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Abstract— Correctly understanding surrounding environ-
ments is a fundamental capability for autonomous driving.
Semantic forecasting of bird-eye-view (BEV) maps can provide
semantic perception information in advance, which is important
for environment understanding. Currently, the research works
on combining semantic forecasting and semantic BEV map
generation is limited. Most existing work focuses on individual
tasks only. In this work, we attempt to forecast semantic
BEV maps in an end-to-end framework for future front-view
(FV) images. To this end, we predict depth distributions and
context features for FV input images and then forecast depth-
context features for the future. The depth-context features
are finally converted to the future semantic BEV maps. We
conduct ablation studies and create baselines for evaluation and
comparison. The results demonstrate that our network achieves
superior performance.

I. INTRODUCTION

Semantic forecasting aims to segment future frames pixel-
wisely from previous observations. It is important for se-
mantic environment understanding, which is a fundamental
capability of autonomous vehicles [1]–[9]. Semantic forecast-
ing could facilitate the intelligent decision-making process
[10], [11] by predicting the possible position of the other
road agents and the road layout, enabling self-driving cars
to avoid obstacles. The semantic bird-eye-view (BEV) map
is an ideal format for such task because the BEV map
is more flexible in representing the dynamically changing
environment. The relative distance between the self-driving
car and other agents can be explicitly illustrated. Compared
with the front-view images, the BEV map could eliminate
the foreshortening due to the perspective projection. Besides
the advantages of representation, the BEV map provides a
uniform coordinate to fuse the observation information from
different modality inputs. This is in line with the development
of autonomous driving, where an increasing number and
variety of sensors are equipped for self-driving cars.

The conventional semantic segmentation tasks predict the
semantic class for each pixel according to the observation.
However, semantic forecasting is required to predict the
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semantic distribution for the unobserved frame according to
the previous frames.

Early semantics-to-semantics (S2S) methods [12], [13]
predict future semantic information with semantic segmen-
tation from the past as the input to the network. Those S2S
networks separate the semantic segmentation and forecasting
into two tasks. Recently, feature-to-feature (F2F) forecasting
has drawn attention in the forecasting research field. The
methods [14], [15] adopt such approach to extract the feature
from the origin RBG images and recover the feature maps to
the semantic map directly. The semantic segmentation pays
attention to the task under the front view. In contrast, the key
point of the semantic BEV map generation is to predict the
cross-view semantic position for the objects observed by the
front-faced cameras. Recent works [16]–[19] have achieved
satisfactory results with deep neural networks.

Most existing works focus on front-view semantic forecast-
ing for the future frames or semantic BEV map generation for
the current frame separately. Few attempts solve those two
problems within a whole framework. In this work, we aim to
forecast the short-term future semantic segmentation in the
form of the BEV map. The most related work is proposed
by Hoyer et al. [20] in 2019. However, they follow the S2S
pipeline, conducting the semantic forecasting in two steps.
They generate the semantic segmentation using the off-the-
shelf method, DeepLabV3 [21], then transform the semantic
information into the bird-eye view in the second step. Such
two-step manipulation suffers error accumulation, resulting
in inferior performance.

Different from the previous method, we propose an end-
to-end semantic forecasting network to predict the semantic
BEV map for future frames. We adopt the F2F framework,
extracting the front-view feature from the previously ob-
served images and then predicting the depth distribution with
LSS [22]. We propose a dual-forecasting module for semantic
forecasting, in which the context and depth of the unobserved
frames can be predicted together. To the best of our knowl-
edge, this is the first network that forecasts the semantic BEV
map in an end-to-end manner. The contributions of this work
are summarized as follows:

1) We propose an end-to-end framework to forecast se-
mantic BEV map with F2F strategy for future frames.

2) We design a depth-context forecasting module to pre-
dict and fuse the future depth and context features.

3) We create a group of baseline methods based on the
existing semantic BEV map generation networks and
compare the performance of our network with those
baselines.
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II. RELATED WORKS

A. Semantic Segmentation Networks
Deep learning greatly improves the performance of the

semantic segmentation task. Chen et al. [23] proposed the
atrous convolution in DeepLabV3+. This operation further
enlarges the convolutional receptive field and is beneficial for
getting the global feature. The emergence of skip-connection
enables the feature fusion between the downsampling and
upsampling paths. The mainstream semantic segmentation
methods [24], [25] gradually adopt the skip-connection struc-
ture and get competitive results.

