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High-Speed Autonomous Drifting With Deep
Reinforcement Learning
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Abstract—Drifting is a complicated task for autonomous vehicle
control. Most traditional methods in this area are based on motion
equations derived by the understanding of vehicle dynamics, which
is difficult to be modeled precisely. We propose a robust drift
controller without explicit motion equations, which is based on
the latest model-free deep reinforcement learning algorithm soft
actor-critic. The drift control problem is formulated as a trajec-
tory following task, where the error-based state and reward are
designed. After being trained on tracks with different levels of
difficulty, our controller is capable of making the vehicle drift
through various sharp corners quickly and stably in the unseen
map. The proposed controller is further shown to have excellent
generalization ability, which can directly handle unseen vehicle
types with different physical properties, such as mass, tire friction,
etc.

Index Terms—Deep learning in robotics and automation, field
robots, motion control, deep reinforcement learning, racing car.

I. INTRODUCTION

IN MOTORSPORT of rallying, high-speed sideslip corner-
ing, known as drifting, represents an attractive vehicle control

maneuver undertaken by professional racing drivers. The slip
angle β is measured by the angle between the direction of the
heading (longitudinal axis of the vehicle) and the direction of
the velocity vector at the centre of gravity, as shown in Fig. 1(a).
In order to make a quick turn through sharp corners, skilled
drivers execute drifts by deliberately inducing deep saturation
of the rear tires by oversteering [1] or using the throttle [2],
thereby destabilising the vehicle. They then stabilise the vehicle
as it begins to spin by controlling it under a high sideslip
configuration (up to 40 degrees [3]). Vehicle instability and
corresponding control difficulty both increase as the sideslip
angle increases. Therefore, drifting is a challenging control
technique to operate the vehicle efficiently and safely beyond its
handling limits. Compared with the normal cornering in which
slipping is usually avoided by lowering the speed and making
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Fig. 1. Comparison between drifting and normal driving through a corner.
A drift car usually has a large slip angle β with saturated rear tires caused by
oversteering, which is often evidenced by large amounts of tire smoke.

gentle turns (Fig. 1(b)), high-speed drifting techniques can help
reduce the lap time during racing [4]–[7].

The fact that racing drivers deliberately drift through sharp
corners indicates that there is a lot of knowledge about agile
control to be learned. During drifting, a series of high-frequency
decisions like steering and throttle should be executed precisely
and safely. Therefore, by studying drift behaviors, we can design
controllers which fully exploit vehicle dynamics to reduce lap
time with high-speed sideslip cornering for racing games. The
results could further contribute to the understanding of aggres-
sive driving techniques and extend the operating envelope for
autonomous vehicles.

Most of the previous works on drift control are based on
the understanding of vehicle dynamics [8]–[12], including tire
forces and moments generated by the wheels. Then models with
varying fidelities and explicit motion equations are utilized to
develop the required controllers by classical, adaptive or optimal
control methods. However, in these methods, tire parameters
such as longitudinal stiffness at different operating points have
to be identified in advance, which is extremely complicated and
costly [3]. It is also not easy to accurately derive the entire vehicle
dynamics, because some parts of the system are hard to model,
and exceeding the handling limits of these models could lead to
strong input coupling and sideslip instability [8].

The aforementioned limitations motivate the exploration of
strategies to agilely control the drifting vehicles without tire
models or explicit motion equations. It is a perfect use case
for the learning-based methods, especially model-free deep
reinforcement learning (RL). Instead of relying on the human
understanding of the world to design controllers, model-free
deep RL methods learn the optimal policy by interacting with the
environment. Prior learning-based works on autonomous drift-
ing [6], [13] mostly consider sustained drift by stabilizing the
vehicle states about a single drift equilibrium (e.g., steady state
circular drift), which is straightforward but not practical. Thus, a
novel learning-based method to realize high-speed transient drift
by tracking a set of non-steady drift states (e.g., drift cornering)
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Fig. 2. State variables of the vehicle (left) and the control loop of our deep RL-based method (right). The steering angle is δ. The heading angle ψ is defined as
the angle between the direction of the heading and the direction of the world-frame x. The forward and side velocities of the vehicle are vx and vy respectively,
with v being the total velocity. The angle between the direction of the heading and the direction of v is called the slip angle β. For the control loop, the deep
RL-Controller receives observations from the neighboring reference trajectory and the vehicle state. Then it produces an action composed of the steering angle and
throttle to operate the simulated car. Finally, the environment feeds back the updated vehicle state and the reference trajectory, to be utilized in the next control step.

is discussed in this paper. The main contributions of this paper
are as follows.
� We design a closed-loop controller based on model-free

deep RL to control front-wheel drive (FWD) vehicles to
drive at high speed (80–128 km/h), and to drift through
sharp corners quickly and stably following a reference
trajectory, as shown in Fig. 2.

