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Abstract— Segmentation of road negative obstacles is im-
portant for the safety of autonomous vehicles. Many multi-
modal fusion networks have been proposed for this task.
They have achieved acceptable performance. However, most
of them are heavyweight, making them hard to run real-
timely, especially when working with high-resolution images.
To address this issue, we propose a channel and position-
wise knowledge distillation framework to train a lightweight
student to achieve comparable accuracy and better efficiency.
Specifically, we introduce a downsampling layer at the beginning
of the student network to reduce the input data size to the
student network, and introduce an upsampling layer at the
end to restore the resolution. We propose a channel and
position-wise distillation module to transfer knowledge between
different sizes of feature maps. In addition, we release an RGB-
Depth dataset for negative-obstacle segmentation. Experimental
results demonstrate the effectiveness of our proposed method.
Our code and dataset are available at: https://github.com/lab-
sun/CPKD.

I. INTRODUCTION

Negative obstacles (e.g., potholes, cracks) on roads can
cause traffic accidents [1]. It is important for autonomous
vehicles to detect or segment negative obstacles so that
vehicles can plan safe paths [2]. To achieve better segmenta-
tion performance, multi-modal fusion has recently attracted
great attention in the research community. It can take advan-
tages of each modality so that different modalities can be
complemented by each other. There are many multi-modal
fusion networks for road negative obstacles segmentation [3],
[4]. These networks mainly focus on segmentation accuracy,
and less on efficiency. So, when given input images with
large resolutions, the inference speed could be reduced. To
accelerate the inference speed, there have been many research
efforts, such as knowledge distillation [5] and pruning [6].

In this paper, we propose a Channel and Position-
wise Knowledge Distillation (CPKD) framework to train a
lightweight student network to achieve comparable accuracy
and better efficiency. We first place a downsampling layer at
the beginning of the lightweight student network to reduce
the input data size of the network. An upsampling layer is
placed at the end of the student network to restore the resolu-
tion. In addition, to reduce the loss of spatial information due
to downsampling, we propose a Channel and Position-wise
Distillation (CPD) module to transfer knowledge between
feature maps with different resolutions and numbers of
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channels. The CPD module enables the student network to
retain the spatial information. Moreover, we find that there
are very limited datasets for negative obstacle segmentation,
so we build a dataset in this work. Our contributions are
summarized as follows:

. We propose the CPD module to transfer knowledge
between two feature maps with different resolutions and
channels.

- We propose the CPKD framework to transfer knowledge
from the well-trained heavyweight teacher network to
the lightweight student network.

« We build and release a RGB-D dataset for road-negative-
obstacles segmentation with 3,000 generated labels and
745 manually labeled labels.

II. RELATED WORKS
A. Negative Obstacles Segmentation and Detection

Han et al. [7] proposed a reflection attention unit and
combined the proposed unit with the FCN-8s [8] network
for road-puddle segmentation. The authors released a dataset
named Puddle-1000 for the segmentation of puddles. Bhatia
et al. [9] designed a convolutional neural network (CNN)
for the detection of potholes with thermal images. Wu et
al. [10] proposed a scale-adaptive detection and tracking
framework to detect and track road potholes. They generated
3-D point clouds of roads and detect potholes with the 3-D
point clouds. Pan ef al. [11] presented an approach to detect
the potholes with multi-spectral images.

Fan er al. [3] introduced channel attention module, position
attention module, and dual attention module to RTFNet [12]
to design AA-RTFNet for road-potholes segmentation. They
released an RGB-D dataset, Pothole-600, for the segmenta-
tion of road potholes. Feng er al. [4] adopted the channel
attention module and dual attention module to design fusion
modules to fuse RGB images and disparity images. They
combined the Transformer structure and CNN to design
MAFNet to segment road potholes. Fan et al. [13] proposed
a Graph Attention Layer (GAL) and integrated the GAL
into DeepLabv3+ [14] to design GAL-DeepLabv3+ for the
segmentation of road potholes.

