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Abstract— Segmentation of drivable roads and negative ob-
stacles is critical to the safe driving of autonomous vehicles.
Currently, many multi-modal fusion methods have been pro-
posed to improve segmentation accuracy, such as fusing RGB
and depth images. However, we find that when fusing two
modals of data with untrustworthy features, the performance
of multi-modal networks could be degraded, even lower than
those using a single modality. In this paper, the untrustwor-
thy features refer to those extracted from regions (e.g., far
objects that are beyond the depth measurement range) with
invalid depth data (i.e., 0 pixel value) in depth images. The
untrustworthy features can confuse the segmentation results,
and hence lead to inferior results. To provide a solution to this
issue, we propose the adaptive-mask fusion Network (AMFNet)
by introducing adaptive-weight masks in the fusion module to
fuse features from RGB and depth images with inconsistency.
In addition, we release a large-scale RGB-depth dataset with
manually-labeled ground truth based on the NPO dataset for
drivable roads and negative obstacles segmentation. Extensive
experimental results demonstrate that our network achieves
state-of-the-art performance compared with other networks.
Our code and dataset are available at: https://github.com/lab-
sun/AMFNet.

I. INTRODUCTION

Segmentation of drivable roads and negative obstacles is
a fundamental capability for autonomous vehicles. Although
vehicles can generally pass small negative obstacles on
roads, negative obstacles are still potential threats to vehicles.
Especially when vehicle speed is fast or negative obstacles
are large, severe accidents, such as roll over, could happen
[1]. Accurate segmentation results of drivable roads and
negative obstacles could serve as input data for downstream
tasks, such as path planning [2], to avoid potential accidents.

Many single-modal (e.g., using only RGB images) net-
works have been proposed for the segmentation of drivable
roads and negative obstacles [3], [4]. To improve the segmen-
tation performance, multi-modal networks based on RGB-
depth (RGB-D) fusion [5]–[7] and RGB-disparity fusion
[6], [8] have been proposed. Although these networks have
achieved acceptable results, we find that when there are
a large number of pixels in depth images without valid
depth information (i.e., pixel value 0 in depth images), the
segmentation performance cannot been improved or even
inferior to the performance with a single RGB modality. We
call the regions with the pixel value 0 in depth images as
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untrusted regions. The value 0 in depth images indicates that
the depth information of the object cannot be measured (e.g.,
out of the depth measurement range), rather than indicating
that the distance between the object and the camera is 0. The
features extracted from untrusted regions could not represent
the real features of the environment, so we call the features
as untrustworthy features. The untrustworthy features could
confuse the segmentation results since there are valid features
from the other modality.

To provide a solution to this issue, we propose a novel
adaptive-mask fusion network (AMFNet) with adaptive-
mask fusion (AMF) modules. To this end, we generate
mask images from depth images to distinguish trusted and
untrusted regions. The AMF module is used to generate
adaptive-weight masks for RGB and depth feature maps to
reduce the influence caused by untrustworthy features during
fusion. We also release a large-scale RGB-depth (RGB-D)
dataset with manually-labeled ground truth for drivable roads
and negative obstacles segmentation. Our contributions are
summarized as follows:

∙ We propose an adaptive-mask fusion (AMF) module to
reduce the influence of untrustworthy features during
feature fusion.

∙ We proposed a novel fusion network named AMFNet
with the AMF modules for the segmentation of drivable
roads and negative obstacles.

∙ We release a large-scale RGB-D dataset based on the
NPO dataset1. Our dataset consists of 8, 752 RGB-
D images with manually-labeled ground truth for the
segmentation of drivable roads and negative obstacles.

II. RELATED WORKS

A. Semantic Segmentation Networks
Chen et al. [9] designed DeepLabV3+ with atrous con-

volution in encoder-decoder structure for semantic seg-
mentation. Azad et al. [10] introduced attention modules
into DeepLabV3+ to propose Att-Deeplabv3+. Recently,
many Transformer-based semantic segmentation networks
have been proposed. Hatamizadeh et al. [11] combined
the U-shaped structure and Transformer structure to design
Swin UNETR for medical image segmentation. Yuan et al.
[12] proposed CTC-Net for medical image segmentation
with a convolutional neural networks-based encoder and a
transformer-based encoder.

