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Abstract—Incorporating prior structure information into the
visual state estimation could generally improve the localization
performance. In this letter, we aim to address the paradox between
accuracy and efficiency in coupling visual factors with structure
constraints. To this end, we present a cross-modality method that
tracks a camera in a prior map modelled by the Gaussian Mixture
Model (GMM). With the pose estimated by the front-end initially,
the local visual observations and map components are associated
efficiently, and the visual structure from the triangulation is refined
simultaneously. By introducing the hybrid structure factors into the
joint optimization, the camera poses are bundle-adjusted with the
local visual structure. By evaluating our complete system, namely
GMMLoc, on the public dataset, we show how our system can
provide a centimeter-level localization accuracy with only trivial
computational overhead. In addition, the comparative studies with
the state-of-the-art vision-dominant state estimators demonstrate
the competitive performance of our method.

Index Terms—Localization, SLAM, visual-based navigation.

I. INTRODUCTION

LOCALIZATION is a crucial capability for robotic naviga-
tion, as it can provide the global position and orientation

which is essential for high-level applications ranging from path
planning to decision-making [1]. Among the available solutions
for robot localization, vision-based approaches are becoming
increasingly popular due to the widely-used low-cost and light-
weight cameras [2], [3]. However, compared to ranging sen-
sors, e.g., LiDARs, the shortcomings of the vision systems are
not negligible in that, they generally measure the environment
structure in an indirect way and suffer from large appearance
variances of the environment [4].

Integrating prior information from scene structures into visual
localization systems could alleviate these issues. Along this
track, impressive results have been achieved in the recent work
[5]–[10]. They usually adopt the pipeline that firstly builds a
dense scene structure, and then localizes using visual or visual-
inertial sensors with pre-built dense maps [9]. As the structure
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Fig. 1. The proposed method localizes a camera (RGB-Axes) in a prior map
represented by GMM. The GMM map is visualized as ellipsoids in 3Σ bound.
As shown in the global and zoom-in view, the estimated visual structure is well
aligned with the global map and the trajectory is drift-less compared to the
ground truth.

can be fully reused, this kind of modality-crossing formulation
between vision and structures allows the localization system to
take advantage of both the rich features from visual sensors and
the high-precision depth measurements from ranging sensors
[10]. However, we observe that there is still a bottleneck on how
to efficiently establish the constraints between structure-map
elements and local visual measurements. For example, building
a kd-tree of a point cloud for searching the correspondences
among triangulated visual landmarks takes logarithmic time
with respect to the size of the data [11], while downsam-
pling the map would cause a loss of information to a certain
extent.

To resolve this issue, in this letter, we present a visual lo-
calization system modelling the prior distribution of the visual
structure in 3-D space as a mixture of multivariate Gaussian
distributions, namely the Gaussian Mixture Model (GMM) [12].
As GMM is a much more compact data quantization method to
represent a scene structure compared to the methods based on,
for instance, the raw point cloud or voxel grid, the structure infor-
mation is naturally concentrated into this parametric distribution
with high-fidelity. Initially tracking the camera pose by an indi-
rect front-end, the proposed method associates the map compo-
nents with local observations in a flash. The structure constraints
are established in a generic form, with which landmarks from the
triangulation are well refined. Through optimizing camera poses
and landmark positions in the joint Bundle Adjustment (BA),
the structure factors are tightly coupled with visual factors from
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Multiview Geometry (MVG). The experimental results show
that the proposed approach achieves an accurate localization
performance compared to the state-of-the-art methods, while
only a trivial overhead is introduced. A qualitative result is shown
in Fig. 1, where the local visual structure is well aligned with the
GMM map, and the camera pose in the map frame is accurately
recovered. A demo video can be found in our project homepage.1

We summarize our contributions as follows:
1) Representing the dense structure as GMM, we propose a

hybrid structure constraint that ensures the global structure
consistency in the visual state estimation.

2) Following a hierarchical scheme, we further propose an
efficient method that associates 3-D structure components
with 2-D visual observations.

3) Based on the proposed method, we implement GMMLoc,
a novel visual localization system that tightly-couples the
visual and structural constraints in a unified framework.