B. Knowledge Distillation

Knowledge distillation is mainly used to enable a
lightweight student network to learn some capabilities from
a heavyweight teacher network so that the efficiency could
be improved while keeping accuracy [15]. Qin er al. [5]
adopted the knowledge distillation method to design a
lightweight network for medical image segmentation. They
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Fig. 1: The overall architecture of our proposed Channel and Position-wise Knowledge Distillation framework. The teacher
network and student network share the same input data (i.e., RGB images and depth images). The student network has a
similar structure with fewer parameters and layers to the teacher network. In the student network, the input data is first fed
into a downsampling layer to reduce the resolution. The output of the student network is fed into an upsampling layer to
restore the resolution to that of the input images. The outputs of the 1st, 3rd, and 5th stages of encoders, as well as the
outputs of the 4th and 2nd of decoders, are fed into our proposed CPD module. The figure is best viewed in color.

designed a RAD module to transfer knowledge from a well-
trained heavyweight teacher network to a lightweight student
network. Liu et al. [16] designed a pair-wise distillation
scheme and holistic distillation scheme to transfer structured
knowledge from a teacher network to a student network.
Komodakis et al. [17] employed attention maps to transfer
knowledge from a teacher network to a student network.
They proposed activation-based and gradient-based methods
to generate spatial attention maps for feature maps. Shu et
al. [18] proposed a channel-wise distillation paradigm that
normalizes the activation map of each channel to generate a
soft probability map. They used the soft probability maps of
the teacher network and student work to transfer knowledge
from the teacher network to the student work. Zheng et
al. [19] proposed a localization distillation method to en-
able a student network to learn knowledge from a teacher
network. Knowledge distillation is also commonly used to
transfer cross-modal capabilities. Feng et al. [20] adopted the
knowledge distillation method to transfer the edge detection
capability from the edge-sharp RGB modality to the edge-
blurred thermal modality.

Although the above works achieved acceptable perfor-
mance, they suffer from a limitation that they transfer knowl-
edge between feature maps with the same resolution or the
same number of channels.

III. THE PROPOSED METHOD

A. The Overall Framework

Fig. 1 shows the overall architecture of our proposed
CPKD framework. There are a teacher network and a stu-
dent network in this framework. The teacher network is a

heavyweight network. The student network is a lightweight
network with fewer parameters and layers than the teacher
network. The structure of the student network is similar to
that of the teacher network. The teacher network and the
student network share the same input data (i.e., RGB and
depth images). We increase the efficiency of the student
network by reducing the input data size. Specifically, the
input images are first fed into a downsampling layer to reduce
the resolution. We place an upsampling layer at the last layer
of the student network to restore the resolution to that of the
input images.

Note that the number of channels and the output resolu-
tions at the same level stages are different in the student and
teacher networks. We employ MAFNet [4] as the teacher
network and replace the first four stages of the encoder
with the initial module and the first three stages of ResNet-
152 [21]. We replace the first four stages of the encoder of
MAFNet with the initial module and the first three stages of
ResNet-18 as the student network. The numbers of channels
of the output at each stage of the teacher network are
[64,256,512,1024,2048, 1024,512,256, 128, 2]. The output
resolutions at each stage of the teacher network are [288 X
512,144 x 256,72 x 128,36 x 64,18 x 32,36 X 64,72 X
128, 144x256,288x512,576x 1024]. However, the numbers
of channels of the outputs at each stage of the teacher are
[64,64,128,256,512,256, 128, 64,32,2]. The output resolu-
tions at each stage of the teacher are [144x256,72x128,36X
64,18%32,9%x16,18x32,36% 64,72 128, 144 X 256,288 X
512].