Besides studying new semantic segmentation network ar-
chitectures, Hu et al. [26] designed a fast attention module,
achieving real-time semantic segmentation. Milletari et al.
[27] developed a new loss function based on the Dice
coefficient to improve the semantic segmentation perfor-
mance. Zhang et al. [28] introduced ObjectAug, a new data
augmentation method, into the semantic segmentation field.

B. Semantic Forecasting
Some early works [12], [13] forecast future semantics

by mapping the past semantic segmentation to their future
counterparts. Those S2S methods have been proven to be
less efficient than the later proposed F2F approach [29]. In
this work, the authors directly extracted the feature from the
observed RGB images rather than using the past semantics.
Chiu et al. [30] conducted a F2F network within the teacher-
student framework to generate the supervision signal for
semantic forecasting training. Hu et al. [14] proposed the
Apanet, which explores the pyramid feature of the various
network levels. Lin et al. [15] developed a Predictive Feature
Autoencoder and established the connection between the
segmentation features and the predictor, improving the future
segmentation results.

C. Semantic BEV map generation
The semantic BEV map generation has recently received

considerable attention in the autonomous driving community.
Lu et al. [16] first attempted to predict the semantic BEV
map using the convolutional variational encoder-decoder
network. Yang et al. [19] performed the view transformation
with a cross-view transformer. Besides using the agnostic
convolution neural networks to conduct the view transfor-
mation and assign semantics, Philion et al. [22] proposed
LSS, which first introduces the depth prediction into the
semantic BEV map generation task. Later, Li et al. [31]
further improved the depth perception ability by supervising
the depth prediction network with the depth ground truth. In
[32], the same author constructed a stereo-based method to
achieve more reliable depth estimation.

Although the aforementioned methods perform well in re-
spective research fields, the research in semantic forecasting
for the future BEV map is insufficient. In this work, we aim
to create a semantic forecasting network that could generate
the future semantic BEV map given the previously observed
RGB images. [20] is related to our work. We both forecast
the future semantic BEV map, but our network is based on

the F2F scheme rather than the S2S, eliminating the error
from the intermediate step.

III. THE PROPOSED METHOD

A. The Overall Architecture
Fig. 1 shows the overall architecture of our proposed

network. The proposed network mainly consists of a feature
extractor, a depth-context forecasting module, and a frustum
grid generator. In the first part of our network, the Efficient-
Net [33] is adopted as the backbone network. We employ the
backbone network to extract the front-view feature from the
observed RGB images rather than directly using the semantic
maps as the S2S methods. Then, the depth and context
feature for the future frame is predicted based on the past
frames’ feature maps within the depth-context forecasting
module. At the same time, the RGB images from the past
frames and the camera matrix are fed into the frustum grid
generator to get the frustum-shaped point cloud. Each point
in this point cloud corresponds to a pixel of the given image
at various depths. After getting the point cloud, we assign
the obtained depth-context feature to each point and project
those points into the BEV plane. Through the semantic head
at the end of the proposed network, a semantic BEV map
for the future frame can be generated.

B. BEV Feature Map Generation
In this work, the images from the front-faced camera

and the extrinsic and intrinsic matrix are taken as input to
the whole network. Let 𝐼𝑡 ∈ ℝ3×𝐻×𝑊 denote the input
front-view images from the past 𝑡 frames. Those images
are fed into a pre-trained CNN model, EifficientNet, to get
the individual feature, 𝑓𝑟𝑜𝑛𝑡. The dimension of 𝑓𝑟𝑜𝑛𝑡 is
𝐵× 𝑡×𝐶×ℎ×𝑤, where 𝐵, 𝑡, 𝐶, ℎ,𝑤 stand for the batch size,
numbers of the past input, channel size, the height and width
of the extracted feature maps. Given those feature maps,
our semantic forecasting network can predict the semantic
BEV maps for the future frame, 𝐹𝑡+𝑚, where 𝑚 denotes the
timestamp of the future.

After getting the past 𝑡 frames’ feature maps, we transfer
perspective from the front view to BEV. To this end, the
feature maps in BEV space are generated by first lifting
the 2D front-view images, 𝐼𝑡, into the 3D point cloud, 𝑃𝑡.
Because the input images are from a monocular camera, the
depth estimation for a single image seems like an ill-posed
problem without any other input. Taking the camera extrinsic
matrix, and intrinsic matrix as the input, each pixel in the
image can be projected into the world coordinate, but the
individual depth is not sure, which is formulated as:
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⎟
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(1)

where (𝑢, 𝑣, 1) is the coordinate of an image pixel 𝑝, repre-
sented in the form of homogeneous coordinates. 𝐾 denoted
the camera intrinsic matrix. 𝑅 and 𝑇 are the rotation and
translation matrix, describing the camera’s motion pose.
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Fig. 1: The overall architecture of the proposed semantic forecasting network.
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Fig. 2: The structure of the proposed depth-context forecast-
ing module.

(𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1) is the world coordinate of a point 𝑃𝑤, corre-
sponding to pixel 𝑝. 𝑧𝑐 is the distance between the real-world
point 𝑃𝑤 and the camera, namely the depth of the pixel 𝑝.
Note that the depth 𝑧𝑐 is uncertain for a monocular image.

To get the corresponding depths of the pixels in the given
monocular image, we base on [22], assigning 𝑛 possible
depths to each pixel in the 𝐼𝑡. The possible depth 𝐷 =
{𝑑0, 𝑑1, ..., 𝑑𝑛} is a set of equidistant discrete values. Thus,
the 2D image can be projected into a frustum-shaped point
cloud with depth 𝐷. The depth distribution probability 𝛼 is
predicted, which can be considered as the confidence score
at the different depths. At the same time, the context feature
𝐹𝑐 of the input is extracted through the backbone network.
Then, we get the depth-context feature for each point in
the frustum-shaped point cloud, 𝑓𝑑𝑐 by combining the depth
confidence score and the context feature:

𝑓𝑑𝑐 = 𝛼 ⋅ 𝑓𝑐 (2)

We use the sum pooling to produce the BEV feature maps
by projecting the point feature into the BEV grids.

C. Future Semantic Forecasting
The depth-context forecasting module is displayed in

Fig. 2. We design this module based on the convLSTM. The
operations in the green background compose the forecasting
block. Here, we simultaneously forecast the depth and con-
text features for the future frame. First, for the same frame,

TABLE I: The ablation study results (%) of the variants
of the EfficientNet Family. Eff is the short for the Ef-
ficientNet. The seven semantic classes are divided into
static and dynamic categories, and the mIoU and mAP for
those two categories, as well as the mean results across the
seven classes, are reported respectively. The best results
are highlighted in bold font.

Variants
Statics Dynamics

mIoU mAP
mIoU mAP mIoU mAP

Eff-B0 36.55 62.17 8.21 24.76 27.85 46.14
Eff-B1 42.77 61.62 7.71 28.14 27.74 47.27
Eff-B2 42.61 60.01 8.26 26.41 27.89 45.61
Eff-B3 42.68 60.70 8.48 25.71 28.02 45.71
Eff-B4 42.94 62.51 8.26 25.46 28.08 46.63
Eff-B5 43.48 63.70 7.36 25.98 28.00 47.54
Eff-B6 43.03 62.01 8.30 23.59 28.14 45.54
Eff-B7 43.22 63.22 8.61 28.45 28.39 48.32

its depth and context features are fed into a convolutional
layer to get 4 intermediate feature maps. Those feature
maps change into the different gates (the information, forget,
output gate) via the sigmoid function. The gates control
the transmission of the information to the next forecasting
block. Every frame in the input sequence goes through
this forecasting block and predicts the next status for the
fusion with the next frame. This module is able to process
the sequential input and can be inserted into other existing
networks seamlessly.

D. The Semantic BEV Head

After getting the BEV feature map, a semantic BEV
head is introduced to generate the semantic BEV map. This
module first conducts the feature learning from the BEV
space by a structure that contains the first three layers of
the ResNet18 [34]. The size of the BEV feature map shrinks
after those layers, and then the upsampling operation is used
to recover the output size of the semantic BEV map.
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset
In our experiments, we use a public autonomous driving

dataset, nuScenes [35], to evaluate the performance of our
network for semantic BEV map forecasting. There are 850
annotated scenes in the nuScenes dataset. The annotations
include the 3D object bounding boxes, the high-definition
(HD) maps, and the camera matrix for every frame. Using
those annotations, we create the sequential input images
for semantic forecasting and the future semantic BEV map
as the ground truth labels. We annotate the 7 semantic
classes, including the background, drivable area, pedestrian
crossing, walkway, obstacle, vehicle and pedestrian. Note
that some ground truth labels may not be properly generated
due to the limitation of the flat ground assumption. To train
the network, we randomly split the whole dataset into 548
training sets, 150 validation sets, and 148 test sets, excluding
the sets that contain incorrect semantic BEV labels. For the
input sequence, we choose the 3 consecutive frames as the
input and take the 4𝑡ℎ or 6𝑡ℎ frame for future forecasting.
The size of the input images is 256 × 512, and the output
future semantic BEV map contains 150 × 150 grids, whose
resolution is 0.2 m.

