.1 64.0 33.1 44.1 5.1 31.0 47.4 61.7 50.0 66.2 54.8 69.5  
FEANet [46] IROS 2021 87.8 93.3 71.1 82.7 61.1 76.7 46.5 65.5 22.1 26.6 6.6 70.8 55.3 66.6 48.9 77.3 55.3 73.2  
EAEFNet [47] RAL 2023 87.6 95.4 72.6 85.2 63.8 79.9 48.6 70.6 35.0 47.9 14.2 62.8 52.4 62.7 58.3 71.9 58.9 75.1  
IGFNet(B2) [20] ROBIO 2023 88.0 93.2 74.0 83.4 62.7 71.8 48.2 67.6 36.0 45.4 14.2 68.5 52.4 58.8 57.5 68.3 59.0 72.9  
CMX(B2) [4] TITS 2023 89.4 – 74.8 – 64.7 – 47.3 – 30.1 – 8.1 – 52.4 – 59.4 – 58.2 –  
CMX(B4) [4] TITS 2023 90.1 – 75.2 – 64.5 – 50.2 – 35.3 – 8.5 – 54.2 – 60.6 – 59.7 –  
CRM-T [16] ICRA 2024 90.0 94.8 73.1 85.1 63.7 80.6 47.9 73.0 40.7 51.3 9.9 64.4 54.4 60.0 54.2 68.1 59.1 71.8  
CRM-B [16] ICRA 2024 90.0 95.2 75.1 85.6 67.0 81.8 45.2 54.2 49.7 71.2 18.4 12.9 54.2 82.9 54.4 72.9 61.4 72.9  
PEAFusion-tiny (ours) 87.6 93.4 72.6 86.3 62.7 78.4 42.9 62.5 45.5 69.6 15.0 18.0 51.2 89.1 56.8 82.6 59.1 75.4  
PEAFusion-base (ours) 89.2 94.6 72.3 87.2 63.5 76.6 46.6 62.8 49.7 77.6 20.3 31.6 52.0 84.5 57.2 78.8 61.0 77.0  
PEAFusion-large (ours) 88.5 94.4 72.3 84.0 67.5 85.2 49.2 56.7 49.0 76.2 8.5 8.8 57.8 74.5 69.6 74.9 62.3 72.6  
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imensions are restored to their original size through an up-sampling 
ully-connected layer. Since the FFN module in a transformer block 
reserves the spatial relationships within a sequence while primarily 
earning channel relationships, we utilize the initial adapter attached 
arallel to the FFN module [6].
We consider these two adapters within a block to constitute a multi-

iew adapter-pair. Table  5 demonstrates how our proposed adapter-pair 
ffectively facilitates the transfer of the pre-trained image model to the 
GB-T semantic segmentation task.

.2.2. Training initialization of multi-view adapter-pair
In parameter-efficient fine-tuning methods, such as those involving 

dditive modules like adapter modules [6] and LoRA modules [8], it 
s common to initialize these modules to zero or near-zero to min-
mize their initial perturbation to the pre-trained model. Typically, 
his involves zero or near-zero initialization of components within 
he additive module, such as a linear projection layer [6,8,9,11,12]. 
owever, initializing all weights of a linear layer to the same value can 
c

5 
ead to issues like symmetry, where neurons learn identical features, 
indering the layer’s learning effectiveness [48]. Inspired by Highway 
etworks [49], we introduce a gating mechanism to mitigate the 
dditive module’s impact on the pre-trained model at the onset of 
raining without initializing certain components as 0. Specifically, we 
mploy a gate scale—initialized to zero—to regulate the information 
low through the additive modules. Meanwhile, the components of the 
dditive module are initialized using standard methods; for example, 
e initialize the linear layer in the multi-view adapter-pair with a 
ormal distribution [25,26] and the convolution operator with Xavier 
nitialization [50]. 