� We evaluate the proposed controller on various environ-
mental configurations (corner shapes, vehicle types/mass
and tire friction) and show its notable generalization ability.

� We open source our code for benchmark tests and present
a dataset for future studies on autonomous drifting. The
dataset contains seven racing maps with reference drift
trajectories.1

II. RELATED WORK

A. Reinforcement Learning Algorithms

Reinforcement learning is an area of machine learning con-
cerning how agents should take actions to maximize the sum of
expected future rewards. The action (at) is taken according to a
policy π : st → at, where st is the current state. The policy is
then evaluated and updated through repeated interactions with
the environment by observing the next state (st+1) and the
received reward (rt).

RL algorithms are divided into model-based and model-free
types. Different from model-based RL algorithms such as prob-
abilistic inference for learning control (PILCO) [14], model-free
RL eliminates the complex and costly modeling process entirely.
Combined with deep neural networks as nonlinear function
approximators, model-free RL has been applied to various chal-
lenging areas. The algorithms can be divided into value-based
and policy gradient algorithms. Value-based methods, such as
DQN [15], learn the state (or action) value function and select the
best action from a discrete space, while policy gradient methods
directly learn the optimal policy, which extend to a continuous
action space. The actor-critic framework is widely used in policy
gradient methods. Based on this framework, Lillicrap et al. [16]
propose deep deterministic policy gradients (DDPG) with an
off-policy learning strategy, where the previous experience can
be used with a memory replay buffer for better sample efficiency.

1[Online]. Available: https://sites.google.com/view/autonomous-drifting-
with-drl/

However, this method is difficult to converge due to the limited
exploration ability caused by its deterministic character. To
improve the convergence ability and avoid the high sample com-
plexity, one of the leading state-of-the-art methods called soft
actor-critic (SAC)[17] is proposed. It learns a stochastic actor
with an off-policy strategy, which ensures sufficient exploration
and efficiency for complex tasks.

B. Drifting Control Approaches

1) Traditional Methods: Different levels of model fidelity
depicting the vehicle dynamics have been used in prior works for
the drift controller design. A two-state single-track model is used
by Voser et al. [2] to understand and control high sideslip drift
maneuvers of road vehicles. Zubov et al. [1] apply a more-refined
three-state single-track model with tire parameters to realize a
controller stabilizing the all-wheel drive (AWD) car around an
equilibrium state in the Speed Dreams Simulator.

Although these methods have been proposed to realize steady-
state drift, transient drift is still an open problem for model-based
methods, mainly due to the complex dynamics while drifting.
Velenis et al. [11] introduce a bicycle model with suspension
dynamics and apply different optimization cost functions to
investigate drift cornering behaviors, which is validated in the
simulation. For more complex trajectories, Goh et al. [8] use
the rotation rate for tracking the path and yaw acceleration for
stabilizing the sideslip, and realize automated drifting along an
8-shaped trajectory.

These traditional drift control methods rely on the knowl-
edge of tire or road forces, which cannot be known precisely
due to the real-world environmental complexity. In addition,
inaccuracies in these parameters will lead to poor control
performance.

2) Learning-Based Methods: Cutler et al. [13] introduce a
framework that combines simple and complex simulators with
a real-world remote-controlled car to realize a steady-state drift
with constant sideways velocity, in which a model-based RL
algorithm, PILCO, is adopted. Bhattacharjee et al. [6] also utilize
PILCO to realize sustained drift for a simple car in the Gazebo
simulator. Acosta et al. [3] propose a hybrid structure formed
by the model predictive controller (MPC) and neural networks
(NNs) to achieve drifting along a wide range of road radii and slip
angles in the simulation. The NNs are used to provide reference
parameters (e.g., tire parameters) to the MPC, which are trained
via supervised learning.
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Fig. 3. Seven maps are designed for the drifting task. The difficulty of driving increases from (a) to (g). (a–f) are for training and (g) is for evaluation.