In order to fully learn the capabilities of the teacher
network, the student network learns the encoding and decod-
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Fig. 2: The structure of our proposed CPD module. The
size of the position-wise map and channel-wise map of the
student network is resized to that of the teacher network by
the upsampling layers. The figure is best viewed in color.

ing capabilities of the teacher network, respectively. In the
encoding stage, the outputs of the 1st, 3rd, and 5th stages
of both the teacher network and student network are fed into
our proposed CPD module. The CPD module transfers the
knowledge from the teacher network to the student network.
In the decoding stage, the outputs of the 4th and 2nd stages
of both networks are fed into the CPD module. The outputs
of the teacher network are ground-truth labels for the student
network.

B. The CPD Module

The CPD module is used to transfer knowledge between
two feature maps with different resolutions and numbers of
channels. The CPD module generates position-wise maps and
channel-wise maps for feature maps of the teacher network
and student network. In each CPD module, we first average
the feature map of the teacher network along the channel axis,
and then feed the result into a batch normalization (BN) layer
to generate a position-wise map. Secondly, we average the
feature map of the student network along the channel axis
and fed the result into a BN layer. We use an upsampling
layer to adjust the resolution of the output of the BN layer to
the resolution of the teacher-network position-wise map. We
use the mean squared error loss to reduce the gaps between
both position-wise maps to ensure that the student network
can learn the capabilities of the teacher network. We average
the feature map of the teacher network along the width axis
and the height axis to generate the channel-wise map of the
teacher network. We also first average the feature map of the
student network along the width axis and the height axis.
Then, we use an upsampling layer to resize the resolution
of the result to that of the channel-wise map of the teacher
network. The output of the upsampling layer is the channel-
wise map of the student network. We also use the mean
squared error loss to enable both channel-wise maps to be
similar.

Fig. 3: Sample RGB images, depth images, and labels in

our NO-4K dataset. The depth images are colored by the

Jjet color map. Depth values increase from blue to red. The

labels in the first two rows are generated by MAFNet [4] and

the labels in the last two rows are manually labelled. B and
represent roads and negative obstacles.

IV. THE DATASET

We build and release a new RGB-D dataset for our task.
We record the dataset with an on-vehicle Intel RealSense
Depth Camera D455 in rural environments of Fushun City,
Liaoning Province, China. The camera is looking at the road.
We collect data on roads in different conditions, such as dry
and wet. To increase the diversity of the data, we randomly
flip the captured images along the x-axis or y-axis, as well
as rotate the captured images by random angles. We collect
a total of 3,745 pairs of RGB-D images containing negative
obstacles with the 576 x 1024 resolution.

Manually labeling of datasets for semantic segmentation is
a labor-intensive task. To reduce the workload, we generate
road-negative obstacle masks using a mixed dataset that
contains existing datasets and a small number of manually-
labeled datasets we collected. Specifically, we first manu-
ally labeled 745 images. We split these images into two
categories: a training set with 245 pairs of images, and a
testing set with 500 images. Secondly, we add all the images
in the pothole dataset Pothole-600, an RGB-D road-pothole
dataset similar to the data in our dataset, to the training set
for training a network for the segmentation of road negative
obstacles. The resolution of the images in the Pothole-600
dataset is resized to be the same as that of the images in
our dataset. Finally, we adopt the network with the best
performance on the testing set to generate negative-obstacle
masks for the unlabeled 3,000 pairs of images. We adopt
MAFNet which is designed for Pothole-600 as the label-
generated network.

We name our dataset as NO-4K (around 4,000 pairs of
images containing negative obstacles). In our dataset, we
split the 3,000 pairs of images with generated labels into
the training set, the 245 pairs of images into the validation
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TABLE I: The comparative results (%) of the teacher network and student network on the testing set of our NO-4K dataset.
Student-u means that the downsampling layer and the upsampling layer sample are removed from the student network.
Student-s means that the student network is trained with a supervised method. Student-c means that the student network is
trained with our CPKD method. The best results are highlighted in bold font.