.2.3. Parameter comparison: Transformer block vs. Multi-view adapter-
air
In this section, we compare the parameter counts of a transformer 

lock and a multi-view adapter-pair. For simplicity, we consider only 
he linear projection layer of the transformer block. The parameter 
ount of the transformer block [25,26,44] 𝑃  consists of two parts: the 
𝑇
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Fig. 5. Illustration of simulated adversarial attack scenarios: fog, rain (depicted by white streaks symbolizing raindrops), snow (depicted by white dots symbolizing snowflakes), 
and an adversarial patch scene (with the adversarial patch delineated within a white frame).
parameters of the attention module, denoted as 𝑃attn, and the parame-
ters of the feed-forward network (FFN), denoted as 𝑃ffn. Assuming the 
input dimension is 𝐶, we have: 
𝑃𝑇 = 𝑃attn + 𝑃ffn = 4 ⋅ 𝐶 ⋅ 𝐶 + 𝐶 ⋅ 4𝐶 ⋅ 2 = 12𝐶2 (5)

For the multi-view adapter-pair, the parameter count 𝑃mv-ap includes 
the parameters of the multi-view adapter, denoted as 𝑃mv-ad, and the 
parameters of the adapter, denoted as 𝑃ad. Assuming the downsampling 
ratio in the multi-view adapter is 𝛾1, and the downsampling ratio in the 
adapter is 𝛾2, we have: 

𝑃mv-ad = 𝐶2 ⋅ 𝛾1 ⋅ 2 +
(

𝐶 ⋅ 𝛾1
4

)2
⋅
(

2 ⋅ 32 + 52 + 72
)

(6)

𝑃ad = 𝐶2 ⋅ 𝛾2 ⋅ 2 (7)

𝑃mv-ap = 𝑃mv-ad + 𝑃ad (8)

Based on our work’s settings, where 𝛾1 = 0.125 and 𝛾2 = 0.5, the 
proportion of the parameter count between the multi-view adapter-pair 
and the transformer block is: 
𝑃mv-ap
𝑃𝑇

≈ 0.11 (9)

4.3. Cross-modal self-attention

The Self-Attention excels at building spatial relationship by learning 
dependency between the tokens of the input sequence [24–27]. The 
Self-Attention in Swin V2 [26] could be written as 
Attention(𝑄,𝐾, 𝑉 ) = SoftMax(cosine(𝑄,𝐾)∕𝜏 + 𝐵)𝑉 (10)

where 𝑄,𝐾, 𝑉 ∈ R𝑀2×𝑑 are the query, key and value; 𝑑 is the dimension 
of 𝑞𝑢𝑒𝑟𝑦∕𝑘𝑒𝑦∕𝑣𝑎𝑙𝑢𝑒, and 𝑀2 is the number of patches in a window; 
𝐵 ∈ R𝑀2×𝑀2  is the relative position bias term for each head.

As shown in Fig.  2, to establish relationships between modalities, we 
first divide the window to prepare the tokens for attention calculation. 
Since the RGB and thermal images are highly aligned, we adopt a 
shared window partitioning approach for both modalities. Next, we 
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concatenate the query, key, and value vectors from each modality 
along the sequence dimension. Following this, the attention operation 
is applied to the concatenated vectors. Similarly, because the RGB and 
thermal images are highly aligned, we retain the relative position bias 
from the pre-trained model for each modality to distinguish spatial 
positions within the same modality.  To further differentiate tokens 
across modalities, we use the modality bias alongside the relative 
position bias for each attention head, much like the relative position 
bias distinguishes tokens based on their positions. As indicated in Table 
7 and Fig.  4, the importance of modality bias is clearly demonstrated. 
Initially, elements in the RGB bias are set to 2, reflecting the typically 
richer information content in RGB modality, while elements in the 
thermal bias start at 0. Both biases are updated during training via 
gradient backpropagation.