Our work differs from the aforementioned works in several
major ways. First, we adopt SAC, the state-of-the-art model-free
deep RL algorithm, to train a closed-loop drift controller. To
the best of the authors knowledge, this is the first work to
achieve transient drift with deep RL. Second, our drift controller
generalizes well on various road structures, tire friction and
vehicle types, which are key factors for controller design but
have been neglected by prior works in this field.

III. METHODOLOGY

A. Formulation

We formulate the drift control problem as a trajectory follow-
ing task. The goal is to control the vehicle to follow a trajectory at
high speed (>80 km/h) and drift through manifold corners with
large sideslip angles (>20◦), like a professional racing driver.
We design our controller with SAC and use CARLA [18] for
training and validation. CARLA is an open-source simulator
providing a high-fidelity dynamic world and different vehicles
of realistic physics.

1) Map Generation: Seven maps (Fig. 3) with various levels
of difficulty are designed for the drifting task, for which we refer
to the tracks of a racing game named PopKart [19]. These are
generated by RoadRunner [20], a road and environment creation
software for automotive simulation.

2) Trajectory Generation: For a specific environment, we
aim to provide our drift controller with a candidate trajectory
to follow. However, the prior works from which to generate
reference drift trajectories [8], [9] are based on simplified vehicle
models, which are rough approximations of the real physics. To
better train and evaluate our controller, more suitable trajectories
are needed. To this end, we invite an experienced driver to
operate the car with steering wheel and pedals (Logitech G920)
on different maps and record the corresponding trajectories. The
principle is to drive as fast as possible and use drift techniques for
cornering sharp bends. The collected data contains the vehicle
world location, heading angles, body-frame velocities and slip
angles, to provide reference states for training and evaluation.

B. RL-Based Drift Controller

1) State Variables: The state variables of the vehicle include
steering angle δ, throttle τ , forward and side velocities (vx,
vy), total velocity v, side slip angle β and heading angle ψ,
as depicted in Fig. 2. For an arbitrary location of the vehicle,
we adopt the vector field guidance (VFG) [21] to determine the
desired heading angleψd. Fig. 4 demonstrates a VFG for a linear
path and related error variables, which are cross track error ey
and heading angle error eψ . The objective of the constructed
vector field is that when ey is small, ψd is close to the direction

Fig. 4. Vector field guidance (VFG) for drift control. ey is the cross track error,
defined as the perpendicular distance of the vehicle from the reference track. eψ
is the heading angle error, which is the difference between the heading angle of
the vehicle and the desired heading angle provided by VFG.

of the reference trajectoryψref . As ey increases, their difference
increases as well:

ψd = dψ∞ 2

π
tan−1 (key) + ψref , (1)

where d = 1 if the vehicle is on the west of the reference path,
or else d = −1. k is a positive constant that influences the rate
of the transition from (ψref ± ψ∞) to ψref . Large values of k
result in short and abrupt transitions, while small values cause
long and smooth transitions. In this work, we choose k = 0.1.
ψ∞ is the maximum deviation between ψd and ψref , which is
set to 90◦.

2) State Space: Based on the state variables introduced
above, the state space s ∈ S is defined as (2),

S = {δ, τ, ey, ėy, eψ, ėψ, eβ , ėβ , evx, ėvx, evy, ėvy, T } , (2)

where T contains ten (x, y) positions and slip angles in the
reference trajectory ahead. Therefore, the dimension of S is
42. eβ is the slip angle difference between the vehicle and the
reference trajectory. evx and evy is the error of the forward
and side velocity, respectively. Moreover, time derivatives of
the error variables, such as ėy , are included to provide temporal
information to the controller [22]. We also define the terminal
state with an endFlag. When the vehicle is in collision with
barriers, arrives at the destination or is over fifteen meters away
from the track, endFlag becomes true and the current state
changes to terminal state sT .

3) Action Space: The continuous action space a ∈ A is de-
fined as (3),

A = {δ, τ} . (3)

In CARLA, the steering angle δ and throttle τ is normalized
to [−1, 1] and [0, 1], respectively. Since the vehicle is expected
to drive at high speed, we further limit the range of the throttle to
[0.6, 1] to prevent slow driving and improve training efficiency.
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Additionally, according to the control test in CARLA, high-
speed vehicles are prone to rollover if large steering angles are
applied. Therefore, the steering is limited to a smaller range of
[−0.8, 0.8] to prevent rollover.

