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Abstract— Place recognition plays an important role in au-
tonomous vehicles localization, particularly in GNSS-degraded
environments. LiDAR-based place recognition (LPR) could
achieve localization by comparing on-line LiDAR point clouds
with a pre-built off-line point-cloud database. However, LiDAR
sensors are expensive, which hinders their large-scale deploy-
ment on every vehicle. To alleviate this issue, we propose a
novel cross-modal network, which replaces on-line point clouds
with on-line images captured by a low-cost and lightweight
monocular camera. We use image sequences instead of single
images, which would be helpful to eliminate false matches since
image sequences capture more environmental information. Fur-
thermore, we propose an image sequence descriptor to represent
the observed environment by learning multi-image integration
and global representation. Experiments on 6 trajectories of the
KITTI dataset demonstrate our effectiveness and superiority
over single image-based methods.

I. INTRODUCTION

Place recognition is a fundamental component for au-
tonomous vehicle localization [1], [2]. It generally consists
of two stages: off-line stage and on-line stage. The off-line
stage usually uses visual cameras [3] or 3-D LiDARs [4]
to build environment maps or databases. Then, the on-line
stage matches the current sensory data with the pre-built
maps or databases to infer the vehicle location. However,
this is still a kind of coarse localization [5]. To achieve
precise localization, place recognition can be used to provide
constraints (e.g., loop closure constraints) to odometry or
simultaneous localization and mapping (SLAM) algorithms
to estimate vehicle poses [6].

Place recognition is typically treated as a retrieval prob-
lem, that is, given a query place, the algorithm finds the
corresponding image or point cloud of the matched place
in a database. According to the used sensors, most pre-
vious works can be roughly divided into two categories:
vision-based place recognition (VPR) [7]–[9] and LiDAR-
based place recognition (LPR) [10]–[12]. VPR methods use
traditional hand-crafted features or learnable descriptors to
represent environments captured by visual cameras, and then
retrieve places via descriptor matching. Although they can
achieve localization in large-scale outdoor environments, the
performance could be degraded when environment appear-
ances change, for example, time of day, different weather or
seasons [12]. Compared with VPR, LPR attracts more atten-
tion because LiDAR point clouds can effectively preserve the
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Fig. 1. The figure shows the motivation of our cross-modal place
recognition method. Given a query place in the form of an image sequence
captured by a monocular camera, our method is designed to find the
corresponding place from a LiDAR point-cloud database.

geometric structural context of the scene, meanwhile robust
to different illumination and weather conditions. However,
LPR requires every robot to be equipped with an expensive
LiDAR, which limits its large-scale deployment [13]. In
contrast, cross-modal place recognition can alleviate this
problem by matching low-cost on-line visual images with
off-line point clouds.

There are some pioneering works on cross-modal place
recognition. One way is to convert cross-modal place recog-
nition into a VPR problem by rendering point clouds into
images [14]. Another way is to exploit a shared embedding
space to reduce the modality gap between image and point-
cloud modalities [13], [15]. However, all these methods ig-
nore the insufficient discrimination of information in a single
image, which could lead to false place matching. In this
paper, we propose learning-based image sequences to point
clouds place recognition, as shown in Fig. 1. It adopts image
sequences rather than single images to enhance place dis-
crimination, benefiting from considering more environmental
information. We test our method on the KITTI dataset [16]
to analyze the effectiveness of our method. Quantitative and
qualitative experimental results prove that image sequences
outperform single images in cross-modal place recognition.
Our contributions are summarized as follows:

• We introduce a novel cross-modal place recognition
network1. To our best knowledge, this is the first deep
learning-based cross-modal method using on-line image
sequences and off-line point clouds.

• We design an image-sequence descriptor that encodes
the image sequence with rich appearance information

1Our code is available at: https://github.com/lab-sun/VSeq2PC
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into a global representation, thereby describing the
observed environment better than a single image.

• We combine multi-image information to extract geo-
metric features of the observed environment by Trans-
formers, which can effectively capture the temporal
relationship between images.