The Cross-Modal Self-Attention (CM-SA) can be described as: 

𝑄 =
(𝑄1
𝑄2

)

;𝐾 =
(𝐾1
𝐾2

)

;𝑉 =
(𝑉1
𝑉2

)

;𝐵𝑖𝑎𝑠 =
[

𝐵 + 𝛽1 𝐵 + 𝛽2
𝐵 + 𝛽1 𝐵 + 𝛽2

]

;

CM-SA = SoftMax(cosine(𝑄,𝐾)∕𝜏 + 𝐵𝑖𝑎𝑠)𝑉
(11)

where 𝛽1, 𝛽2 ∈ R𝑛×𝑀2×𝑀2  are the modality biases for different modali-
ties; 𝑛 is the number of heads, and 𝑀2 is the number of patches in a 
window, and SoftMax normalizes the weighted similarity scores across 
all patches to ensure that the attention coefficients sum to 1 for each 
query.

The Cross-Modal Self-Attention (CM-SA) functions like traditional 
self-attention, serving as a sampling mechanism that is based on the 
similarity between query and key pairs. This offers enhanced clarity 
over previous fusion methods. With appropriate position and modality 
biases, along with effective similarity calculations, CM-SA can seam-
lessly fuse an arbitrary number of modalities through a single attention 
operation.

5. Experimental results and discussions

In this section, we introduce the datasets used in our RGB-T seman-
tic segmentation networks, followed by a detailed description of the 
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Fig. 6. Illustration of ablation study settings for multi-view adapter-pair.
Table 2
The per-class and average results (%) on the PST900 Dataset. The best results are highlighted in bold. The symbol ‘–’ denotes missing data in the original publication. The main 
comparative data come from the article [16]. 
 Method Venue Background Fire-Extinguisher Backpack Hand-Drill Survivor mIoU mAcc 
 IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc  
 RTFNet [5] RAL 2019 98.9 – 52.0 – 75.3 – 25.2 – 36.4 – 57.6 –  
 PSTNet [18] ICRA 2020 98.9 – 70.1 – 69.2 – 53.6 – 50.0 – 68.4 –  
 ABMDRNet [45] CVPR 2021 99.0 – 66.2 – 67.9 – 61.5 – 62.0 – 71.3 –  
 CRM-T [16] ICRA 2024 99.5 – 79.1 – 86.0 – 86.2 – 78.7 – 85.9 –  
 CRM-B [16] ICRA 2024 99.6 – 79.5 – 89.6 – 89.0 – 82.2 – 88.0 –  
 MMSFormer [51] OJSP 2024 99.6 – 81.45 – 89.86 – 89.65 – 76.68 – 87.4 –  
 PEAFusion-tiny (ours) 99.6 99.7 80.7 89.5 88.8 96.7 89.5 94.4 85.0 94.5 88.7 95.0  
 PEAFusion-base (ours) 99.7 99.8 83.3 89.2 90.7 97.0 90.2 93.4 84.3 94.6 89.6 94.8  
network architecture and training configurations. Next, we present the 
results of ablation studies to evaluate the effectiveness of our proposed 
methods and analyze the robustness of our approach against adversarial 
attacks. We also conduct a comprehensive comparison with CRM [16], 
a full fine-tuning method that employs a similar model architecture. 
Finally, we provide a quantitative comparison of our approach with 
previous methods. We employ the evaluation metrics, Intersection over 
Union (IoU) and Accuracy (Acc), in our experiments [5]. 
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5.1. Dataset

In this study, we utilize three publicly available RGB-T datasets for 
the training and evaluation of the proposed methodology.