Perot et al. [23] successfully used RL to control a simulated
racing car. However, we observe a shaky control output in their
demonstrated video. To avoid this phenomenon, we impose
continuity in the action (at), by constraining the change of output
with the deployed action in the previous step (at−1). The action
smoothing strategy is

at = K1a
net
t +K2at−1, (4)

where anett is the action predicted by the network with
state st. K1 and K2 are the tuning diagonal matrices to
adjust the smoothing effect. The larger the value of K2,
the more similar at and at−1, and the smoother the cor-
responding control effect. Note that Ki(11) influences the
steering angle and Ki(22) influences the throttle. We empir-
ically select the value of [Ki(11),Ki(22)] from a range of
{[0.1, 0.9], [0.3, 0.7], [0.5, 0.5], [0.7, 0.3], [0.9, 0.1]}, and finally
set K1, K2 as follows.

K1 =

[
0.1 0

0 0.3

]
, K2 =

[
0.9 0

0 0.7

]
. (5)

4) Reward Shaping: A reward function should be well de-
fined to evaluate the controller performance, based on the goal
of high-speed drifting through corners with low related errors
(ey, eψ, eβ). Therefore, we first design some partial rewards
rey , reψ , reβ as (6), and illustrate them in Fig. 5.

rey = e−k1ey

reψ , reβ = f(x) =

⎧⎪⎪⎨
⎪⎪⎩

e−k2|x| |x| < 90◦

−e−k2(180◦−x) x ≥ 90◦

−e−k2(180◦+x) x ≤ −90◦

(6)

Note that reψ and reβ have the same computational formulae,
which is denoted as f(x), with x representing eψ or eβ . k1 and
k2 are selected as 0.5 and 0.1. The total reward is defined as (7),
which is the product of the vehicle speed and the weighted sum

Fig. 5. The partial rewards designed for vehicle drift control. The rewards
reach a maximum value when the corresponding error is equal to 0, and decrease
as the error increases. When the course angle error eψ is larger than 90◦, reψ
become negative to further indicate a bad control command and prevent the
vehicle from driving in the opposite direction.

Fig. 6. SAC network structures. The instructions in every layer indicate the
network layer type, output channel dimension and activation function. Linear
here means no activation functions are used and Dense means a fully connected
neural network.

of partial rewards:

r = v
(
keyrey + keψreψ + keβreβ

)
. (7)

Speed factor v is used to stimulate the vehicle to drive fast.
If v is smaller than 6 m/s, the total reward is decreased by
half as a punishment; otherwise, the reward is the original
product. The weight variables [key , keψ , keβ ] are set to [40,
40, 20]. We empirically select these values from a range of
{[4, 4, 2], [20, 20, 20], [40, 40, 20], [400, 400, 200]}.

5) Soft Actor-Critic: We choose SAC as our training algo-
rithm, which optimizes a stochastic policy by maximizing the
trade-off between the expected return and entropy with the off-
policy learning method. It is based on the actor-critic framework,
where the policy network is the actor, and the Q-network together
with the value network is the critic. The critic can suggest a
convergence direction for the actor to learn the optimal policy.
In our experiments, three kinds of networks, including the policy
network (πφ), value network (Vψ) and Q-networks (Qθ1 , Qθ2 )
are learned. The different network structures are presented in
Fig. 6. In particular, two Q-networks with the same architecture
are trained independently as the clipped double-Q trick, which
can speed up training in this hard task, and the value network
is used to stabilize the training. For more detailed information
about the algorithm, we refer the reader to [17].

The complete training algorithm is shown in Algorithm 1.
Firstly, the agent observes the current 42-dimensional state st,
which is then transferred to a 2-dimensional action at with fully-
connected layers by the policy network. The action is sampled
from the output distribution and normalized to [−1, 1] with the
tanh activation function. The sampled action is further mapped
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and smoothed to interact with the environment. When the agent
obtains the next state st+1 and reward r(st,at), the transition
(st,at, r(st,at), st+1) is stored into the replay buffer. Such in-
teraction and stored procedures are repeated during training. At
the end of the episodes, when the number of transitions is larger
than the setting threshold, networks are updated respectively
with the functions JV (ψ), JQ(θ1), JQ(θ2) and Jπ(φ), which
are the same as those defined in [17]. The whole procedure is
repeated until the optimal policy is learned.