Background Negative Obstacles RTX 3060 RTX 3090
Method mPre F1 mloU
Pre F1 ToU Pre F1 TIoU ms FPS ms FPS
Teacher 99.44 99.17 98.35 82.36 86.12 75.62 90.90 92.64 86.98 295.59 3.38 119.95 8.34
Student-u 99.39 99.04 98.09 79.49 84.16 72.66 89.44 91.60 85.37 57.33 17.44 24.00 41.66
Student-s 99.34 99.03 98.08 79.80 83.91 72.28 89.57 91.47 85.18 19.66 50.86 18.43 54.25
Student-c (Ours) 99.31 99.23 98.48 85.54 86.76 76.61 92.43 92.99 87.54 19.57 51.10 18.52 54.00

TABLE II: The results (%) of the ablation study on the
position of the CPD module. v'means the output of the stage
is fed into the CPD module. The best results are highlighted
in bold font.

TABLE III: The results (%) of the ablation study on the
structure of the CPD module. The best results are highlighted
in bold font.

Variant mPre mF1 mloU
) Encoder Decoder
Vatiant T 4 3 g e mFl mboU Position 90.42 9225 86.37
Channel 91.94 92.89 87.38
A v 89.97 9194 85.89 Position & Channel 92.43 92.99 87.54
B v v 90.80 92.28 86.42
C v v v 91.01 92.56 86.86
D v v v v 91.16 92.66 87.02
E v v v v 9243 92.99 87.54 .
B. Ablation Study
F v 90.87 92.58 86.88
G 5 5 . 313(9) g%gi Sggg 1) Ablation Study on the Position of the CPD Module:
H 1. . X . .
1 v v v v 9123 9263 8697 We conduct an ablation study to find the best .posmo.n for
E v/ v v/ v/ v 92.43 92.99 87.54 the CPD module. We use two approaches to design variants.

set, and the 500 pairs of images into the testing set. Some
samples of our dataset are shown in Fig. 3. Similar to the
Pothole-600 dataset, we colored the depth images using the
jet color scheme to highlight the negative-obstacle regions.
Due to factors, such as camera tilt caused by uneven roads
or vehicle vibrations, different places of the road are at
different distances from the camera. Some places are even
at a larger distance from the camera than the depth of the
negative obstacles. This makes it more difficult to segment
the negative obstacles only based on depth images. From the
second row in Fig. 3, we can see that the generated negative-
obstacle labels are not accurate in wet areas, which is also a
challenge for our dataset.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Training Details

We implement our network with PyTorch, which is trained
and tested on a PC with an NVIDIA RTX 3090 graphics
card. We also test the inference speed of the network on a
PC with an NVIDIA RTX 3060 graphics card. The training
scheme of MAFNet is employed to train our network.

We first train the teacher network to achieve the best per-
formance on the testing set of our NO-4K dataset. Secondly,
we fix the well-trained weights of the teacher network to
train the student network.

Firstly, we design variants by placing a different number
of CPD modules in the network sequentially, starting at
the end of the network. Secondly, we design variants by
placing a different number of CPD modules in the network
sequentially, starting at the beginning of the network. The
details of each variant are shown in Tab. II. We use the
Precision (Pre), the F-score (F1), and the Intersection over
Union (IoU) to evaluate the performance of the network.
The calculation of the metrics can be found in [4]. The
results of each variant are displayed in Tab. II. Comparing
the results of the variants A, B, C, D, and E, we can find
that, in general, the more CPD modules in the network, the
better the performance is achieved. We can also get the same
conclusion from the results of variants F, G, H, I, and E.
Comparing the results of variants A and F, we can find
that the network achieves better performance with a CPD
module placed at the beginning than that placed at the end.
We conjecture the possible reason is that it is more difficult
to recover the lost information caused by downsampling at
the end of the network than at the beginning. The results
show that our proposed CPKD framework achieves the best
performance.

