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Abstract— Detection of road obstacles is important for au-
tonomous driving. However, road obstacles, like pedestrians,
usually account for quite a small portion compared with
other semantics, such as road layouts. This leads to the
class-imbalance problem in real-world driving datasets and
hinders environment perception for autonomous driving. In this
paper, we propose an obstacle-sensitive network to improve the
semantic Bird-Eye-View (BEV) map generation performance
for minority classes. To this end, a context-depth attention
module and a boundary-aware loss are introduced. We conduct
ablation studies to verify the effectiveness of the proposed
network. We also compare our network with other semantic
BEV map generation methods. The results demonstrate that
our network achieves better performance in terms of semantic
BEV map generation, especially for minority classes.

I. INTRODUCTION

An efficient data representation for perception of sur-
rounding traffic environments for autonomous vehicles is
necessary. The semantic bird-eye-view (BEV) map is a type
of popular data representation due to its efficiency. It is
easy to fuse different information from multi-modal inputs,
such as visual images and LiDAR point clouds, under BEV.
Moreover, semantic segmentation provides the abstract infor-
mation of the surrounding environment, which can bridge the
gap between the real world and the simulation environment,
and is also an effective tool to provide fundamental informa-
tion for downstream tasks, such as trajectory prediction [1]–
[4] and autonomous navigation [5]–[8]. In addition, the BEV
map is more flexible in representing dynamically-changing
environments. It eliminates the visual differences in the scale
of the same object caused by distances. The semantic BEV
map generation has gradually attracted great attention in the
autonomous driving community.

Detecting obstacles on roads, such as traffic cones and
pedestrians, is critical for safe navigation. Correctly detect-
ing those objects could provide early warning signals for
decision-making [9]–[11]. However, due to the nature of the
practical driving environments, obstacles on roads account
for a relatively small portion compared to road layouts. For
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deep-learning-based autonomous driving, the training data
collected in real driving scenarios is also facing such class-
imbalanced challenge, leading to degraded performance in
segmenting road obstacles. Most existing semantic BEV
map generation methods focus on the design of network
structures and the improvement of the overall segmentation
performance across all classes. They ignore the imbalanced
data distribution. In MonoLayout [12], the authors used two
branches to segment static and dynamic objects separately.
But for dynamic objects, they only predict vehicles, leaving
smaller categories out. To improve the segmentation accu-
racy, we pay more attention to small objects, which occupies
a small fraction of the class-imbalanced dataset.

To address the class-imbalanced problem, some work
[13]–[15] attempt to use different data augmentation methods
to increase the data diversity. The oversampling technique
[16]–[18] intends to balance the majority and minority
classes by generating new minor data. Such data-level meth-
ods are independent of the algorithms. Cost-sensitive ap-
proaches [19], [20] solve this problem in another way. Those
methods pay attention to designing loss functions rather than
the input data.

Unlike the previous works, we present an obstacle-
sensitive network containing a context-depth attention mod-
ule and a boundary-aware loss to handle the class-imbalanced
problem for semantic BEV map generation. The context-
depth attention module stresses the interaction between the
front-view feature maps and the depth distribution. The
boundary-aware loss further improves the performance of
small object segmentation by emphasizing the margin be-
tween different semantic classes. To the best of our knowl-
edge, this is the first work exploring the class-imbalanced
problem in the semantic BEV map generation task. The
contributions of work are summarized as follows:

1) We design a context-depth attention module to extract
the associated features from the front view feature and
depth contribution.

2) We propose a novel boundary-aware loss to balance
the learning weight of the minority classes.

3) We demonstrate the superiority of our obstacle-
sensitive network by comparing it with state-of-the-art
methods via extensive experiments.