5.1.1. MFNet dataset [17]
The MFNet dataset comprises a collection of 820 daytime and 749 

nighttime RGB-thermal images captured in urban driving scenarios, 
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Table 3
The per-class (%) results and average results on the FMB Dataset. The best results are highlighted in bold. The symbol ‘–’ denotes missing data in the original publication. As 
class ‘Bicycle’ is absent from the test set, we report average results excluding the ‘Bicycle’ class.
 Method Venue Building T-Lamp T-Sign Vegetation Person Car Truck Pole mIoU mAcc 
 IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc  
 SegMiF [52] ICCV 2023 82.0 – 43.1 – 74.8 – 85.0 – 65.4 – 78.3 – 47.3 – 49.8 – 57.6 –  
 MMSFormer [51] OJSP 2024 83.0 – 45.2 – 79.7 – 87.3 – 69.8 – 82.6 – 44.6 – 51.4 – 61.7 –  
 PEAFusion-tiny (ours) 84.2 91.8 38.6 82.4 79.4 93.6 88.0 93.0 72.3 88.8 84.7 91.2 49.1 70.3 54.1 77.1 69.8 85.3  
Table 4
The settings for the multi-view adapter-pair in the Backbone.
 Setting PEAFusion-tiny PEAFusion-base PEAFusion-large 
 Multi-View adapter FC down ratio 0.125 0.125 0.125  
 Adapter FC down ratio 0.5 0.5 0.5  
 Scale 4.0 4.0 4.0  
with a resolution of 640 × 480 pixels. It includes semantic annotations 
for nine categories, which consist of one unlabeled class and eight 
classes corresponding to common urban objects.

5.1.2. PST900 dataset [18]
The PST900 dataset consists of 894 synchronized RGB-thermal im-

age pairs with a resolution of 1280 × 720, captured in cave and 
subterranean environments for the DARPA Subterranean Challenge. It 
includes per-pixel human annotations across four object classes, with 
one background class (unlabeled).

5.1.3. FMB dataset [52]
The FMB dataset contains 1500 well-registered infrared and visible 

image pairs, each annotated with 14 pixel-level categories. It covers 
a diverse range of environments, including dense fog, heavy rain, and 
low-light conditions, providing rich scenes under varying illumination. 
With images of 800 × 600 resolution, the dataset is designed to enhance 
the generalization ability of fusion and segmentation models.

5.2. Implementation details

In this subsection, we present the details of the networks and 
training settings. The network architecture is shown in Fig.  2.

5.2.1. Backbone
We employ Swin V2 (tiny, base, and large) [26] pre-trained on 

ImageNet [28] as our base backbones and augment them by incor-
porating the multi-view adapter-pair and cross-modal self-attention 
into each Swin V2 block. We refer to this enhanced block as the 
Fusion Swin Block. Depending on the size of the pre-trained Swin V2 
model, we label our networks as PEAFusion-tiny, PEAFusion-base, and 
PEAFusion-large. PEAFusion refers to parameter-efficient adaptation 
for multi-modal fusion-based semantic segmentation.

As illustrated in Fig.  2, traditional self-attention is substituted with 
the cross-modal self-attention by reconstructing the forward pass pro-
cess and incorporating modality bias. Additionally, two multi-view 
adapters are aligned parallel to the cross-modal self-attention module. 
Furthermore, the FFN module is equipped with two parallel adapters
[6], each serving a different modality. Detailed settings for the multi-
view adapter-pair configurations can be found in Table  4. In addition, 
the feature maps of the RGB modality and the thermal modality, output 
from the backbone, undergo a maxout [16,53]operation to reduce 
dimensionality. 

5.2.2. Head network
In our design, we incorporate Mask2former [34], mainly including 

Pixel Decoder and Transformer Decoder, as the head network of our 
architecture.
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Table 5
The results (%) of the ablation study on the components in the multi-view adapter-pair 
in terms of mIoU. The term ‘parameters’ refers to the number of parameters introduced 
by this configuration, measured in millions.
 Method Parameters mIoU 
 Adapter (FFN) 4.3 M 57.6  
 Multi-View Adapter (Attn) 1.5 M 57.0  
 Adapter (Attn) + Adapter (FFN) 5.4 M 58.4  
 Adapter (Attn) + Multi-View Adapter (FFN) 11.6 M 57.1  
 Multi-View Adapter (Attn) + Multi-View Adapter (FFN) 12.0 M 56.6  
 Conv Bypass Adapter [12] 15.7 M 56.6  
 AdapterFormer [11] 4.3 M 57.0  
 Multi-View Adapter (Attn) + Adapter (FFN) (ours) 5.7 M 59.1  

5.2.3. Training settings
Our networks are built with the PyTorch [54] and Detectron2 [55] 

libraries, and our experiments are accelerated by RTX 3090 GPU. 
For data augmentation, we employ techniques such as random color 
jittering [56], random horizontal flipping, and random cropping on 
both RGB and thermal images. AdamW [57] optimizer is adopted for 
all experiments.