2) Ablation Study on the Structure of the CPD Module:
We conduct an ablation study to illustrate the benefits of
the channel-wise map and the position-wise map in the CPD
module. We remove the channel-wise map and the position-
wise map to design variants, respectively. The results of
each variant are displayed in Tab. III. From the results, we
can find that a network with CPD modules containing both
channel-wise map and position-wise map achieves the best
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Fig. 4: Sample qualitative demonstrations of the four networks in Tab. I. The 4-th row to the 7-th row are respectively
demonstrations of teacher, student-u, student-s, and student-c. The figure is best viewed in color.

performance. The results illustrate the effectiveness of each
part of our proposed CPD module.

C. Comparative Study

In order to demonstrate the effectiveness of our proposed
CPKD framework, we compare the results of the teacher
network, student network trained with a supervised method
(abbreviated as student-s), and student network trained with
the CPKD method (abbreviated as student-c). Moreover, we
also compare the results of the student network that removes
the downsampling layer and upsampling layer trained with
a supervised method (abbreviated as student-u) to show
the influence of both layers in a network. We evaluate the
performance of the teacher network and the student network
in terms of inference speed and segmentation accuracy. We
test the runtime of each pair of images for each network on
NVIDIA RTX 3060 and RTX 3090, respectively.

1) Quantitative Results: The quantitative results of the
above networks (i.e., the teacher network, the variants
student-s, student-c, and student-u) are shown in Tab. I.
Comparing the results of the student-u and the student-s, we
can find that the downsampling layer and upsampling layer
increase the inference speed. However, they also lead to per-
formance degradation due to the loss of spatial information
during downsampling. Comparing the results of student-c
and student-s, we can find that the student network learns
more knowledge from the teacher network with our CPKD
method than the student network learns on its own with

the supervised method. Comparing the results of student-c
and student-u, we can find that our proposed CPKD module
can learn the lost information from the teacher network.
The comparative results also show that our proposed CPKD
framework can greatly increase the inference speed of the
network while improving the accuracy of the student net-
work. Comparing the results of the teacher and student-c, we
can find that the inference speed of student-c is much faster
than that of the teacher. All the results demonstrate that the
CPKD module can transfer knowledge in two feature maps
with different resolutions and numbers of channels.

It should be noted that the accuracy of student-c is better
than that of the teacher. One possible influencing factor
is the labels of wet areas in the dataset. As analyzed in
section IV, the labels of the wet areas generated by MAFNet
are inaccurate. The teacher network is affected by these
inaccurate labels. However, the student network does not
learn the relevant knowledge and reduce the influence of
inaccurate labels, thus making the accuracy of the student
network higher than that of the teacher network. In addition,
another reason may be that the training labels of the student
network are outputs of the teacher network, thus avoiding the
influence of the inaccurate labels of the wet areas.

2) Qualitative Demonstrations: Some sample qualitative
results of the four networks are shown in Fig. 4. From the
first 4 columns of the results, we can see that the network
trained by the supervised method presents a large area of
inaccurate segmentation in wet areas. However, the student
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network trained with our proposed CPKD method achieves
the best results in the wet area, which is able to reduce
the interference of the wet areas on the negative-obstacle
segmentation. This result supports our conjecture on the
reason for the higher accuracy of the student network than the
teacher network. From the other results, we can see that our
proposed CPKD method enables the student network to learn
the main knowledge from the teacher network. Overall, these
results illustrate the effectiveness of our proposed CPKD
method.

VI. CONCLUSION AND FUTURE WORK

We proposed here a novel CPKD framework to improve
the accuracy and efficiency of the student network. We pro-
posed the CPKD framework to transfer knowledge between
two feature maps with different resolutions and channel
numbers. The experimental results show that our proposed
CPKD module can learn the lost information caused by a
downsampling layer from the teacher network. The student
network trained with the Channel and Position-wise Knowl-
edge Distillation framework achieves higher accuracy and
efficiency. We also release a novel RGB-D dataset NO-4K
for the segmentation of negative obstacles. However, there
are also some limitations in our work. In future work, we
would like to design a novel network with better performance
for negative-obstacle segmentation as a teacher network.
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