4) Comparative experimental results demonstrate the re-
markable performance of the proposed system. The ad-
ditional study on reconstruction accuracy and structure
factor supports our claims and confirms the effectiveness
of the proposed method.

II. RELATED WORKS

A. Visual Localization With Dense Prior Structure

Visual localization is extensively pursued thus an exhaustive
review is prohibitive. Here we limit our discussions to the meth-
ods which use the dense prior structure. Introducing dense prior
structure has been shown to make a significant improvement to
both robustness and accuracy in a vision-dominant localization
system [5]–[10]. Caselitz et al. [5] proposed to associate the
landmarks reconstructed from the monocular visual odometry
[13] with a point-cloud map. The 7-Degrees of Freedom (DoF)
sim(3) transform was estimated in an Iterative Closest Point
(ICP) scheme. Kim et al. [6] formulated the stereo localization
as dense direct tracking of the disparity map with the local
point-cloud. Ding et al. [7] proposed a sliding-window based
stereo-inertial localization method with laser-map constraints.
They introduced a hybrid optimization method to register the
local sparse feature map with the prior laser map. Huang et al.
[8] modelled the dense structure as an Euclidean Signed Distance
Field (ESDF). The visual structure can then be aligned with the
implicit surface. Zuo et al. [9] proposed MSCKF with prior Li-
DAR map constraints (MSCKF w/map). A Normal Distribution
Transform (NDT)-based method was used to align the stereo re-
construction with the point cloud prebuilt from LiDAR. Ye et al.
[10] proposed DSL, where surfel constraints were introduced
into the direct photometric error. The monocular camera can be
localized in a tightly-coupled photometric BA framework. While
previous work succeeded in introducing structure constraints,
either in a loosely-coupled or a tightly-coupled manner, our
method is different in that we quantize the geometry as a GMM,
from which we formulate the structure constraint and introduce
it into the visual state estimation. The advantages of GMM
representation are two-fold: first, it is highly compact, e.g., for
the scene in Fig. 1, the whole map consists of only 4500 Gaussian
components, of which the data can be stored in an ASCII file of
several kilobytes. Therefore it is efficient in both memory and

1[Online]. Available: https://sites.google.com/view/gmmloc/

storage; second, such efficiency further accelerates the whole
process for the association and establishing of the constraints.

B. GMMs in State Estimation for Robotics

Early probabilistic registration methods generally interpreted
the point cloud data as GMMs by giving each point an isotropic
Gaussian variance. This paradigm was first proposed in [11] to
overcome the robustness issue of ICP [14] and its variants [15].
Later, Myronenko et al. proposed the well-known CPD in [16],
where a close-formed solution to the maximization step (M-
step) of the EM algorithm was provided. While these methods
improved the robustness and accuracy, they are generally slower
than ICP-based approaches. To resolve this issue, recently, Gao
et al. proposed FilterReg [17], where they formulated the ex-
pectation step (E-step) as a filtering problem and parameterized
the point cloud data as permutohedral lattices. Besides that, in
[18], Eckart et al. provided an alternative solution by building
a multi-scale GMM tree with anisotropic variances and 15–30
fps registration is achieved with the GPU. Similarly, aided by
Inertial Measurement Unit (IMU) to recover roll and pitch,
Dhawale et al. [19] proposed a Monte Carlo localization method
with the GMM based on the belief calculation given the depth
map of a RGB-D camera. They further showed that GMM
can be an efficient environment modelling method for versa-
tile navigation tasks, varying from occupancy analysis [20] to
exploration [21].

Motivated by the success of these works, we assume the
visual structure is subject to a probabilistic distribution over
the Euclidean space, and formulate the constraints in a least-
squares manner. We further show how our method works in
a vision-dominant localization system other than those based
on ranging sensors [15]–[21]. Our method tightly-couples the
structure factors with temporal visual factors, and 6-DoF motion
parameters are fully recovered without IMU.