II. RELATED WORK

A. Sequence-based Place Recognition
Sequence matching is a general paradigm for sequence-

based place recognition [17], [18], which compares each
frame of the input sequence with all images in the database,
and finds the place corresponding to the sequence through
similarity score aggregation. However, this paradigm would
be inefficient because its computational cost could be in-
creased with the database size and sequence length.

Several improved methods directly extract sequence de-
scriptors and conduct sequence retrieval in a database [19]–
[21]. Facil et al. [19] first introduced sequence descriptors
in VPR, which integrated image descriptors by three modes,
namely concatenation, fully-connected operation, and LSTM
networks. Later, researchers studied methods to convolve
CNN features of multi-image images to summarize image
sequences [20], [21]. Differently, we extract the geometric
features of image sequences, and then encode them into
global descriptors for sequences.

B. LiDAR-based Place Recognition
Point clouds obtained from LiDARs are robust to illumi-

nation and weather changes compared with visual cameras.
In LiDAR-based place recognition, learnable descriptors and
empirical descriptors are two types of commonly-used Li-
DAR point-cloud representations. The former benefits from a
powerful neural network and is data-driven. PointNetVLAD
[22] is a representative work, which extracts point features
by PointNet, and uses a NetVLAD aggregator to form a
global descriptor for a scene. The latter provides geometric
distribution of the data in a more intuitive way. One latest
work is Scan Context [4], which divides a point cloud into
blocks in the radius and azimuth directions, then counts
the maximum height in each block. Furthermore, there are
some hybrid algorithms such as MinkLoc3D-SI [23] and
RINet [12], combining both advantages of learnable and
handcrafted descriptors.

C. Cross-Modal Place Recognition
Reducing the modal gap of input data is the key to cross-

modal place recognition. Mithun et al. [14] proposed to
render LiDAR point clouds into depth images, then used
VPR methods to realize place recognition. Besides, some
works study a shared embedding space for images and
point clouds [13], [15], that is, using neural networks to
map images and point clouds to the same high-dimensional
space, where data from the same place are close to each
other. In contrast, we study place recognition by matching
image sequences to point clouds, which utilizes multi-image
information and is thus more robust than previous approaches
that match single images to point clouds.
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Fig. 2. The pipeline of our network. During the training stage, the network
learns to judge whether the input image sequence and point-cloud slice
come from the same place. During inference, the network retrieves the point
cloud whose slice corresponds to a scene that is consistent with the input
sequence. The structure extractor produces point-cloud geometric features
[12]. We propose the sequence-to-tokens and encode-decoder modules to
extract geometric features of image sequences.

III. THE PROPOSED METHOD

A. Method Overview

Given a query place and its image sequence, our place
recognition network aims to retrieve the corresponding point
cloud using visual sequence information, where the retrieved
point cloud is consistent with the query sequence in place.

To achieve this goal, we have to extract point-cloud
descriptors [12], and integrate multi-image data to generate
image-sequence descriptors. Specifically, we encode multi
images to generate the structure feature for the image se-
quence. This structure feature records the geometric charac-
teristics of the observed environment. Afterward, we encode
structure features to be a compact image-sequence descrip-
tor. Then, cross-modal place recognition can be realized
by comparing image-sequence descriptors with point-cloud
descriptors.

B. Place Recognition Network

Our network pipeline is illustrated in Fig. 2. It mainly
includes the training stage and inference stage.

1) Training Stage: In the training stage, the network
receives the point cloud and image sequence, and outputs
their similarity score ranging from 0 to 1. For the input point
cloud, we extract its structure features with the structure
extractor, which divides the point cloud into S sectors
in bird-eye-view, then counts the closest distance of each
semantic category in each sector to the point-cloud center
[12]. The output of the structure extractor is a feature F ∈
RC×S , where C represents the number of semantic classes.
This feature is further converted to a compact point-cloud
descriptor Dpc by applying 1-D convolution and maximum
pooling.
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Fig. 3. Learning structure features from image sequences. The input sequence is converted into point clouds, which undergoes structure extractors and
convolution process, and is then tokenized. A mask with a 10% masking ratio is employed to enhance the robustness. The visible-token subset is fed to a
Transformer-based encoder [24]. The Transformer-based decoder processes the full set of encoded tokens and masked tokens, and then outputs a structure
feature that represents the input sequence geometrically.