To improve semantic segmentation accuracy, many multi-
modal fusion networks have been proposed. Hazirbas et al.

1https://github.com/lab-sun/InconSeg
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[13] proposed FuseNet to fuse RGB images and depth images
for semantic segmentation. Sun et al. [14] proposed RTFNet
to fuse RGB images and thermal images for the segmentation
of urban scenes. Zhou et al. [15] proposed FRNet to fuse
RGB images and depth images with a cross-level enriching
module in the encoder.

B. Semantic Segmentation of Drivable Road
Wang et al. [16] proposed a normal inference module

(NIM) for the depth image to improve the performance of
drivable areas and road anomaly detection. The performance
of several networks embedded with NIM has been improved.
Fan et al. [7] proposed a surface normal estimator for depth
images and designed RoadSeg to fuse the output of the
surface normal estimator and RGB images. Kothandaraman
et al. [17] proposed an unsupervised method to segment
roads under adverse weather conditions. Chin et al. [18]
proposed transformer-based OFF-Net to fuse LiDAR point
cloud and RGB image. They also released the ORFD dataset
with 12, 198 pairs of LiDAR point cloud and RGB images.

C. Semantic Segmentation of Negative Obstacles
Fan et al. [8] proposed AA-RTFNet by combining RTFNet

and attention modules to fuse RGB images and disparity
images. They also released the Pothole-600 dataset for the
segmentation of potholes. Feng et al. [5] proposed MAFNet
to fuse RGB images and disparity images for the segmenta-
tion of potholes. Masihullah et al. [19] combined attention
modules with DeepLabV3+ to segment roads and potholes.

Although the aforementioned multi-modal fusion networks
have achieved acceptable results, they all ignore the influence
of untrustworthy features. We find that untrustworthy features
could degrade the fusion performance. So, in this work,
we propose the AMF module to reduce the influence of
untrustworthy features.

III. THE PROPOSED METHOD

A. The Overall Architecture
Fig. II shows the overall architecture of our proposed

AMFNet. Our AMFNet is designed with the structure. It
consists of a five-stage RGB encoder, a five-stage depth
encoder, and a five-stage decoder. There are also 5 AMF
modules in the RGB encoder. Each AMF module is placed
behind each stage of the RGB encoder. The RGB encoder
and depth encoder are borrowed from BotNet-50 [20]. Depth
images are used to generate masks with a threshold of 0.
When the value of a pixel in the depth image is greater than
0, the value of the pixel in the mask is 1. We believe that
the value 0 in the depth image is untrustworthy because the
distance between the real environment point and the camera
is not 0. The mask is a map used to distinguish trustworthy
pixels from untrustworthy pixels. The mask is downsampled
to generate five different masks (i.e., 𝑀1, 𝑀2, 𝑀3, 𝑀4, and
𝑀5), which have the same resolution as the outputs of the
5 stages of the RGB encoder. The 𝑀𝑛 mask is fed into the
𝑛-th AMF module, where 𝑛 ∈ [0, 5]. The outputs of the
same level stages of the RGB and depth encoders are fed

into the same level AMF module. The output of the 𝑛-th
AMF module is fed into the (𝑛 + 1)-th stage of the RGB
encoder and fused into the output of the (𝑛 + 1)-th stage of
the decoder by element-wise addition.