III. METHOD

The flowchart of our system is shown in Fig. 2, where we
train the GMM offline from a given dense structure (e.g., point
cloud). Every input image is first tracked with a motion-only
BA. Then when a keyframe is selected, it will be utilized in
the localization module. For every keyframe, we project the
GMM map back to the image coordinate. Then local features are
associated with map elements, and its corresponding landmark
position from triangulation is refined simultaneously. The joint
BA optimizes the keyframe poses and the local structure, yield-
ing a drift-less visual localization system. The whole system
introduces structural constraints and seamlessly maintains the
global consistency.

A. Notations

Throughout the paper, the following notation is used: bold
uppercase for the matrices , e.g.,R, bold lowercase for the vector
e.g., x, and light lower case for the scalar, e.g., θ.

Given a point x ∈ Rn and a Gaussian distribution N (μ,Σ),
μ ∈ Rn, Σ ∈ Rn×n, Mahalanobis distance ‖x− μ‖Σ = (x−
μ)TΣ−1(x− μ) is used to measure the distance from the
point to the distribution. For measuring the distance between
two Gaussian components p(x|G1) = N (μ1,Σ1), p(x|G2) =
N (μ2,Σ2) in Rn, we use the Bhattacharyya Coefficient (BC),
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Fig. 2. The flowchart of the proposed system. The model is processed offline.
After the visual tracking, the Gaussian components are projected to the image
coordinate (shown as red ellipses). In the association step, candidates are first
searched in 2-D. Then with the constraints from the map, the correspondence
between the local measurement and map component is established (shown in the
same color). The back-end optimization is a combination of hybrid constraints
(shown in colors) and pure visual constraints (shown in grey).

which is given by:

distn(G1,G2) =
1

8
‖μ1 − μ2‖Σ +

1

2
ln

(
detΣ√

detΣ1 detΣ2

)
,

with Σ = (Σ1 +Σ2)/2.
We denote the image collected at the k-th time as Ik and

the corresponding frame as Fk. For Fk, the rigid transform
Tk ∈ SE(3) maps a 3-D point xi ∈ R3 in the world frame Fw

to Fk using cxk = Rkpi + tk, where Tk = [Rk|tk]. Rk and
tk are the rotational and translational components ofTk, respec-
tively. Accordingly, cxk denotes a 3-D point in Fk. The camera
pose,Tk is parameterized as ξk ∈ se(3). We useπ : R3 → R2 to
denote the projection function: u = π(cxk) = Kcxk, where u
is the projected pixel location in the image coordinate. K stands
for the intrinsic matrix.

B. Problem Formulation

The state, measurement and prior are defined as follows:
1) State: X = C ∪ L, whereC = {ξ0, ξ1 . . . ξm} is the set of

keyframe poses in the local covisible map. L = {x0,x1 . . .xn}
is the set of all the landmark positions. While X stands for
total states to be optimized, we further denote the set of fixed
keyframe poses as C′ = {ξ′0, ξ′1 . . . ξ′k}, which serves as the
prior information in the optimization.

2) Measurement: The measurements consist of 2-D loca-
tions of landmarks observed in the pixel coordinate by the differ-
ent keyframes, denoted as Z .

= {uik}(i,k)∈K. where uik is the
pixel coordinate of the i-th landmark observed by k-th keyframe
and K is the set of all the visual associations. Similarly, we
haveZ′ .

= {uik}(i,k)∈K′ , whereZ′ represents the measurements
associating prior keyframes with active landmarks.

3) Prior Map: The prior map is denoted as M =
{G0,G1, . . .Gh}, where Gj ∈ M stands for an individual map
component (e.g., a voxel in a NDT-based method or a Gaussian
distribution for GMMs).

The problem of visual localization against prior map can
be formulated as a Maximum A Posteriori (MAP). Instead of
using pure visual or visual-inertial information, we introduce the
constraints of the pre-built structure, which can be interpreted
as defining a prior distribution of the observed visual structure,
given as: p(L|M). This leads the posterior to be factorized as
follows:

p(X|Z,Z′,M, C′) ∝ p(Z|X ) · p(L|M) · p(Z′|C′,L)p(C)
=

∏
i,j

p(ui,j |ξi,xj)

︸ ︷︷ ︸
visual factors

·
∏
i,j

p(xi|Gj)