Similarly, we can compute image descriptors by transform-
ing images to point clouds and then extracting features. For
image sequences, considering that the direct concatenation
of image descriptors would ignore the intrinsic correlation
among different frames, we first integrate the multi-image
information to generate the sequence structure feature, and
then embed it to obtain the final sequence descriptor (see
sec. III-C).

After extracting the image-sequence and point-cloud de-
scriptors, our network calculates their similarity score by
performing fully-connected layers on their element-wise dif-
ference. Ideally, the similarity of the positive pair is 1, while
that of the negatives is 0.

2) Inference Stage: In the inference stage, the network
retrieves the 3-D point cloud corresponding to the input
query sequence. To do so, the network compares the descrip-
tor of the input sequence with the descriptors of the point
clouds from the database, and gives their similarity scores.
The network ranks all scores and determines the target point
cloud with the maximum similarity.

Notably, considering the view-point inconsistency between
the front-looking image sequence and the omni-directional
(i.e., 360◦) point cloud, we cut the point cloud into slices
with different views. Thus, the network compares sequences
and point-cloud slices during training, and finds the most
similar slice to the sequence during inference. Then, the point
cloud of the found slice is our target.

C. Image-sequence Descriptor

Similar to generating point-cloud descriptors, we gener-
ate image-sequence descriptors by first extracting sequence
structure features and then learning global representations.

1) Sequence Structure Feature: Given an image sequence,
we convert each image into a semantic point cloud. Specif-
ically, we estimate the dense depth for each image, then
reconstruct a 3-D point cloud using the depth, and finally
label the class for each point with semantic image seg-
mentation. Afterward, we extract the structure feature for
each image, and then combine multi-image structure features
to reconstruct a better one corresponding to the observed
scene. We refer to it as the sequence structure feature. The
whole process consists of a sequence-to-tokens module, a
Transformer encoder, and a Transformer decoder, as shown
in Fig. 3.

Specifically, we concatenate the multi-image structure
features, and apply a 1×3 convolution kernel on it to fuse the
neighborhood information in space. To reduce computational
and memory cost, we set the convolution stride to 2 to reduce
the number of features. We define that each feature vector
corresponds to a token, which is fed to the Transformer-
based encoder (i.e., the encoder consisting of Transformer
blocks [24]) to be projected to a latent representation. Then,
the Transformer-based decoder reconstructs the target data
from the latent representations.

We employ a random mask with a masking ratio of 10%
on the tokens, so that the full token set can be divided
into a visible subset and a masked subset. The input of the
encoder is the visible subset, which forces the encoder to
learn effective data representations from incomplete signals.
The input of the decoder is the encoded tokens and masked
tokens. Note that the latter only retains the position embed-
ding to prompt the decoder where the tokens are removed
during the encoding process. Finally, the decoder generates
an integrated structure feature, which is further used to create
a global sequence representation.

2) Global Sequence Representation: The global sequence
representation is a compact G-dimensional vector to summa-
rize the scene depicted by the image sequence. To do so, we
consider the structure features of the sequence and its first
frame (Fseq, Fimg), and generate the sequence representation
in a manner of learning a basic representation and its
residual. Specifically, we feed Fimg to a subnetwork fθ
composed of convolutional layers and max pooling layers to
obtain a basic descriptor. Then, we compute the difference
between Fseq and Fimg and apply another convolution-
pooling subnetwork fξ on it to estimate the complement. The
final global sequence representation Dseq is a combination
of the basic descriptor and its complement:

Dseq = fθ (Fimg) + fξ (Fseq − Fimg) . (1)

D. Losses

To have better initial weights, we utilize a reconstruction
loss to pre-train the part of the sequence structure feature in
the network. Then, a place recognition loss is used to train
the whole network. The reconstruction loss Lrecons com-
putes the mean square error between the sequence structure

2864

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on February 14,2024 at 03:03:03 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
STATISTICS OF THE EVALUATION DATASET. K-00 DENOTES THE 00

TRAJECTORY IN THE KITTI ODOMETRY DATASET.