The rest of this paper is organized as follows: Section II
provides a review of related work. Section III explains the
details of our network. Section IV presents the experimental
results. The last section concludes our work and explores
potential avenues for future research.
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II. RELATED WORK

A. Semantic Segmentation Networks
Semantic segmentation aims to assign a semantic label to

each pixel in an image [21]–[23]. With the emergence of
deep-learning methods, semantic segmentation has become
one of the core tasks in computer vision. Unlike classifica-
tion, the space structure of the image should be preserved in
semantic segmentation. In theory, a bigger receptive field
could lead to better performance. In 2017, Zhao et al.
[24] proposed PSPNet with the Pyramid Pooling Module
(PPM), which generates the multi-scale feature. This pyramid
structure has inspired many follow-up work. DeepLab V2
[25] introduced the Atrous Spatial Pyramid Pooling (ASPP)
module, using the atrous convolution to replace the conven-
tional convolution. Later, the same authors [26] proposed
DeepLab V3+ with a densely connected encoder-decoder
structure. Fu [27] using the stacked deconvolution layers
to upsample the feature maps in their proposed SDNet.
The Vision Transformer methods have recently provided a
new insight into semantic segmentation. TransUnet [28] and
Swin-Unet [29] combine the Transformer structure and the
well-known segmentation network, U-Net.

B. Semantic BEV Map Generation
Different from the typical semantic segmentation, the

semantic BEV map generation requires performing the view
transformation and semantic prediction simultaneously. It
is more complex but useful than the front-view semantic
segmentation for autonomous driving tasks. VED [30] is
the pioneer in semantic BEV map prediction. The authors
segment the BEV space with a convolutional variational
encoder-decoder structure. Mani [12] proposed Monolayout,
in which the adversarial feature is leveraged to predict the
occupancy of the BEV grid. Pan et al. [31] utilize the domain
adaptation technique to train with the real RGB images and
the synthetic masks in their View Parsing Network (VPN).
S2G2 [32] explored a semi-supervised manner of generating
the semantic BEV map. LSS [33] introduces depth prediction
into the semantic BEV map generation. Inspired by LSS,
BEVDepth [34] improved the depth prediction module with
additional depth supervision during the training phase.

C. Class-imbalanced Learning
The deep-learning dataset collected in the real world often

has a long-tailed distribution, resulting in insufficient learn-
ing of the minority categories. To tackle the class-imbalance
problem, many methods are proposed, which can be divided
into three main categories: 1) data-level approaches [13]–
[15], [17] focus on rebalancing the input data distribution by
expanding the data diversity or oversampling the minority
data; 2) algorithmic-level approaches [35], [36] attempt to
modify the typical classification methods to predict the
minority classes better; 3) cost-sensitive approaches [19],
[20] propose the new loss functions to guide the network
training with the bigger weight assigned to the minority
classes.

The Data Distribution
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Fig. 1: The data distribution for different semantic classes in
the nuScenes dataset. For our semantic BEV map generation
task, we create the semantic BEV ground truth for 7 cate-
gories, including the background (BG), drivable area (DA),
pedestrian crossing (PC), walkway (WW), obstacle (Obs),
vehicle (Veh), and pedestrian (Ped).

For autonomous driving tasks, solving the class-
imbalanced problem is important for safe driving. This work
explores this problem in the semantic BEV map generation.
To this end, we propose a depth-context attention module and
a boundary-aware loss function to improve the segmentation
of the minority semantic classes.

III. THE PROPOSED METHOD

A. The Overall Architecture

The motivation of this work is to explore the class imbal-
ance problem, which is quite common in autonomous driving
datasets. For semantic BEV map generation, we employ
the nuScenes [37] dataset as training data for this work.
The statistics of the number of pixels in each category are
illustrated in Fig. 1, from which we find that the data of the
dynamic categories (obstacle, vehicle, and pedestrian) are
much less than that of the static ones (background, drivable
area, pedestrian crossing, and walkway). Such an imbalance
in the data distribution could degrade the performance of
semantic BEV map generation. To tackle this problem, we
propose an obstacle-sensitive semantic BEV map generation
network, shown in Fig. 2.