B. The AMF Module
The structure of the AMF module is shown in Fig. 2. The

𝑛-th AMF module has three inputs: the output of the 𝑛-th
stage of the RGB encoder (RGB feature map), the output
of the 𝑛-th stage of the depth encoder (depth feature map),
and the 𝑛-th mask 𝑀𝑛. In each AMF module, the mask is
first fed into an adaptive mask generation (AMG) module to
generate two adaptive-weight masks for the RGB feature map
and depth feature map. Secondly, the adaptive-weight masks
are fused with the RGB feature map and depth feature map
by element-wise multiplication, and then fused to generate
the result of the fusion of the RGB feature map and depth
feature map by element-wise addition. Finally, the weights of
the fusion result of the RGB feature map and depth feature
map are adjusted by a channel attention block and a spatial
attention block. In the channel attention block, the fusion
result is passed through an adaptive average pooling layer, a
fully connected (FC)-batch normalization (BN)-ReLU layer,
an FC layer, and a Sigmoid layer sequentially to generate
the weights of each channel. The weights of each channel
are fused into the result of the fusion to generate an adjusted
result by element-wise multiplication. In the spatial attention
block, the adjusted result is passed through a convolutional
layer and a Sigmoid layer sequentially to generate spatial
weights. The spatial weights are fused into the adjusted result
to generate the output of AMF module by element-wise
multiplication.

The main purpose of the AMF module is to divide
the feature map into trusted regions and untrusted regions
according to the mask. In the trusted regions, RGB features
and trustworthy depth features are fused by adaptive weights.
In the untrusted regions, the untrustworthy features of the
depth images are discarded, and the RGB features are directly
used as the fusion result. The AMG module is designed to
achieve this purpose. The AMG module has three inputs:
the mask, the RGB feature map, and the depth feature map.
The three inputs have the same resolution. Firstly, the RGB
feature map and depth feature map are concatenated together.
Secondly, the concatenated feature map is passed through
an adaptive average pooling layer, two FC-BN-ReLU layers,
and an FC-BN-Softmax layer. The outputs of the FC-BN-
Softmax layer are two weights for the RGB feature map and
depth feature map. Thirdly, the weight for the depth feature
map is fused with the mask by element-wise multiplication
to generate the mask for the depth feature map. Finally, the
depth-feature-map mask is subtracted from an all-one matrix
to generate the RGB-feature-map mask.

C. The Decoder
The decoder consists of five stages with the same structure.

Fig. II shows the structure of one stage. The input of one
stage is first fed into a dual residual block. Secondly, the
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Fig. 1: The overall architecture of our proposed AMFNet. Our AMFNet adopts the two-encoder-one-decoder structure: a
five-stage RGB encoder, a five-stage depth encoder, and a five-stage decoder. The encoder is adopted from BotNet-50 [20].
Our proposed adaptive-mask fusion (AMF) modules are placed behind each stage of the RGB encoder. The mask is generated
by thresholding the depth image with the pixel value 0. Five different masks (i.e., 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) with the
same resolution as the outputs of the 5 stages of the RGB encoder are generated by downsampling with the nearest neighbor
method. The figure is best viewed in color.
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Fig. 2: The structure of an AMF module. Both AMF and
adaptive mask generation (AMG) Module have the same
three inputs: an RGB feature map, a depth feature map, and
a mask. The outputs of the AMG are two adaptive-weight
masks for the RGB feature map and depth feature map.

output of the dual residual block is fed into a channel
attention block to adjust the weights of each channel. Finally,
a transposed Convolution-BN-ReLU (CBR) layer is used to
generate the output of the stage.

There are four CBR layers in the dual residual block. The
input is fed into the first CBR layer and the fourth CBR layer.
The output of the first CBR layer is fed into the second CBR
layer and fused with the output of the second CBR layer. The
fusion result is fed into the third CBR layer. The outputs of
the third and the fourth CBR layer are fused together as the
output of the dual residual block.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset
As aforementioned, large-scale multi-modal datasets with