K-00 K-02 K-05 K-06 K-07 K-08

Images 9082 9322 5522 2202 2202 8142
Scans 4541 4661 2761 1101 1101 4071

Pos. pairs 7399 1691 4773 1412 1353 1970
Neg. pairs 10051955 10696682 3654081 544034 502155 8046762

Loops 804 315 448 270 57 345

feature Fseq and the LiDAR point-cloud structure feature Fpc

corresponding to the first frame in the sequence:

Lrecons =
1

Λ

Λ∑
i=1

(Fseq(i)− Fpc(i))
2
, (2)

where Λ is the feature size. The place recognition loss
penalizes recognition errors. Given a place-pair sample,
our network outputs a place similarity score st. The place
recognition loss Lplace calculates the average cross-entropy
between the place similarity scores of all input samples and
their ground-truth labels:

Lplace =
1

Π

∑
t

− [ytlog (st) + (1− yt) log (1− st)] , (3)

where Π is the number of input samples. The label yt = 1
for positive samples, and yt = 0 for negative samples.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Dataset: We evaluate our cross-modal place recogni-
tion on the KITTI odometry dataset [16]. It contains 11
trajectories which provide RGB images, LiDAR point clouds,
and ground-truth poses. We select 6 trajectories that contain
loop closures to evaluate our network. When testing on a
certain trajectory, we use the remaining 10 trajectories as
the training set and validation set. According to ground-
truth poses, we construct the positive and negative place-pair
samples for network training. The two places in a positive
sample are within 3 meters apart, while those in negative
samples are more than 20 meters apart. The statistics of the
dataset are displayed in Tab. I.

2) Metrics: We adopt three metrics for evaluation,
namely precision-recall curve [1], maximum F1 score [25]
and recall@N [7]. The precision-recall curve qualitatively
presents the change of precision and recall varied with the
threshold of place recognition. The maximum F1 score is
the harmonic mean of precision and recall, as a quantitative
metric. Recall@N is the percentage of cases where the
correct match is ranked within the top N retrievals.

3) Network and Training: Both Transformer-based en-
coder and decoder have 4 Transformer blocks. Each block
contains 3 heads, and the embedding dimension is set to
48. Our 1-D convolution and maximum pooling process
in descriptor extraction follows RINet [12]. We train our
network with two processes. The first process is pre-training
the sequence structure feature to obtain good initial weights.

TABLE II
QUANTITATIVE COMPARISON IN TERMS OF F1 MAXIMUM SCORES (%).

K IS SHORT FOR KITTI.

Method K-00 K-02 K-05 K-06 K-07 K-08 Mean

NetVLAD-based 37.8 22.9 25.2 17.9 47.0 25.1 29.3
RINet-based 53.8 47.8 38.7 17.6 43.3 31.6 38.8

Ours 67.4 51.6 44.9 18.4 56.0 35.5 45.6
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Fig. 4. Precision-recall curves of our method and the RINet-based method
on the KITTI dataset. It shows that using image sequences for cross-modal
place recognition has better PR curves than using single images.

Then, we train the entire network with 50 epochs to empower
the network with the ability of cross-modal place recognition.
Both training processes adopt the cosine decay [26] as the
learning rate schedule.

B. Evaluation of Place Recognition

Given a set of place pairs, we evaluate the recognition
performance of algorithms according to whether they can
identify that the input places come from the same or different
places. For the test data, we take all positive place-pair
samples and a part of the negative samples from the dataset.
Following [12], the total number of selected negatives is 100
times that of positives. For comparison, we choose image
to point-cloud place recognition methods. However, existing
methods have no open-source implementation. Therefore, we
improve the classic vision-based place recognition algorithm
NetVLAD [27] and one of the latest LiDAR-based place
recognition methods RINet [12], so that they can adapt to
our cross-modal place recognition task.

To quantitatively and qualitatively analyze the NetVLAD-
based method, RINet-based method and our method, we
adopt the maximum F1 score and precision-recall curve
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TABLE III
COMPARISON OF RECALL@N PERFORMANCE (%) IN LOOP CLOSURE DETECTION ON THE KITTI DATASET.