The proposed network mainly consists of a context-depth
attention module and a boundary-aware loss to cope with
the data imbalance problem. Our network takes as input the
front-view monocular image and the corresponding camera
matrix. Using the given camera’s intrinsic and extrinsic
matrices, the 3D position 𝑃𝑤 in the world coordinate of
each pixel 𝑃𝑖 in the image can be calculated. However, the
depth estimation from the monocular image is an ill-posed
problem. We follow [33] to set 𝑛 possible depths 𝑑1, 𝑑2, ..., 𝑑𝑛
for the given scene first and get a set of points in the world
coordinate. This process is represented by the lift module
in Fig. 2. At the same time, the encoder predicts the front-
view feature 𝑓𝑓𝑟𝑜𝑛𝑡 and the depth distribution probability 𝒫𝑑
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Fig. 2: The overall structure of our proposed network. Our network takes as input the front-view image and the camera
intrinsic and extrinsic matrices. Following [33], each pixel in the front-view image is lifted to the 3D world coordinate,
forming a set of points. Then, we use the proposed context-depth attention module to get the feature map for each point. After
the splatting and decoding operation, the semantic BEV map is generated. To train our network with the class-imbalanced
dataset, we design a boundary-aware loss function to emphasize the minority classes during the training phase.

according to the input image. Here, we design a context-
depth attention module to extract the salient features 𝑓𝑐𝑑 for
the various depths. Then, 𝑓𝑐𝑑 is assigned to each projected
point. We get the semantic BEV map after a splatting
operation and the decoder module. To make the whole
network more sensitive to small objects, a boundary-aware
loss is used to supervise the network training by assigning a
bigger weight to minority semantic classes.

B. The Context-Depth Attention Module

Since we combine the predicted front-view feature map
𝑓𝑓𝑟𝑜𝑛𝑡 and the depth distribution 𝒫𝑑 as the feature tensor
for each point in the 3D coordinate, the interaction between
the feature maps and the depth distribution should be inves-
tigated to assign the point with a more reasonable feature.
Therefore, we take advantage of the attention mechanism
to explore the relationship between the spatial feature and
the depth. In this section, we take inspiration from [38],
which extracts the salient feature from various dimensions
by rotating the feature tensor. This attention module is
modified to adapt to our task for capturing the context-depth
dependencies.

The context-depth attention module is shown in the
green background of Fig. 2. Following [38], there are three
branches in this attention module. The input tensor of this
module is the output feature map from the encoder, 𝑓𝑓𝑟𝑜𝑛𝑡.
The shape of the input tensor is 𝐵 × 𝐶 × ℎ × 𝑤, where
𝐵,𝐶, ℎ,𝑤 are the batch size, channel dimension, and spatial
dimensions. The feature maps are respectively rotated along

the ℎ or 𝑤 dimensions before being fed into the first two
branches. The rotation operation enables the attention module
to better stress on the interaction between the different spatial
dimensions and the channel dimension without the loss of
the spatial information. The first two branches have the
same structure, consisting of a Z-pooling operation and a
standard 𝑘× 𝑘 convolutional layer. After the two operations,
the attention score can be obtained. Then, we multiply the
input tensor with the score to get the attention-based tensor.
The third branch deals with the depth information and the
attention-based features by element-wise multiplication. The
output tensor of this module embraces the context feature
between the different dimensions and the depth distribution,
capturing more details from the front-view images.

C. The Boundary-aware Loss

The small road obstacles, such as pedestrians, account
for quite a small portion of the dataset, leading to inferior
segmentation performance on those small objects. To stress
those minority semantic classes, it is intuitive to increase
the weight of the road obstacles in the loss calculation
during the training phase. Here, we design a boundary-aware
loss to cope with the class-imbalanced problem. According
to the statistics of the number of semantic pixels among
the different classes, we classify the obstacle, vehicle, and
pedestrian as the minority class. First, we assemble those
objects on one binary mask, shown as the (𝑐) in Fig. 3.
Subsequently, the edges of the objects are extracted, and the
edge width is denoted as 𝛾 ((𝑑) in Fig. 3). The boundary-
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(a)

(b) (c)

(d) (e)

Fig. 3: The visualization of the boundary-aware loss. (𝑎) is
the input front-view image. (𝑏) is the corresponding ground
truth. (𝑐) is the binary mask for the small objects that appear
in the image. (𝑑) is the extracted edges of the small objects.
(𝑒) is the boundary-aware score. Note that the brighter color
represents the higher score. The figure is best viewed in color.