B. Training Details
Our proposed network is implemented on an NVIDIA

GeForce RTX 3090 (24 GB RAN) graphics card. Taking
the computation cost and the time consumption into consid-
eration, we set the batch size to 16. We train our network
for 30 epochs with the Adam optimizer. The initial learning
rate is 1 × 10−4 and the weight decay rate is 1 × 10−5.

C. Ablation Study
We conduct ablation studies to verify the effectiveness of

the proposed network. In our experiments, the mean Inter-
section over Union (mIoU) and the mean Average Precision
(mAP) are used as the evaluation metrics to assess the
network performance.

1) Ablation on the Backbone Network: Since we chose
the F2F strategy to forecast the future semantics, it is
important to select a powerful backbone network to extract
the front-view features from the previously observed images.
EfficientNet [33] is known for its accuracy and efficiency.
The EfficientNet includes 8 variants, whose structures mainly
differ in depth, channel and width. The names of the differ-
ent variants range from Efficient-B0 to Efficient-B7. This
ablation study compares the performance of the network
equipped with different EfficientNet variants.

We report the ablation study results in Tab. I. The correct
predictions of the road layout and the objects on the road are
both critical for autonomous driving. For the convenience
of comparison, we divide the 7 semantic classes into the
static and dynamic categories. The former includes the
background, drivable area, pedestrian crossing, and walkway;
the latter includes the obstacle, vehicle and pedestrian. The
table shows an obvious rising trend in mIoU and mAP when
the backbone changes from a simple structure to a complex

TABLE II: The ablation study results (%) of the semantic
forecasting. The experiment is separated into two groups,
forecasting the 1𝑠𝑡 and 3𝑟𝑑 future frame, respectively. To
further verify the semantic forecasting ability, we set three
different inputs for each group. 𝐼𝑛 stands for the number of
previously observed frames, and 𝑂𝑓 indicates which frame
is predicted in the future. The best results are highlighted
in bold font for forecasting 1𝑠𝑡 and 3𝑟𝑑 future frame,
respectively.

𝐼𝑛 𝑂𝑓
Statics Dynamics

mIoU mAP
mIoU mAP mIoU mAP

1 1𝑠𝑡 41.09 63.96 6.71 26.48 26.36 47.90
3 1𝑠𝑡 43.22 63.22 8.61 28.45 28.39 48.32
5 1𝑠𝑡 41.61 61.44 7.37 26.03 26.93 46.27

1 3𝑟𝑑 36.74 56.64 5.07 21.89 23.10 41.75
3 3𝑟𝑑 38.24 56.22 6.03 24.36 24.43 42.57
5 3𝑟𝑑 38.84 58.00 7.22 26.94 25.29 44.69

one. Therefore, we chose EfficientNet-B7 as our backbone
for the proposed network.

2) Ablation on the Semantic Forecasting: In this section,
we compare the forecasting performance of the network with
different input and output conditions. This ablation study
is separated into two groups, which predict the semantic
BEV map for the 1𝑠𝑡 and 3𝑟𝑑 future frame, respectively.
Furthermore, we also set different numbers of the previously
observed frames as input for each group. Specifically, the 1,
3, and 5 past front-view images are fed into the network to
forecast the future one or three frames.

Tab. II displays the results of this ablation study. We find
that the network forecasting the future one frame performed
best when taking as input 3 past observations, while worse
having 5 inputs. The situation is changed for forecasting the
3𝑟𝑑 future frame. The table shows that the best performance
can be achieved by taking 5 past frames. We conjecture
the reason for this change in the results is the information
redundancy due to the increasing numbers of input. Using
too many past frames to forecast the near future frame is
redundant, whereas longer-term future prediction requires
more past information to perform better.

D. Comparative Study

As the proposed network is the first method to forecast
the semantic BEV map in the F2F manner, we create several
baseline methods to perform the comparative experiments.
The networks we chose for baseline comparison are specific
to the semantic BEV map generation task. The networks
include VPN [17], VED [16], PYVA [19]. All those networks
can only predict the current semantics without the forecasting
ability. So, to test the semantic forecasting performance of
the proposed module, we integrate the feature forecasting
module into those networks. The feature forecasting module
is inserted behind the feature extractors to keep the original
network structures unchanged. In this experiment, we also
conduct the test with different input and output conditions to
compare the precision of semantic forecasting. Meanwhile,
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The Future Frame Ground Truth Ours VED PYVA VPN

Fig. 3: Sample qualitative demonstrations for the semantic BEV map forecasting networks. The displayed results are the next
future frame predicted by each network testing with the three previously observed frames as input. The results demonstrate
the superiority of our network. The figure is best viewed in color.