drivable roads and negative obstacles are very limited. There-
fore, we release a large-scale RGB-D dataset based on the
NPO dataset for the segmentation of drivable roads and
negative obstacles. The raw images of the NPO dataset were
recorded with a ZED stereo camera mounted on a vehicle.
There are 20 image sequences in the raw data of the NPO
dataset. We manually label one image per 5 images in some
image sequences that include nearly 44, 000 image pairs (left
images, right images, and depth images) with 1, 242×2, 208
resolution. So, in total, 8, 752 images are labelled in our
dataset. To alleviate the annotation task, we directly use
the masks of negative obstacles in the NPO dataset as the
masks for our annotation. We name our dataset as Drivable
Roads and Negative Obstacles (DRNO) dataset. There are
various lighting conditions, weather conditions, and scenes
in our dataset, such as normal lighting, large areas of shadow,
snowy, sunny, cloudy, urban scenes, and rural scenes. There
are also various road surface types in the data set, such as
water, snow, and normal road surfaces.

To the best of our knowledge, our DRNO dataset is the
largest dataset for semantic segmentation of drivable roads
and negative obstacles. Some samples of our dataset are
shown in Fig. 3. In our DRNO dataset, 8, 752 images include
drivable roads, and 748 images include negative obstacles.

B. Training Details
Our AMFNet is implemented with PyTorch. The network

is trained and tested on a PC with NVIDIA RTX 3090 (24
GB RAM) graphics card. The parameters of the first four
encoder stages of AMFNet are initialized with the pre-trained
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Fig. 3: Sample images in our DRNO dataset. We visualize the
depth images with the jet color map. Depth values increase
from red to blue. ◼ and ◼ represent drivable roads and
negative obstacles, respectively. The figure is best viewed
in color.

weight from PyTorch. We employ the stochastic gradient
descent (SGD) optimizer to train the network. The initial
learning rate is set to 0.01, the momentum is set to 0.9, and
the decay strategy is set to 0.95.

We randomly split our dataset into three sets: training
(4, 376 pairs of RGB-D images), validation (2, 188 pairs of
RGB-D images), and testing (2, 188 pairs of RGB-D images).
To trade-off training speed and network performance, we
reduce the resolution of the images to 288 × 512 during
training and testing. The unlabelled background is treated
as a class during training and testing.

C. Ablation Study
We conduct ablation study to check the benefits of the

AMF module and choose the optimal structure for our
AMFNet. Firstly, we place one AMF module behind the
different stages of the RGB encoder to design variants. For
example, an AMF module is placed behind the 5-th stage
of the RGB encoder to fuse RGB and depth feature maps
in a variant. Secondly, we design variants by placing AMF
modules behind different stages of the RGB encoder. For
example, AMF modules are placed behind the last two stages
of the RGB encoder in a variant. In all the variants, the
outputs of the same-level stages without AMF modules are
fused by element-wise addition. The metrics Mean Accuracy
(mAcc), mean F-score (mF1), and mean Intersection-over-
Union (mIoU) [5] are used to evaluate the performance of
all the variants.

The results are displayed in Tab. I. From the results, we
can find that the variant without any AMF module achieves
inferior results. Comparing variant A to variant F, we can find
that no matter where AMF is placed, it can always improve
the performance of the network. Comparing the four variants
G, H, I, and J, more AMF modules in one variant lead
to better performance. This shows that our proposed AMF
module can remove untrustworthy features in the fusion
process, thus improving the fusion performance. Based on
the experimental results, we place five AMF modules behind
each stage of the RGB encoder in our AMFNet.

TABLE I: The results (%) of the ablation study. ’✓’ means
AMF module is placed behind the 𝑛-th stage of the RGB
encoder. ’−’ means that the outputs of the 𝑛-th stage of the
RGB encoder and depth encoder are fused with element-wise
addition. The best results are highlighted in bold font.