aware score 𝑆 is then generated by calculating the pixel
distance from the extracted edges. A small distance will get
a higher score. The boundary-aware score is visualized as
(𝑒) in Fig. 3. Note that the brighter color stands for the
higher boundary-aware score. During training, the boundary-
aware score is applied to the loss calculation to attach more
attention to the small objects as the following formula:

𝐿𝐵𝐷 =
𝑛
∑

𝑖=1
𝑆𝑖(𝑌𝑖 − 𝑃𝑖)2, (1)

where 𝑆𝑖 is the boundary-aware score for the pixel 𝑖. 𝑌𝑖
and 𝑃𝑖 represent the semantic label and the predicted results,
respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset and Training Details
We train our proposed network with the public au-

tonomous driving dataset, nuScenes [37]. The nuScenes
dataset provides 850 annotated scenes, with 3D object bound-
ing boxes, high-definition (HD) maps, and semantic labels.
We project the 3D object bounding boxes into the HD
map to obtain the semantic BEV ground truth label. The
whole dataset is randomly divided into 548 training sets, 150
validation sets, and 148 testing sets, removing the corrupted
data due to the projection.

The network is trained with NVIDIA RTX 3090 GPU. We
set the initial learning rate to 1×10−4, and the weight decay
is 1 × 10−5. We adopt EfficientNet-B0 [39] as the backbone
to extract the front-view feature. The edge width is a hyper-
parameter in the boundary-aware loss, and we set it to 2.0.
The selection details are discussed in the ablation study.

B. Ablation Study
1) Ablation on the Network Structure: To make our net-

work sensitive to small objects, such as road obstacles, we
design the context-depth attention module and the boundary-
aware loss. In this ablation study, we compare the per-
formance of the network variants with or without certain
modules.

TABLE I: The results (%) of the ablation study on the
network structure. ’✓’ means that the network includes a
certain module. ’−’ means the module is not contained
in the network. We report the performance in terms of
majority and minority classes, respectively. The best results
are highlighted in bold font.

Variants Majority Minority
mIoU mAP

Att BL mIoU mAP mIoU mAP

− − 43.22 61.62 8.61 28.14 28.39 47.27
✓ − 46.53 64.66 10.71 28.30 31.18 49.07
− ✓ 49.88 66.52 9.78 28.28 32.69 50.13
✓ ✓ 49.70 66.56 11.70 28.41 32.84 50.21

TABLE II: The results (%) of the ablation study on the
hyper-parameter in the boundary-aware loss. 𝛾 is the edge
width of the small objects. We set 5 values to 𝛾 to test
the segmentation performance. The results are reported in
the majority and minority categories. The best results are
highlighted in bold font.

𝛾
Majority Minority

mIoU mAP
mIoU mAP mIoU mAP

0.5 43.50 68.56 9.23 28.96 32.17 51.58
1.0 43.54 65.00 9.86 29.83 32.47 49.92
1.5 49.56 66.74 8.98 29.94 32.62 49.23
2.0 49.70 66.56 11.70 28.42 32.84 50.21
2.5 49.54 65.07 8.05 31.37 31.76 50.63

Tab. I shows the results of the segmentation performance
of different variants. ’✓’ represents the variant that includes
the certain module, and ’−’ means not. We divide the
7 semantic classes into majority and minority categories.
The former includes background, drivable area, pedestrian
crossing, and walkway. The latter consists of obstacle, vehi-
cle, and pedestrian. The table shows that the variant with
both context-depth attention module and boundary-aware
loss achieves the best performance for small road objects.
The results demonstrate the effectiveness of the proposed
modules for small object segmentation.

2) Ablation on the Boundary-Aware Loss: In the
boundary-aware loss, a hyper-parameter 𝛾 controls the edge
width for the small objects in the binary mask (shown in the
(𝑑) of Fig. 3). It influences the calculation of the boundary-
aware score. To select the best 𝛾 , we conduct the ablation
study to compare the performance from the network with
different 𝛾 . We set 5 values here. The results are displayed
in Tab. II. We find that the proposed network performs best
when 𝛾 is set to 2.0.