Method
KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 08 Mean

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

RINet-based 59.7 71.0 77.6 20.6 38.1 49.8 39.5 58.3 66.7 31.1 59.4 66.9 30.4 49.6 58.6 36.3 55.3 63.9
Ours 71.6 83.2 87.3 28.3 55.6 63.5 41.7 63.4 71.9 31.5 53.4 67.3 36.8 62.9 71.0 42.0 63.7 72.2

Query Sequence

Query Sequence

578 945 946 947 944

577 578 576 579 580

224 1324 1322 1320 137

136 138 137 140 135

Top-1 Retrieval Top-2 Retrieval Top-3 Retrieval Top-4 Retrieval Top-5 Retrieval

Query Image

Query Image

Fig. 5. Visualization of the top 5 retrievals. The upper query sequence is from 00 trajectory, and the lower one is from 05 trajectory. The annotated
numbers represent the indices of places. The red box presents our retrieval results, and the blue one shows the results of the RINet-based method. Ë
indicates a correct retrieval whose spatial distance from the query place is within 5 meters, and é means an incorrect retrieval.

metrics, respectively. The results are presented in Tab. II
and Fig. 4. It can be seen that the per-trajectory and mean
maximum F1 scores of our method are higher than those of
the NetVLAD-based method and RINet-based method on all
the 6 trajectories, indicating the more accurate performance
of our method in cross-modal place recognition. In other
words, our method achieves a better balance between preci-
sion and recall. Fig. 4 visualizes the precision-recall curves
of the best two methods, that is, our method and the RINet-
based method. It can be seen that the curves of our method
are better than the RINet-based method. In other words, our
method can have higher precision and recall at the same time.
Combining quantitative and qualitative results, we can also
conclude that using sequences (our method) for cross-modal
place recognition leads to better performance than using
images (RINet-based method and NetVLAD-based method).

C. Evaluation of Loop Closure Detection

Loop closure detection requires the algorithm to identify
the revisited place which is consistent with the current place
in space, thereby forming a closed loop on the trajectory. We
can use loop closure detection to evaluate the place recogni-

tion performance of different algorithms. Specifically, given
a query place, the algorithm compares it with all previous but
not nearby places, ranks them according to similarity scores,
and checks whether any matched places among the top K
places can form a closed loop. We employ the recall@N
metric and set N = 1, 5, 10. Recall@5 and recall@10 are
necessary because they can perform geometrical verification
to re-rank the candidate places and find the correct one in
the top 5 and top 10 retrievals. We do not test algorithms
on the 07 trajectory due to the small number of loops. In
addition, we do not evaluate the NetVLAD-based method,
because it belongs to image to point-cloud algorithms like
the RINet-based method but has worse performance.

The quantitative comparison is shown in Tab. III. The aver-
age performance of our method on five trajectories is signif-
icantly better than the RINet-based method, with (recall@1,
recall@5, recall@10) higher by (5.7%, 8.4%, 8.3%). It is
worth noting that although the loops of trajectory 08 are all
reverse loops (that is, the orientation of the robot arriving at
the same place twice is opposite), our method still achieves
good performance, whose recall@10 value reaches 71%.
This indicates that the detection is robust to orientation
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changes. Fig. 5 shows the qualitative results, from which
it can be seen that the method using sequences to describe
the query place can accurately retrieve matching places to
make up loop closures, whereas the method using images
would mistakenly identify other similar places as matches.
This is because sequences can provide more environment
details than images, which contributes to more accurate place
recognition.

V. CONCLUSIONS

In this paper, we investigated cross-modal place recogni-
tion. To the best of our knowledge, this is the first work
studying deep learning-based cross-modal method using on-
line image sequences and off-line point clouds. We pro-
posed a novel cross-modal network that recognizes places
by extracting descriptors of visual sequences and LiDAR
point clouds, and then comparing them. To extract image-
sequence descriptors, we integrated multi-image information
to generate sequence structural features using Transformers
with a mask, and then learned the basic descriptors and their
complements. The experiments demonstrate the effectiveness
of the proposed network, which can even successfully de-
tect challenging loop closures such as reverse loops. The
evaluations of place recognition and loop closure detection
both illustrate that using image sequences leads to better
performance in cross-modal place recognition compared to
using single images.
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