5.3. Ablation study for multi-view adapter-pair

In this subsection, we analyze the efficacy of the multi-view adapter-
pair. Here we illustrate the additive module setting for only one modal-
ity for simplicity, as different modalities share the same setting. Abla-
tion studies are carried out using the PEAFusion-tiny configuration. Un-
less otherwise specified, the ablation study experiments are conducted 
on the MFNet dataset.

5.3.1. Ablation on the components in the multi-view adapter-pair
Here, we conduct two experiments to verify the effectiveness of 

each component in the multi-view adapter-pair. In the first experiment, 
we attach only the multi-view adapter to the attention module, while 
in the second, we attach only the adapter to the FFN module. The 
experimental results show that, without the adapter (i.e., using only 
the multi-view adapter for the attention module, as shown in Fig.  6(b)), 
there is a loss of 2.1 mIoU. Similarly, when only the adapter for the FFN 
module is used (as depicted in Fig.  6(a)), a loss of 1.5 mIoU is observed. 

5.3.2. Ablation on the strategy for designing the additive adapter
In Section 4.2, we propose a low-dimensional approximation of the 

high-dimensional updates to the hidden states in the transformer-based 
block during full fine-tuning to achieve parameter-efficient transfer. 
Specifically, we simulate the role of the attention module in learning 
spatial-channel relationships and the function of the FFN module in 
establishing channel-wise relationships. To validate the effectiveness of 
our approach, we conduct three experiments.
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Table 6
The results (%) of the ablation study on the initialization methods for the multi-view 
adapter-pair in terms of mIoU.
 Setting Zero-initialization Gate-initialization 
 AdapterFormer 57.0 57.6  
 PEAFusion-tiny (ours) 57.1 59.1  

Table 7
The results (%) of the ablation study on the effectiveness of cross-modal self-attention 
in terms of mIoU.
 Method mIoU 
 Baseline 57.8  
 Baseline+ CM-SA (without modality bias) 56.9  
 Baseline+ CM-SA (with modality bias) (ours) 59.1  

First, we swap the positions of the multi-view adapter and the 
adapter (illustrated in Fig.  6(f)) and observe a loss of 2.0 mIoU, despite 
adding 5.9M additional parameters. In the second experiment, we 
attach the multi-view adapter to both the attention and FFN mod-
ules, see Fig.  6(e). After introducing an additional 6.3M parameters, 
a performance drop of 2.5 mIoU is observed. Finally, when we attach 
the adapter to both the attention and FFN modules, see Fig.  6(c), a 
milder performance loss of 0.7 mIoU is recorded. This behavior can be 
interpreted as follows: attaching the adapter to the attention module 
essentially introduces an identity projection. However, this identity 
projection is highly ineffective in capturing the complexities of spatial 
relationships, which explains the performance degradation observed in 
comparison to the multi-view adapter-pair method. The results of these 
experiments strongly support the design strategy we propose for the 
additive adapter. 

5.3.3. Ablation on the initialization method of the multi-view adapter pair
In this section, we validate the gate initialization method pro-

posed in Section 4.2.2. We conduct comparative experiments using the 
common zero-initialization method as a baseline, comparing both our 
method and the AdapterFormer [11] method. For our approach, the 
gate initialization shows an improvement of 2.0 mIoU compared to 
zero-initialization. Additionally, we observe a performance increase of 
0.6 mIoU for the AdapterFormer [11] method (see Table  6). 