︸ ︷︷ ︸
structure factors

·
∏
i,j

p(u′
i,j |ξ′i,xj)

∏
i

p(ξi)

︸ ︷︷ ︸
prior factors

For the abundant advantages of GMMs as mentioned above,
here we model the prior structure as a generic GMM with
anisotropic covariances:

p(L|M) =

N∑
j=0

wjp(xi|Gj) =

N∑
j=0

wjN (xi;μj ,Σj). (1)

In other words, any landmark xi should be subject to a prior
distribution and its likelihood is given by p(xi|Gj) ∝ exp(‖xi −
μj‖Σj

).
Assuming the noise of measurements is zero-mean Gaussian,

maximizing the posterior is equivalent to a least-squares opti-
mization problem, with the objective function as follows:

Etotal = Evisual + Estructure + Eprior, (2)

where different residual terms are defined in the following
section.

C. Residual Definitions

1) Visual Factors: Our system follows an indirect formula-
tion of the visual residual, which is also known as the reprojec-
tion error:

eproj(xi, ξk) = uik − π(Rkxi + tk), (3)

where uik is assumed with a Gaussian noise N (0,Σik), Σik =
σ2
ikI2×2 and σik is the variance predefined for the local measure-

ment. Given the association set K, visual factor Evisual is given
as:

Evisual =
∑

(i,k)∈K
ρ (‖eproj (xi, ξk) ‖Σik

) , (4)

where ρ(·) is the Huber norm for the robustness in the optimiza-
tion.

2) Structure Factors: For a landmark xi associated with
a Gaussian component Gj , the residual term can be derived
from the Mahalanobis estimation. Given the likelihood of xi as
p(xi|Gj), maximizing the log-likelihood is equivalent to mini-
mizing the Mahalanobis distance between xi and Gj , yielding
the residual term:

estr = ‖xi − μj‖Σj
. (5)

However, to make all the variables bundle-adjusted, calcu-
lating the likelihood or establishing constraints over all the
components as probabilistic registration methods [16] is not
applicable. Additionally, constraining the landmark position
with a 3-D component can somehow be “misleading”, as it
attempts to minimize the distance from the landmark to the
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mean. Inspired by [18], where the authors propose to decompose
the anisotropic covariance for accelerating the Mahalanobis
estimation, we introduce a hybrid objective function based on
the degeneration of different components. As a real-world scene
structure is generally constructed by planars, we observe that in
a GMM with anisotropic variance directly fitted from a dense
point cloud, many components tend to degenerate. Therefore,
we detect the degeneration of 3-D Gaussian components in the
preprocessing step.

Decomposing the covariance via SVD gives Σj = USVT .
For U = [e1, e2, e3], we further let e′3 = e1 × e2 just to ensure
it meets the right-hand rule as commonly used in our system,
and denoteR = [e1, e2, e

′
3]. Due to the orthonormality between

different eigenbases ei, we have R ∈ SO(3). As the covariance
matrix Σj is symmetric and positive definite, we have U ≡ V.
Accordingly, the factorization of Σj is rewritten as:

Σj = RSRT ,S = diag(λ1, λ2, λ3),R = [e1, e2, e
′
3], (6)

where S = diag(λ1, λ2, λ3), λ1 < λ2 < λ3 is the diagonal ma-
trix of singular values. In a geometric interpretation, R is equiv-
alent to the rotation part of the transform from the component
coordinate to the world coordinate. In addition a singular value
λi also stands for the scaling factor according to the data distri-
bution along ei. A small λ1 indicatesΣj tends to be degenerated
in rank, or in a geometric interpretation, the component is more
similar to a planar. We use 1(Gj) to indicate whether the i-th
component is degenerated or not, given by:

1(Gj) =

{
1 λ1 
 λ2 < λ3

0 otherwise
. (7)

For the degenerated case, we consider the residual term as
follows:

estr_deg(xi,Gj) = ‖ej1(xi − μj)‖Σstr , (8)

where Σstr = σ2
strI3×3, σstr is the pre-defined variance of struc-

ture constraints, which can also be interpreted as a coupling
factor for balancing the visual and structural constraints. The
effect of σstr is further discussed in Section IV-C. Intuitively, this
formulation can be explained as point-to-plane distances, which
is efficient for computation and provides a more geometrically
explainable formulation of the constraint. Denote the association
set as S , the total structure objective function is given by:

Estructure =
∑

(i,j)∈S
(1(Gj)estr_deg(xi,Gj)

+ (1− 1(Gj)) estr(xi,Gj)) (9)

3) Prior Factors: In addition to fixed keyframe poses in some
visual factors, here we discuss how we deal with the initial
estimation. As the proposed method does not aim to solve a
global retrieval problem, we consider a prior pose is given at
the initialization of the system. In detail, two conditions are
discussed:
� if an accurate pose is given (e.g., re-localization from

feature map), we set it to the first frame and fix it in the
optimization.

� if an initial guess is provided (e.g., from manually as-
signed), a prior term for constraining the initial pose is
added to the optimization, defined as:

einit = log(exp(ξ∧init)
−1 exp

(
ξ∧c0

)
)∨, (10)

Fig. 3. An example of the GMM projection from the map to the image at
the same viewpoint, colored by depth. The filtered result generally has fewer
mis-projected components.

where ξinit and ξc0 are the preset initial guess and the actual
pose for the initial keyframe.

D. Projection of the GMM Map

When a keyframe is created, we assume its pose ξk is
tracked and local observations Ok

.
= {uik}i=1...n are detected.

To associate the map elements with local observations, we first
project the Gaussian components to the image coordinates. With
the camera pose ξk recovered by the tracking frontend, this
projection process can be regarded as a nonlinear transformation
of the Gaussian components. Similar discussion can be found in
[19], [22]. As the transformation of a point in 3-D Euclidean
space is a linear operation, for an individual component Gj ,
p(xi|Gj) = N (μj ,Σj), the density function under Fk is:

p(ckxi|cGj) = N (Rkμj + tk,RkΣjR
T
k ), (11)

while the projection functionπ(·) is nonlinear due to the implicit
normalization of the point under image coordinate. A first-order
approximation gives:

p(u|pGj) = N
(
π
(
cμj

)
, Jπ|cµj

RkΣjR
T
k J

T
π |cµj

)
(12)

where we denote a 2-D Gaussian component projected from
Gj in the pixel coordinate as pGj . cμj = Rkμj + tk is the
transformed mean vector and Jπ is the Jacobian of π(·) with
respect to cμj . An example projection result is shown in Fig. 3.

As we manually “render” the scene with CPU, to generate a
photorealistic projection result, we generally use the following
criteria to filter the projected components:
� Check if Gj lies within the image frustum by (cμj)z > 0.
� For the degenerated component, the angle between viewing

ray and ej1 (degenerated axis) of Gj is checked. If

〈tk − μj , ej1〉
‖tk − μj‖

< cos δθ,

the component is not observable by the current frame.
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� The Σ2×2 of pGj is decomposed, and if its singular value
λj1 < λj2 
 δλ, the component is considered less repre-
sentative and is therefore discarded.

� For the remainder we check the occlusion condition. For
ˆpGj = argminpGj

dist2(
pGi,

p Gj), if (cμi)z < (cμj)z , Gj

is considered a background component and is supposed to
be occluded by the foreground component.

An example filtered result is shown in Fig. 3. The whole
projection procedure for a common scene, e.g., the one shown in
Fig. 1, can be efficiently finished in several milliseconds using
CPU only.

E. Structure Optimization and Association

The complete method for associate local observations with
map elements is shown in Alg. 1. Given a keypoint uik that can
be successfully triangulated either from temporal or static stereo,
we select k-nearest 2-D Gaussian components as association
candidates, from the set of current projection results P , where
the distance metric defined by ‖uik − μj‖Σj

. This gives the
candidate set Pi

.
= {pGj}, |Pi| = k (line 1). We then optimize

the newly generated landmark position and find the best-fit
component (line 2-9). With the triangulated position xi, we
iterate over Pi, and define a sub-problem for optimizing xi:

x̂i = argmin
xi

(∑
k′

‖eproj (xi, ξk′) ‖Σik′ + estr (xi,Gj)

)
.