No.
Stage

mAcc mIoU mF1
1st 2nd 3rd 4th 5th

(A) − − − − − 67.57 66.54 69.18
(B) − − − − ✓ 69.96 67.00 69.18
(C) − − − ✓ − 68.36 67.05 69.87
(D) − − ✓ − − 68.48 66.86 69.72
(E) − ✓ − − − 67.79 66.58 69.22
(F) ✓ − − − − 67.99 66.76 69.49

(G) − − − ✓ ✓ 68.89 67.21 70.15
(H) − − ✓ ✓ ✓ 69.10 67.27 70.24
(I) − ✓ ✓ ✓ ✓ 69.98 67.99 71.34
(J) ✓ ✓ ✓ ✓ ✓ 70.60 68.39 71.99

D. Comparative Study
We compare our proposed AMFNet with the well-known

networks: FuseNet [13], RTFNet [14], AA-RTFNet [8],
RoadSeg [7], SS-SFDA [17], MAFNet [5], OFF-Net [18],
and FRNet [15]. We use our DRNO dataset to train and
test the networks. To illustrate the impact of untrustworthy
features on existing multi-modal fusion networks, we also
train and test the aforementioned multi-modal networks with-
out RGB encoders or depth encoders. We also removed the
fusion module from the multi-modal network during training
and testing. In other words, each multi-modal fusion network
is trained and tested by three different modalities, namely
single RGB modality, single depth modality, and RGB-depth
fusion modality. The mAcc, mF1, and mIoU are also used
as metrics to evaluate the performance of our AMFNet and
these networks. In addition, the Acc, F1, and IoU of each
class (i.e., background, drivable road, and negative obstacles)
are also used as evaluation metrics.

1) Quantitative Results: The results of all networks are
displayed in Tab. II. Comparing the results of each multi-
modal fusion network, we can find that the results of the sin-
gle RGB modality of all networks are better than the results
of the RGB-depth fusion modality, except our network. These
networks fuse untrustworthy features as general features, thus
degrading the results of multi-modal fusion. Our proposed
network reduces the influences of the untrustworthy features
through the AMF module, making the results of the RGB-
depth fusion modality better than that of the single-RGB
modality. These results confirm our conjecture that untrust-
worthy features hinder multi-modal fusion. Comparing all
the results, our network almost achieves the best results in
terms of all metrics. This illustrates the superiority of our
AMFNet.

2) Qualitative Demonstrations: Some sample qualitative
results of the top-3 multi-modal fusion networks (i.e., our
AMFNet, MAFNet, and RoadSeg) with the best mIoU metric
are shown in Fig. 4. From the third column of the results,
we can see that the snow cover on the road confuses the
segmentation of negative obstacles. MAFNet and RoadSeg

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 08,2023 at 04:32:15 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: The comparative results (%) on the testing set of our DRNO dataset. ’Modality’ means the type of modality for
training networks. ’Year’ means the published year of networks. ’RGB & Depth’ means the network is trained and tested
with RGB-depth fusion modality. The results demonstrate the superiority of our AMFNet. The best results are highlighted
in bold font.

Network Year Modality
Background Drivable Road Negative Obstacles

mAcc mIoU mF1Acc IoU F1 Acc IoU F1 Acc IoU F1

FuseNet [13] 2016
Depth 98.50 97.40 98.68 97.67 94.61 97.23 0.00 0.00 0.00 65.39 64.00 65.30
RGB 98.76 97.67 98.82 97.70 95.15 97.51 0.00 0.00 0.00 65.49 64.27 65.45

RGB & Depth 98.95 97.59 98.78 97.13 94.96 97.42 0.00 0.00 0.00 65.36 64.18 65.40

RTFNet [14] 2019
Depth 99.20 97.65 98.81 96.71 95.02 97.45 1.39 1.28 2.52 65.77 64.65 66.26
RGB 99.48 97.92 98.95 96.69 95.56 97.73 7.82 6.25 11.77 68.00 66.58 69.48

RGB & Depth 99.50 97.90 98.94 96.56 95.47 97.68 7.07 4.21 8.08 67.71 65.86 68.23

AA-RTFNet [8] 2020
Depth 99.11 97.62 98.80 96.84 94.98 97.43 1.25 1.07 2.11 65.73 64.56 66.11
RGB 99.47 98.13 99.05 97.06 95.93 97.92 14.14 7.11 13.27 70.22 67.06 70.08