5.3.4. Comparison to other parameter-efficient fine-tuning methods
Compared to other adapter-based parameter-efficient fine-tuning 

methods, such as AdapterFormer [11], shown in Fig.  6(a), and Conv 
Bypass Adapter [12], illustrated in Fig.  6(d), our multi-view adapter-
pair achieves superior performance, with improvements of +2.1 mIoU 
and +2.5 mIoU, respectively (see Table  5).

5.4. Ablation on cross-modal self-attention

In this subsection, we perform a series of experiments to investi-
gate the impact of the cross-modal self-attention. The results of these 
experiments are listed in Table  7. We start with two frozen Swin 
V2 [26] backbones equipped with two parallel multi-view adapter-pairs 
as our baseline. Then, we construct cross-modal self-attention without 
modality bias. Since the RGB and thermal images are well-aligned, we 
apply the same window partitioning strategy for the both modalities 
and share the relative position bias. As shown in Fig.  4, under the 
condition of shared position relationships, both intra-modality and 
inter-modality attention maps exhibit high spatial consistency. This 
suggests that even without modality bias, cross-modal self-attention can 
establish spatial relationships between modalities. However, this cross-
modal self-attention setup without modality bias leads to a performance 
drop of 0.9 mIoU. When modality bias is introduced, we observe a 
performance improvement of 1.3 mIoU compared to the baseline. 
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To further investigate the role of modality bias, we visualize the 
differences between the attention maps with and without modality 
bias. Our analysis reveals that, with the introduction of modality bias, 
the importance of the RGB modality relative to the thermal modality 
increases in the attention maps. We explain this effect by noting that 
the RGB modality contains richer information compared to the thermal 
modality. The presence of modality bias enables the model to focus 
more on the RGB modality rather than treating both modalities equally, 
which enhances the model’s ability to better understand the scene. This 
also indicates that ignoring the differences between input modalities 
and constructing cross-modal attention through naive token dimension 
concatenation can potentially lead to performance degradation, even 
when spatial relationships between modalities are considered. 

5.5. Robustness against adversarial attacks

We simulate several adversarial attack scenarios to evaluate the 
robustness of our method, which are illustrated in Fig.  5.

As shown in Table  8, both methods experience a certain degree of 
performance degradation under the simulated extreme scenarios of fog, 
rain, and snow. In the simulated sensor interference scenarios, both 
methods demonstrate strong robustness. The consistent performance 
variations across the two methods also suggest that current models 
exhibit instability in extreme weather conditions, which may be at-
tributed to the absence of such scenarios in the dataset. Nonetheless, 
extreme scenarios play a critical role in ensuring the reliable operation 
of autonomous systems, highlighting the importance of developing 
more robust systems for these conditions in future research. 

In contrast, the performance loss in the simulated sensor interfer-
ence scenarios is negligible. This may be because the adversarial patch 
on the thermal images is less deceptive compared to its appearance 
on RGB images, allowing the thermal modality to assist the model in 
mitigating the confusion caused by the adversarial patch.

5.6. Comprehensive comparison to state-of-the-art CRM [16]

CRM [16] proposes a complementary random masking strategy and 
a self-distillation loss to encourage the network to extract complemen-
tary and meaningful representations from a single modality or comple-
mentary masked modalities. The CRM method has achieved state-of-
the-art results on multiple datasets, including MFNet and PST900.

Here, we compare our method with CRM, as both utilize the same 
Swin [25,26] backbone and Mask2Former [34] head. We compare CRM 
and our proposed method across three aspects. First, we evaluate their 
performance on the MFNet and PST900 datasets, using metrics such 
as mIoU, mAcc, learnable parameters, and total parameters. Second, 
we compare the training performance of CRM-T and PEAFusion-tiny, 
focusing on training speed (measured by iterations per second) and 
memory usage. Finally, we assess the inference performance of CRM-T 
and PEAFusion-tiny, measured in frames per second (fps). 