(13)
After the optimization, visual residuals are checked to discard
outliers. The threshold for visual factors th is determined byX 2-
test, where if the eproj > th, we consider this association invalid
(line 4-8). Assuming that a valid association is found, we denote
the optimal position with the constraint from pGj as x̂j

i . We
select the final association ˆpGj leading minimum reprojection
error (line 7):

ˆpGj = arg min
pGj∈Pi

∑
k′

‖eproj

(
x̂j
i , ξk′

)
‖Σik′ .

As our method in Section III-D still can not guarantee the
map is projected perfectly, mis-projection of components are
inevitable. We further verify the likelihood of x̂i and then follow
an ICP scheme to re-generate the association if the likelihood
is low (line 10-20). The procedure can be decomposed into the
following two procedures:

1) Given x̂i, compute log(p(x̂i|Gh)) for Gh ∈ n(Ĝj). n(Ĝj)

stands for the set of Ĝj’s neighbours, with the distance
defined as dist3(Ĝj ,Gh). Then the component with max-
imum likelihood is assigned to Ĝj .

2) Recompute (13) to get x̂i.
We iterate until the likelihood of xi given Ĝj is the largest

compared to all its neighbours. In this way, the final association
not only minimize the reprojection error, but also maximize the
likelihood of the landmark.

F. Joint Optimization

With the map constraints, (2) is minimized to solve both
keyframe poses and local structure. Similar to [3], the problem
is solved by the Levenberg-Marquardt method, which gives a

system as follows:

H = JTWJ+ εI, b = −JTWr, (14)

where J and r are the stacked Jacobians and residuals, respec-
tively.W is the weight matrix from stacking the inverse of the co-
variance for different residual terms as in Section III-C. During
the optimization, we further use X 2-test with 95% confidence to
filter outliers and perform another round of optimizations with
the outliers discarded.

G. Other Implementation Details

1) Map Processing: We train the GMM from the raw point
cloud. The number of total components varies according to dif-
ferent scenes. When initializing the localization system, we load
the offline constructed GMM map, decompose the covariance
of all the components and check whether they are degenerated.
Neighbourhoods are also defined in this procedure.

2) Visual Tracking: Here we follow ORB-SLAM2 [3], an
indirect visual SLAM method for camera tracking. Briefly, the
frontend extracts ORB features [24] in the incoming frame
and associates them with landmarks observed in the previous
frame and map. Then, the current camera pose is recovered in a
Perspective-n-Point (PnP) scheme. After the initial tracking, the
frontend decides whether to insert a keyframe into the backend
mainly based on the current tracking quality. The proposed
method above happens right after a keyframe is inserted into
the backend.

3) Backend Management: Our localization module main-
tains a local covisibility map, keeps merging similar landmarks
and deleting redundant keyframes. For the details of frontend
tracking and backend management, we refer the readers to [3].
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TABLE I
LEFT: EVALUATION OF THE LOCALIZATION PERFORMANCE ON THE EUROC MAV DATASET. WE REPORT AVERAGE ABSOLUTE TRAJECTORY ERROR(ATE) (M) [23]

FOR 5 RUNS ON EUROC MAV DATASET. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED AND THE metric STRIKED OUT STANDS FOR A PARTIAL

TRAJECTORY. FOR HFNET, (·) AFTER ATE IS THE TOTAL NUMBER OF FAILURE FRAMES. RIGHT: SETTINGS OF THE DIFFERENT METHODS IN THE EXPERIMENT

IV. EXPERIMENTAL RESULTS

We validate the proposed system on the public EuRoC MAV
dataset [25]. It provides sequences of stereo images and IMU
data streams in three different indoor scenes, with extrinsic
calibration, ground truth trajectories and dense reconstruction
for two Vicon room configurations (denoted as V1, V2). The
main advantages of this dataset are two-fold: first, six sequences
including dense scene structures, which supports both cross-
modality localization and reconstruction evaluation; second,
the aggressive motions and inconsistent illuminations bringing
significant challenges for the visual state estimation.