TABLE III: The comparative results (%) with the baseline methods. We conduct different groups of experiments to test the
performance of the selected network with the proposed semantic forecasting module. Each network takes as input 1 or 3
past frames and forecasts the next frame or the 3𝑟𝑑 frame in the future. 𝐼𝑛 and 𝑂𝑛 represent the numbers of the input images
and which frame is predicted in the future, respectively. We bold the best results according to the different input-output
conditions for each method.

Network 𝐼𝑛 / 𝑂𝑛

Background Drivable Area Ped. Crossing WalkWay Obstacle Vehicle Pedestrian
mIoU mAPIoU AP IoU AP IoU AP IoU AP IoU AP IoU AP IoU AP

VPN
1/1 53.05 61.17 61.12 80.92 11.24 71.84 28.93 39.91 0.54 34.49 2.59 51.07 0.0 0.0 22.50 48.48
3/1 56.21 71.06 67.65 73.87 22.58 67.24 29.31 63.10 0.0 0.0 7.66 38.84 0.0 0.0 26.20 44.87
3/3 52.38 62.21 62.27 76.69 19.35 56.57 27.18 47.26 2.75 32.10 8.22 31.41 0.0 0.0 24.59 43.75

VED
1/1 56.32 71.99 67.36 74.40 27.31 59.74 33.57 60.22 0.0 0.0 3.60 53.80 0.0 0.0 26.88 45.74
3/1 61.06 69.56 70.88 78.63 34.49 63.61 36.13 63.91 0.95 0.0 6.67 51.04 0.0 0.0 27.63 46.69
3/3 54.48 66.75 65.41 75.36 22.66 61.08 31.47 56.15 2.20 35.60 4.84 42.62 0.0 0.0 25.87 48.22

PYVA
1/1 54.33 70.31 66.20 75.56 28.27 55.12 31.64 51.18 3.08 36.81 7.60 36.90 0.0 0.0 27.3 42.91
3/1 58.53 68.86 68.98 80.36 29.87 61.27 33.79 53.98 0.0 0.0 6.74 42.14 0.0 0.0 28.27 43.80
3/3 54.66 67.73 65.43 76.41 25.03 53.06 30.30 50.60 5.21 36.65 6.92 32.09 0.0 0.0 26.79 45.22

OURS
1/1 50.31 62.99 62.94 72.71 25.15 58.50 25.97 61.65 10.17 41.48 9.87 37.33 0.10 0.62 26.36 47.90
3/1 51.45 62.31 62.87 77.12 27.57 59.62 30.98 53.84 13.64 53.42 11.71 29.15 0.48 2.78 28.39 48.32
3/3 50.27 61.95 61.49 74.90 25.61 54.18 29.07 54.74 11.42 49.89 9.94 24.85 0.74 3.35 26.93 46.27

we use the original network structures to predict the semantic
BEV map for the next future frame with the 1 frame input
as a baseline.

1) Quantitative Results: The comparative results are
shown in Tab. III. Taking the three previously observed
frames, the proposed network achieves the best forecasting
performance, with 28.39% in mIoU and 48.32% in mAP.
From the table, we can see that all the networks inserted
with the forecasting module get better forecasting results
compared with the origin structure (marked with 1∕1 for the
𝐼𝑛/𝑂𝑛 term). This verifies the effectiveness of our semantic
forecasting module. In addition, the table shows that our

network performs best in predicting small dynamic objects,
such as obstacles, vehicles, and pedestrians, illustrating the
superiority of our network.

2) Qualitative Demonstrations: Some sample qualitative
results are shown in Fig. 3. The networks take three previous
frames as input and forecast the next future semantic BEV
map. In general, our network achieves the best performance
for the semantic forecasting task. Compared with the other
networks, Our network is sensitive to small objects like
obstacles and pedestrians (labeled in brown and yellow,
respectively).
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V. CONCLUSIONS AND FUTURE WORK

Semantic forecasting could provide the prior information
for the other tasks in autonomous driving. In this work, we
attempt to forecast the future semantic BEV maps in an F2F
manner. The proposed network takes as input the previously
observed image and outputs the future semantics in BEV. The
network was evaluated and tested on the public dataset. We
demonstrated our network’s superiority over the baselines.
Although the proposed network has satisfying forecasting
performance, the precision of the small objects prediction
is still not as good as that of the road layout. In the future,
we will explore a better way to improve the segmentation
performance of small objects.
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