IV. EXPERIMENTS AND DISCUSSION

A. Training setup

1) Implementation: We train our SAC controller on six maps
(Fig. 3(a–f)). Map (a) is relatively simple and is used for the first-
stage training, in which the vehicle learns some basic driving
skills such as speeding up by applying large values of throttle and
drifting through some simple corners. Maps (b–f) have different
levels of difficulty with diverse corner shapes, which are used for
further training with the pre-trained weights from map (a). The
vehicle can use the knowledge learned from map (a) and quickly
adapt to these tougher maps, to learn a more advanced drift
technique. In this stage, maps (b–f) are randomly chosen for each
training episode. In addition to the various road structures, we
also hope the controller can handle other changing conditions. To
this end, at the start of each episode, the tire friction and vehicle
mass is sampled from the range of [3.0, 4.0] and [1.7t, 1.9t]
respectively. Lower values make the vehicle more prone to slip,
thus leading to a harder control experience. We use the Adam
optimizer for training with a learning rate of 0.0003 and batch
size of 512.

2) Baselines: For comparison, we train the controller with
three other methods:
� DQN. Since it can only handle the discrete action space, we

divide the range of the steering angle evenly for 10 values
and throttle for 5 values. Thus, the number of candidate
actions is 50 without the action smoothing strategy.

� DDPG. For better performance of this method, we set
K1(11) = 0.6 and K2(11) = 0.4 in (5).

� SAC-WOS. We use SAC to train the controller but without
the action smoothing strategy.

3) Performance During Training: Fig. 7 shows the average
heading angle error and the average speed of evaluation rollouts
during training for DQN, DDPG, SAC-WOS and SAC. The results
show that all methods can learn to speed up and reduce the error
during training, and finally converge to their optimal values.
In the end, they have approximately the same heading angle
error, except for DDPG. However, SAC achieves a much higher
average velocity (80 km/h) than the baselines. This illustrates
that the SAC controller is capable of making the vehicle follow
the reference trajectory accurately as well as maintain a high
speed. In addition, it is shown that the action smoothing strategy
can improve the final performance by comparing SAC-WOS and
SAC.

B. Evaluation

To evaluate the controller performance, we select three com-
binations of tire friction (F) and vehicle mass (M) as F3.0M1.7,
F3.5M1.8 and F4.0M1.9. The test environment is an unseen
tough map (g) with various corners of angles ranging from 40◦

to 180◦.

Fig. 7. Performance curves of different algorithms during training on map
(a). The plots are averaged over 3 repeated experiments. The solid curve
corresponds to the mean, and the shaded region to the standard deviation. Note
that the DDPG controller starts to be evaluated from the 200th episode, because
the vehicle often gets stuck in circling around the start location in the early phase.

1) Performance Metrics: We adopt seven metrics to measure
the performance of different methods.
� C.T.E. and H.A.E. is the cross track error and heading

angle error, respectively.
� MAX-VEL and AVG-VEL is the maximum and average

velocity of a driving test, respectively.
� L.T. is the time to reach the destinations (the lap time).
� SMOS measures the smoothness of driving, calculated by

the rolling standard deviation of steering angles during a
driving test.

� SLIP is the maximum slip angle during a driving test. Since
larger slip angles mean larger usable state spaces beyond
the handling limits, it can indicate a more powerful drift
controller.

2) Quantitative Results: All controllers are tested four times
on map (g) and the average evaluation results are presented in
Table I. Apart from the overall performance through the whole
track, the results for driving through corners are also listed, to
give a separate analysis on drift ability. Additionally, two refer-
ence results on F3.5M1.8 from the human driver are presented
for comparison, in which HUMAN-DFT drifts through sharp
corners and HUMAN-NORM slows down and drives cautiously
through corners.

Time cost and velocity: Our SAC controller achieves the
shortest lap time in all setups, with the maximum velocity
among the four methods. In particular, the speed reaches up
to 103.71 km/h in setup F3.0M1.7, which is much higher than
DDPG (90.59 km/h) and SAC-WOS (84.02 km/h). Compared
with HUMAN-NORM, the SAC controller adopts the drifting
strategy, which achieves a much shorter lap time.