RGB & Depth 99.45 98.06 99.02 97.01 95.81 97.86 7.11 4.37 8.38 67.86 66.08 68.42

RoadSeg [7] 2020
Depth 98.30 96.44 98.19 96.02 92.66 96.19 0.00 0.00 0.00 64.78 63.03 64.79
RGB 98.92 98.19 99.09 98.44 96.18 98.06 8.39 6.83 12.78 68.58 67.07 69.97

RGB & Depth 99.28 98.09 99.04 97.44 95.91 97.91 7.34 4.84 9.24 68.02 66.28 68.73

SS-SFDA [17] 2021
Depth 98.47 96.62 98.28 96.05 93.00 96.37 0.00 0.00 0.00 64.84 63.21 64.88
RGB 98.59 97.07 98.51 96.76 93.91 96.86 0.84 0.79 1.57 65.40 63.92 65.65

RGB & Depth 98.61 96.89 98.42 96.34 93.54 96.66 0.07 0.07 0.14 65.01 63.50 65.08

MAFNet [5] 2022
Depth 98.57 96.95 98.45 96.55 93.67 96.73 0.00 0.00 0.00 65.04 63.54 65.06
RGB 99.44 98.14 99.06 97.26 96.04 97.98 8.11 7.35 13.69 68.27 67.17 70.24

RGB & Depth 99.51 98.14 99.06 97.09 96.01 97.97 4.90 4.03 7.76 67.17 66.06 68.26

OFF-Net [18] 2022
Depth 96.71 91.95 95.81 89.34 83.57 91.05 0.00 0.00 0.00 62.02 58.51 62.29
RGB 98.17 96.60 98.27 96.66 93.02 96.38 0.00 0.00 0.00 64.94 63.21 64.88

RGB & Depth 97.51 96.37 98.15 97.56 92.68 96.20 0.00 0.00 0.00 65.02 63.02 64.78

FRNet [15] 2022
Depth 99.10 97.76 98.87 97.18 95.29 97.59 0.00 0.00 0.00 65.43 64.35 65.49
RGB 99.42 97.92 98.95 96.83 95.58 97.74 6.64 5.89 11.13 67.63 66.47 69.27

RGB & Depth 99.52 98.02 99.00 96.78 95.72 97.81 7.46 4.62 8.83 67.92 66.12 68.55

AMFNet (Ours)
Depth 99.07 97.58 98.78 96.85 94.90 97.39 1.08 0.99 1.97 65.67 64.49 66.04
RGB 99.26 98.25 99.12 97.88 96.30 98.12 8.86 8.01 14.82 68.67 67.52 70.69

RGB & Depth 99.25 98.40 99.19 98.17 96.57 98.26 14.39 10.20 18.51 70.60 68.39 71.99

incorrectly segment negative obstacles due to the influence
of the snow cover. However, our AMFNet correctly segments
the drivable road. From the results in the seventh column,
we can see that the water and shadows on the road seriously
degrade the segmentation performance of the drivable road.
Our AMFNet also achieves the best results among the three
networks. From the results in the fifth column, we can
see that our AMFNet correctly segments most areas of
negative obstacles. The results illustrate the superiority of
our AMFNet.

V. CONCLUSIONS AND FUTURE WORK

We proposed here a novel network AMFNet with the
AMF module for the segmentation of drivable roads and
negative obstacles. Our proposed network addresses the
degradation of fusion performance caused by untrustworthy
features extracted from depth images. We generated masks
from depth images as the input of AMF module. The AMF
module generates two adaptive-weight masks for the RGB
feature map and depth feature map to reduce the influence
of untrustworthy features. In addition, we released a large-
scale RGB-D dataset with pixel-level ground truth of drivable
roads and negative obstacles for this task. The experimental
results show that our proposed AMFNet achieves better
performance than single-RGB modality in the presence of

untrustworthy features during fusion. However, there are
also some limitations in our AMFNet. For example, the
segmentation accuracy of the class negative obstacles is low.
We would like to improve the weight of the loss of the
negative obstacles during training in the future.
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