C. Comparative Study

We compare our proposed network with the exist-
ing semantic BEV map generation networks: PYVA [40],
VED [30], LSS [33]. We train those networks with the
nuScenes dataset for 20 epochs. The mean Intersection over
Union (mIoU) and the mean Average Precision (mAP) are
chosen to evaluate the performance of the different networks.
This work aims to improve the segmentation performance of
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Input Image Ground Truth OURS PYVA VED LSS

Fig. 4: Sample qualitative demonstrations for the semantic BEV map generation networks. The results demonstrate the
superiority of our network. The figure is best viewed in color.

TABLE III: The comparative results (%) compared with the existing semantic BEV map generation networks. As this work
aims to improve the segmentation performance of small objects, the results of the minority classes, like obstacle, vehicle,
and pedestrian should draw more attention. The best results are highlighted in bold font.

Network
Background Drivable Area Ped. Crossing WalkWay Obstacle Vehicle Pedestrain

mIoU mAPIoU AP IoU AP IoU AP IoU AP IoU AP IoU AP IoU AP

PYVA 63.00 73.91 70.88 84.32 23.19 44.70 39.73 55.43 8.27 33.84 18.02 39.77 0.00 0.00 31.87 47.42
VED 56.32 71.99 67.36 74.40 27.31 59.74 33.57 60.22 0.00 0.00 3.60 53.80 0.00 0.00 26.88 45.74
LSS 51.45 66.44 62.87 73.91 27.57 54.13 30.98 52.01 13.64 51.57 11.71 30.31 0.48 2.53 28.39 47.27
OURS 58.44 69.85 67.75 81.96 36.64 60.19 35.97 54.23 16.12 54.57 18.21 27.47 0.76 3.21 32.84 50.21

small objects in the driving environment. So, in this com-
parative experiment, we pay attention to the segmentation
results in the minority classes, including obstacle, vehicle,
and pedestrian.

1) Quantitative Results: The comparative results of the
above-mentioned networks are listed in Tab. III. Our pro-
posed obstacle-sensitive network achieves the best perfor-
mance in mIoU and mAP over the total 7 classes. The
segmentation results of the two majority classes (i.e., back-
ground and drivable area) are inferior to that of PYVA, while
we have a decided advantage in predicting the semantics for
the minority classes (i.e., obstacle, vehicle, and pedestrian),
compared with our counterparts. Especially for the pedestrian
class, most methods fail to generate the correct segmentation.
The results demonstrate superior performance in sensing the
small objects in the driving environment.

2) Qualitative Demonstrations: Some sample qualitative
demonstrations of the above-mentioned methods are shown
in Fig. 4. The figure shows that our obstacle-sensitive net-
work generates the most accurate and clear semantic BEV
map. We can see that the objects predicted by our network
are close to the real sizes from the first row. The second
row shows the semantic BEV map generation at night, from

which we find that only our network could infer the positions
of the vehicles. The prediction results of the small object
(the road obstacles) are shown in the last row. The results
illustrate the superiority of our network.

V. CONCLUSIONS AND FUTURE WORK

For environment perception, class imbalance is a common
issue in real-world collected datasets, which hinders the
correct detection of small objects in driving environments.
In this work, we improved the sensing accuracy with the
imbalanced data in the form of a semantic BEV map. To this
end, we proposed a network composed of a context-depth
attention module and a boundary-aware loss. Through the
ablation studies, the effectiveness of our designed modules
is verified. We also evaluate the performance of our network
by comparing it with other semantic BEV map generation
methods. The results demonstrate the superiority of our
network, especially for the performance in segmenting the
minority classes. Although we achieve satisfying results,
we find that the improvement in the prediction of minority
classes may degrade the performance of the majority ones.
In the future, we aim to deal with this problem by exploring
the potential of the diffusion model to effectively capture the
intricate distribution patterns from the dataset.
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