Error analysis: C.T.E. and H.A.E. indicate whether the vehi-
cle can follow the reference trajectory accurately. TheSAC-WOS
controller achieves the smallest C.T.E., but SAC is the best for
H.A.E., especially through corners. The possible reason is SAC
controls the car to drift through corners with similar slip angles
to the reference behaviors, while other methods tend to mainly
track the positions on the trajectory.
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TABLE I
QUANTITATIVE EVALUATION AND GENERALIZATION FOR DIFFERENT METHODS UNDER VARIED ENVIRONMENT SETUPS. ↑ MEANS LARGER NUMBERS ARE

BETTER, ↓ MEANS SMALLER NUMBERS ARE BETTER. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

Fig. 8. Qualitative trajectory results on map (g) based on the setup F3.5M1.8. The picture in the middle represents the overall trajectory of the human driver
(i.e., Reference) and our SAC controller. The pictures on either side depict some drift-cornering trajectories and corresponding slip angle curves from different
controllers. For further analysis of the SAC controller, we label some state information over time along these trajectories, which are velocity, moving direction
(course) and heading direction. Note that the difference between the course and the heading is the slip angle.

Drifting velocity and slip angle: We calculate the average
velocity and the largest slip angle while drifting. In all se-
tups, the SAC controller achieves the highest speed and largest
slip angles. In setup F3.5M1.8, the AVG-VEL reaches up to
79.07 km/h, which is very similar to HUMAN-DFT (79.38
km/h). In setup F3.0M1.7, the SLIP of the SAC controller
reaches up to 29.23◦, which is much higher than DQN and
SAC-WOS. On the other hand, although the DDPG and SAC-
WOS controller can generate large slip angles, their control
outputs are rather shaky, leading to velocities even lower than
HUMAN-NORM.

Driving smoothness: SMOS reflects how steady the vehicle
is while driving. Although all controllers generate larger values
of SMOS than the human driver, SAC achieves the smallest
among them.

3) Qualitative Results: Fig. 8 shows the qualitative trajectory
results on the test map (g). The SAC controller is shown to have
excellent performance in tracking the trajectory on linear paths
and most of the corners. Some mismatches may occur if the
corner angle is too small (e.g., <50◦), such as corner-1 and
corner-5. In corner-3 and corner-4 with angles of about 90◦,
the drift trajectory of our SAC controller is very similar to that
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Fig. 9. The curves of steering control command through corner-1 and corner-3
from different controllers.

Fig. 10. Vehicles used for training and testing our model.

TABLE II
VEHICLES USED FOR TRAINING AND TESTING OUR MODEL. THE VEHICLE

USED FOR TRAINING IS BOLDFACED. MOI IS THE MOMENT OF INERTIA OF THE

ENGINE AROUND THE AXIS OF ROTATION

of the reference, even though the speed at the entry of corner-3
is near 100 km/h. During the drifting process of SAC, the speed
is reduced when the vehicle drives close to the corner vertex,
resulting from the large slip angle. However, it still maintains a
high speed and accelerates quickly when leaving the corner.

Since all controllers output the largest value of throttle to
maintain a high speed, except DQN (which jumps between 0.9
and 1.0), we plot their steering curves for corner-1 and corner-3
for further comparison. These are presented in Fig. 9. It is shown
that the steering angles of the other controllers are tremendously
shaky, especially for DDPG and SAC-WOS. In contrast, the
steering angle of SAC controller concentrates in a smaller range
and is much smoother.

C. Generalization

To test the generalization ability of the proposed SAC con-
troller, we evaluate it with varied tire friction, vehicle mass and
vehicle types on map (g). Different vehicles and their physics
are shown in Fig. 10 and Table II. The performance results are
presented in Table I-Generalization.

1) Unseen Mass and Friction: We set two combinations
of unseen friction and mass on vehicle-1 as F2.6M1.6 and
F4.4M2.0. Our SAC controller can handle them without any
fine-tuning and the highest speed is more than 100 km/h. Drifting
is completed successfully and the maximum slip angle is up
to 43.27◦ for F2.6M1.6. Additionally, we test the proposed
controller using vehicle-1 with different tire friction in the front
wheels (2.8) and rear wheels (4.2). This is called DF-M1.8, since
sometimes wear conditions vary on different tires for a vehicle.
In this tough setup, our SAC controller can make the vehicle
drive through the whole map fast and smoothly. However, the
drift control performance does not meet with expectations, with
the maximum slip angle smaller than 20◦. This is caused by the
large rear tire friction, which makes it difficult for the car to slip.