5.6.1. Performance and parameters comparison
As shown in Table  9, our method demonstrates significantly fewer 

trainable parameters compared to CRM, with 34.3M vs. 74.9M and 
44.9M vs. 193M. On the MFNet dataset, our method achieves compara-
ble performance to CRM in terms of mIoU. However, when evaluated 
using mAcc, our method exhibits a clear advantage. On the PST900 
dataset, PEAFusion-tiny outperforms the corresponding CRM-T by a 
considerable margin in terms of mIoU and even surpasses CRM-B. 

5.6.2. Training performance comparison
As illustrated in Table  10, our method demonstrates significant 

advantages over CRM during the training process. With the same 
batch size, our method reduces memory usage by approximately 50% 
compared to CRM, while achieving nearly a twofold improvement in 
training speed. 
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Table 8
Robustness against adversarial attacks.
 Method Fog Rain Snow Patch Original

 mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) 
 CRM-T 55.4 67.8 54.9 68.6 55.8 72.57 58.9 71.8 59.1 71.8  
 PEAFusion-tiny (ours) 55.1 73.4 52.4 75.7 52.3 74.1 58.9 75.4 59.1 75.4  
Table 9
Performance and parameter comparison. Parameters are measured in millions. The notation ‘–’ indicates missing values in the original paper.
 Method Learnable parameter Total parameter Performance on MFNet Performance on PST900
 mIoU (%) mAcc (%) mIoU (%) mAcc (%) 
 CRM-T 74.9 M 74.9 M 59.1 71.8 85.9 –  
 PEAFusion-tiny (ours) 34.3 M 61.9 M 59.1 75.4 88.7 95.0  
 CRM-B 193 M 193 M 61.4 72.9 88.0 –  
 PEAFusion-base (ours) 44.9 M 131 M 61.0 77.0 89.6 94.8  
 

Table 10
Training performance comparison. The term ‘it/s’ denotes iterations per second, while 
‘Memory’ refers to video memory usage during training.
 Method Batch size = 8 Batch size = 4
 Memory Speed Memory Speed  
 CRM-T 22.7 GB 0.7 it/s 12.9 GB 1.1 it/s 
 PEAFusion-tiny (ours) 11.7 GB 2.2 it/s 6.9 GB 3.4 it/s 

Table 11
Inference performance comparison. The numbers in the table represent the frames per 
second (fps) measured with a batch size of 1.
 Method 2080Ti 3090 V100 A100 A40  
 CRM-T 14.1 19.6 9.5 12.6 17.9 
 PEAFusion-tiny (ours) 8.5 12.3 7.0 8.4 10.8 

5.6.3. Inference performance comparison
Here, we compare the runtime performance of our model,

PEAFusion-tiny, with CRM-T across different GPUs, measured in frames 
per second (fps). The GPUs evaluated include the NVIDIA RTX 2080 Ti, 
RTX 3090, Tesla V100, Tesla A100, and RTX A40. As observed in Table 
11, PEAFusion-tiny shows a disadvantage in inference speed of about 
30% compared to CRM-T, which may be attributed to the inference 
latency introduced by the additive adapters. 

5.6.4. Performance comparison summary
Overall, our method achieves comparable or superior performance 

with relatively fewer total parameters and learnable parameters. During 
the training process, our approach demonstrates advantages in reducing 
memory usage and improving training speed. However, during the in-
ference phase, our method exhibits higher inference latency compared 
to CRM [16]. This highlights the need for future research to explore 
methods that balance both training efficiency and inference efficiency. 

5.7. Per-class results comparison

From Table  1, we observe that our method achieves a 0.9 mIoU 
improvement on the MFNet dataset, with notable accuracy gains in 
detecting challenging classes such as bike, color cone, and bump. 
According to Table  2, on the PST900 dataset [18], our method achieves 
at least a 1.6 mIoU improvement over the previously best-performing 
model. Furthermore, as shown in Table  3, our method achieves an 
improvement on the FMB dataset [52], surpassing previous methods 
across most classes. 