We first evaluate the general localization performance against
several state-of-the-art visual or visual-inertial state estimators.
Then, we dive into how introducing structure constraints can
improve localization performance through the visual structure
evaluation, which is followed by a parameter study. Finally, the
timing results are provided to prove the real-time performance.
All the experiments are performed using a desktop computer
equipped with an Intel i7-8700K CPU and 16 GB RAM.

A. General Localization Performance

We compare our method, GMMLoc, with 5 state-of-the-art vi-
sual state estimators: our previous work DSL [10], MSCKF with
pre-built map (w/ map) [9], VINS-Mono [26], ORB-SLAM2
[13] and HFNet [27]. Among all the methods, GMMLoc, DSL,
and MSCKF (w/ map) are similar in that they explicitly in-
troduce the prior-map constraints into a visual state estima-
tion, which we categorize as dense structure-based localization
methods. On the contrary, HFNet is one the state-of-the-art
sparse structure-based localization methods, which follows a
SfM-then-localization pipeline. We also compare the perfor-
mance of VINS-Mono and ORB-SLAM2, the state-of-the-art
VIO/VSLAM methods, following the evaluation protocol in [9],
[10]. We further list the settings of different methods in Tab. I.
Additionally, to show how the proposed method can improve the
estimation accuracy of pure visual odometry, detecting the loop-
closure from the image similarity is disabled in the comparison.
To evaluate HFNet, we first reconstruct the sparse feature map
from SfM on one sequence and then perform localization on the
other two under the same scene configuration. We found that
the images captured in two medium sequences are of the best
quality and thus provide a better SfM model for localization.

The localization results are presented in Table I. Generally, our
method achieves accurate estimation results compared to other
methods. A failure case occurs on sequence V203, where due to
the lack of more than 300 frames of the left camera, the indirect
frontend in our system, which is similar to our baseline method

Fig. 4. Qualitative comparison of the estimated trajectory and ground truth on
sequences V102 (top left), V103 (top right), V201 (bottom left), V202 (bottom
right).

ORB-SLAM2, cannot manage to track consistently. Therefore,
only the accuracy of a partial trajectory is reported. However,
we still observe that our method corrects the tracking drift with
structure constraints.

Compared to our previous work DSL, our system achieves a
comparable localization accuracy. It is also notable that perfor-
mance degradation occurs mainly on the difficult sequences. The
reasons are two-fold: first, both methods rely on the projection
procedure for the association, thus the tracking accuracy of the
frontend has a significant effect on the association precision;
second, our method aims to make a trade-off between accu-
racy and efficiency, as a consequence of which modelling the
scene structure as a GMM does lose some of the structural
information. In addition, our method outperforms MSCKF (w/
map) in localization accuracy, while we do not densely recon-
struct the scene structure from multiview stereo. Compared to
VINS-Mono or ORB-SLAM2, which uses visual-inertial or pure
visual information, our method introduces structural constraints
and generally improves the localization performance. We also
provide some qualitative results in Fig. 4. As shown in the figure,
the localization with temporal visual constraints generally has
no drift and even the maximum localization error is within an
acceptable range (10-20 cm as visualized in the figure).

B. Evaluations of the Local Reconstruction

We evaluate the local structure reconstruction results of our
method and ORB-SLAM2 using the ground truth 3-D model
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Fig. 5. Evaluation of the visual structure accuracy estimated by Ours and
ORB-SLAM2 on different sequences of V1 (left) and V2 (right).

TABLE II
AVERAGE ROOT MEAN SQUARE ERROR (RMSE) (CM) OF THE LOCAL

RECONSTRUCTION, LOWER THE BETTER (↓)

provided by the EuRoC Mav dataset. The sparse feature maps
generated by the state estimators are aligned and transformed
under the map coordinate. The error metric is defined as the
RMSE of distances to the nearest neighborhood. A similar
evaluation process can be found in [28]. Five sequences on which
both methods succeed are selected for the evaluation.