2) Unseen Vehicle Types: TheSAC controller is further tested
by three other types of vehicles. Vehicle-2 is similar to Vehicle-1
but is about 0.5t lighter, Vehicle-3 has a much larger MOI and
bigger mass, and Vehicle-4 is an all-wheel drive heavy truck
with distinct physical parameters. The results show that our
SAC method achieves a notable generalization performance on
these unseen vehicles. For Vehicle-2, the highest speed is up to
128.07 km/h, and the average drift speed is 92.77 km/h, both of
which are even better than Vehicle-1 with the benefit of a smaller
mass and a more powerful engine. The same is true of Vehicle-3.
For Vehicle-4, the SAC controller is sufficiently capable of
controlling it to follow a reference trajectory precisely, but the
drift performance is not satisfactory with small slip angles and
cornering speeds, due to its heavy weight and large size. Note
that for each kind of vehicle, the referenced drift trajectories are
different in order to meet the respective physical dynamics.

3) Application Test Without Expert Reference: To evaluate
whether the proposed SAC model can be deployed in scenarios
where expert driving trajectories are not available, we further
test it by providing less information. In CARLA, the (x, y)
waypoints in the center of the road can easily be obtained, so
they are used to form a rough reference trajectory. The directions
of this trajectory ψref are derived based on its tangents for
calculating the heading angle errors eψ , and the reference slip
angles are set to zero. Accordingly, eβ , ėβ , evy and ėvy in the
state space are also set to zero. The reference forward velocities
are set to 110 km/h constant along the whole track. Based on this
setup, Vehicle-1 of F3.5M1.8 is tested on map (g) and the results
are shown in Table I-AppTest as SAC-APP. It is very interesting
that although a rough trajectory is used, the final performance is
still comparable with the SAC controller provided with accurate
expert trajectories.

Since we mainly exclude the information of slip angle here, it
can be inferred that they are dispensable for the policy execution
in our task. This phenomenon is valuable, indicating that our drift
controller could be applied to unseen tracks without generating
an accurate reference trajectory in advance. This is critical for
further real-world applications where a rough reference could
be derived online from 2D or 3D maps, which are common in
robot applications.

D. Ablation Study

We have shown above that a rough trajectory is sufficient for
the application. Therefore, can we also provide less information
during the training and achieve no degradation in the final
performance? To answer this question, a comparison experiment
on map (a) is conducted by training an additional controller



1254 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

TABLE III
QUANTITATIVE EVALUATION FOR POLICIES TRAINED WITH (SAC-42) OR WITHOUT (SAC-30) SLIP ANGLE AS GUIDANCE. ↑ MEANS LARGER NUMBERS ARE

BETTER, ↓ MEANS SMALLER NUMBERS ARE BETTER. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

excluding variables related to the slip angle in the reward and
state space (eβ , ėβ and 10 reference slip angles in T ). In this
way the state space becomes 30-dimensional. Accordingly, the
corresponding controller is named SAC-30, and SAC-42 indi-
cates the original one. These controllers are tested four times and
the average evaluation results are presented in Table III. It shows
that SAC-42 costs much less training time but achieves better
performance with a higher speed, shorter lap time and smaller
error. It also drives more smoothly than SAC-30. Generally,
accurate slip angles from expert drift trajectories are indeed
necessary in the training stage, which can improve the final
performance and the training efficiency.

V. CONCLUSION

In this paper, to realize high-speed drift control through mani-
fold corners for autonomous vehicles, we propose a closed-loop
controller based on the model-free deep RL algorithm soft actor-
critic (SAC) to control the steering angle and throttle of simulated
vehicles. The error-based state and reward are carefully designed
and an action smoothing strategy is adopted for stable control
outputs. Maps with different levels of driving difficulty are also
designed to provide training and testing environments.

After the two-stage training on six different maps, our SAC
controller is sufficiently robust against varied vehicle mass and
tire friction to drift through complex curved tracks quickly
and smoothly. In addition, its remarkable generalization perfor-
mance has been demonstrated by testing different vehicles with
diverse physical properties. Moreover, we have discussed the
necessity of slip angle information during training, and the non-
degraded performance with a rough and easy-to-access reference
trajectory during testing, which is valuable for applications.
To reduce the labor costs in generating accurate references for
training, we will explore leaning-based methods for trajectory
planning in drift scenarios, which is left to future work.
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