6. Limitations

While we propose a method for parameter-efficient fine-tuning 
of upstream single-modality vision backbones for downstream multi-
modal perception tasks, it is subject to certain limitations: (1) Our 
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approach is trained on datasets with well-aligned RGB-Thermal image 
pairs. While such alignment ensures optimal performance during exper-
iments, real-time systems often involve RGB and thermal images that 
are not perfectly aligned, posing challenges for practical applications. 
However, our proposed cross-modal self-attention mechanism does not 
strongly depend on precise alignment between RGB-Thermal pairs. This 
motivates future research to explore its application on misaligned pairs, 
aiming to enable dynamic real-time perception in practical scenarios; 
(2) While the multi-view adapter-pair method is parameter-efficient 
and effective for transfer learning, it introduces additional latency 
during inference, a common drawback of adapter-based approaches. 
Future work could aim to mitigate or eliminate this latency to improve 
deployment efficiency without compromising the benefits during train-
ing; (3) Although the modality bias demonstrates strong performance 
in guiding dependencies, its design is tailored to our experimental set-
tings. Exploring adaptive designs that dynamically adjust the modality 
bias based on input data could enhance its applicability in real-world 
scenarios, enabling human-like adaptability. Despite these limitations, 
our method significantly improves parameter efficiency in multi-modal 
perception tasks and provides a strong foundation for future enhance-
ments. Addressing the identified constraints will further unlock its 
potential in broader applications. 

7. Conclusions and future work

Our work addresses the challenges of parameter-efficient fine-tuning
for RGB-Thermal semantic segmentation. We propose the strategy 
of external lightweight modules to indirectly approximate the direct 
updates of hidden states in the full fine-tuning process within low-
dimensional spaces. By analyzing the construction of spatial-channel 
relationships within the pre-trained model, we introduce the multi-view 
adapter-pair to enable parameter-efficient knowledge transfer from the 
upstream single-modality model to the downstream RGB-T semantic 
segmentation task. Meanwhile, considering the scalability of the atten-
tion mechanism, we extend the self-attention modules in pre-trained 
transformer models to accommodate multi-modalities, achieving adap-
tive fusion between the RGB and thermal modalities. Additionally, 
we highlight the importance of considering the inherent differences 
between modalities when fusing features via the attention mechanism, 
offering valuable insights for other multi-modal research efforts. In 
training, we freeze the main body of the model, significantly reduc-
ing memory usage during training and lowering hardware memory 
requirements, thereby enhancing the practical utility of our method. 
Furthermore, we enable easy-to-interpret analysis of modality fusion 
by visualizing the attention maps during inference, which broadens 
the model’s potential real-world applications. In terms of performance, 
our approach achieves superior results compared to state-of-the-art 
methods on the MFNet, FMB, and PST900 datasets, while maintaining 
parameter efficiency. These results underscore the potential of our 
method for multi-modal applications. 
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Future research could address several key challenges to improve 
the performance and applicability of RGB-Thermal semantic segmen-
tation systems. One major issue is handling misaligned RGB-Thermal 
data, which often arises due to differences in sensor positions, sensor 
types, orientations, or temporal misalignment between the modalities. 
Developing robust models capable of handling these misalignments 
would significantly improve accuracy and generalization across various 
environments. Another important area for future work is reducing 
inference latency. While our approach maintains parameter efficiency, 
real-time applications in autonomous vehicles or robotics require even 
faster processing times. Research could explore techniques such as 
model compression, knowledge distillation, or hardware acceleration 
to achieve faster inference speeds without compromising result quality. 
Additionally, exploring more efficient attention mechanisms, such as 
sparse attention or low-rank approximations, could help reduce the 
computational cost of multi-modal fusion and improve overall model 
efficiency. A promising direction also lies in utilizing large language 
models (LLMs) to guide open-vocabulary perception tasks in down-
stream applications. With their powerful zero-shot learning capabilities, 
LLMs can serve as valuable tools to interpret and contextualize sen-
sory inputs, such as RGB and thermal data, in real-time. This would 
enable systems to recognize and understand novel objects, actions, and 
environments without explicit prior training.
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