We present the ratio of inliers given an error threshold in
Fig. 5 and report the metric results in Table II. As shown in
both Fig. 5 and Table II, our method recovers a more accurate
local structure, which in turn guarantees the accuracy of local
trajectory estimation. Noticeably, as the sequence becomes more
challenging, the drawback of pure VO occurs. The estimation
drift of VO is not negligible and it can not maintain a globally
consistent visual structure. In addition, even under V101 where
both methods achieves similar localization performances, our
method still outperforms the baseline in terms of structure
accuracy. This indicates that introducing the scene structure can
also help our system filter the outliers out in two aspects: first,
the poses are more accurate in our system, therefore outliers with
a larger error in the visual factors, can be more easily detected;
second, the BA is constrained by the structure factors, thus the
consistency of the visual structure is always maintained.

C. Effectiveness of the Structure Factor

In this section, we further study how the parameters cou-
pling the structure constraints with visual constraints influence
the localization performance. For different values of σstr, we
perform 5 Monte Carlo runs on each sequence, and report the
average ATE with variances in Fig. 6. By increasing σstr, the
average localization error approaches to that of the baseline
method. This provides an alternative view of the improvement in
the localization accuracy compared to pure visual odometry by
introducing structure constraints. Especially when σstr = 1 m,
there is only a trivial improvement to the localization accuracy
(even very close to that of the baseline on V201). Note that
if we simply discard the structure constraints, the performance
should be the same with the baseline. As σstr also represents how

Fig. 6. Parameter study on σstr. Localization error (rectangular bar) with
variances (grey error bar) w.r.t σstr on 4 sequences are shown. The average
ATE of ORB-SLAM2 is shown as dashed lines. Error on different sequences
are distinguished by different colors.

TABLE III
TIMINGS FOR THE DIFFERENT MODULES OF GMMLOC, ARE ALL TESTED IN A

SINGLE THREAD. THE OVERHEADS COMPARED TO PURE VISUAL ODOMETRY

ARE HIGHLIGHTED. NOTE THAT THE MAP PREPROCESSING IS PERFORMED

ONLY AT THE START OF THE SYSTEM

the optimization weighs structure constraints, we observe that
generally, with a low σstr value (in our experiment, 0.05–0.1 m),
the estimation can be more consistent over different runs (shown
as low variances in Fig. 6).

D. Runtime Analysis

To demonstrate the real-time capability of the proposed
method, we report the runtime analysis in Table III. As men-
tioned in Section I, the projection and association can be rather
efficient and the only trivial overhead is introduced to the
vision-only backend. Based on the evaluation, it only costs
around 10ms, which takes up to around 1/40 in the backend
optimization. In addition, as such an overhead only occurs in the
backend, the time cost can be even less than 1ms if averaged by
the frame rate. This gives solid support for the previous claim
that our system is more efficient and has the potential to be
applied to embedded platforms.

As reported in MSCKF (w/ map) [9] and DSL [10], MSCKF
(w/ map) performs dense reconstruction and NDT-based lo-
cal registration to localize the camera, which achieves a fre-
quency of around 1.25Hz, while DSL utilizes a modern GPU
to render the scene structure for the data association. On the
contrary, the proposed method projects the global map ele-
ments and associates them with local observations in a flash,
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using only a CPU without multi-threading. Yet, our method
still exhibits the capability of estimating an accurate trajectory,
indicating that it makes a good trade-off between accuracy and
efficiency.

V. CONCLUSION

In this letter, we presented a structure-consistent visual local-
ization method using the GMM as a map representation. Given a
camera pose tracked by the indirect front-end, the GMM map is
projected back via a non-linear Gaussian transform, and several
criteria are applied for a photorealistic projection. Association
is performed in three hierarchical steps, searching candidates,
finding the component to minimize the reprojection error, and
further verify the association with likelihood. In the mean-
time, the landmark position from triangulation is refined with
structural constraints. Finally, the back-end jointly optimizes
the visual structure, and the keyframe poses. The experimental
results demonstrated the effectiveness of the proposed method.
As our method balances accuracy and efficiency well, we believe
it has the potential to be applied to onboard platforms in the
future.

As the next step, we plan to investigate how to initialize the
depth of keypoints from a GMM projection. Additionally, we
believe it is also worthy of studying how to introduce some
high-level information like semantics to boost the system. Last
but not least, introducing IMU factors for a smoother and more
robust pose estimation is also promising for increasing the
general localization performance.
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