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Probabilistic End-to-End Vehicle Navigation in
Complex Dynamic Environments With

Multimodal Sensor Fusion
Peide Cai , Sukai Wang , Yuxiang Sun , and Ming Liu , Senior Member, IEEE

Abstract—All-day and all-weather navigation is a critical ca-
pability for autonomous driving, which requires proper reaction
to varied environmental conditions and complex agent behaviors.
Recently, with the rise of deep learning, end-to-end control for au-
tonomous vehicles has been well studied. However, most works are
solely based on visual information, which can be degraded by chal-
lenging illumination conditions such as dim light or total darkness.
In addition, they usually generate and apply deterministic control
commands without considering the uncertainties in the future. In
this letter, based on imitation learning, we propose a probabilistic
driving model with multi-perception capability utilizing the infor-
mation from the camera, lidar and radar. We further evaluate its
driving performance online on our new driving benchmark, which
includes various environmental conditions (e.g., urban and rural
areas, traffic densities, weather and times of the day) and dynamic
obstacles (e.g., vehicles, pedestrians, motorcyclists and bicyclists).
The results suggest that our proposed model outperforms baselines
and achieves excellent generalization performance in unseen envi-
ronments with heavy traffic and extreme weather.

Index Terms—Automation technologies for smart cities,
autonomous vehicle navigation, multi-modal perception,
sensorimotor learning, motion planning and control.

I. INTRODUCTION

IN THE field of autonomous driving, traditional naviga-
tion methods are commonly implemented with modular

pipelines [1], [2], which split the navigation task into individual
sub-problems, such as perception, planning and control. These
modules often rely on a multitude of engineering components to
produce reliable environmental representations, robust decisions
and safe control actions. However, since the separate modules
rely on each other, the system can lead to an accumulation of
errors. Therefore, each component requires careful and time-
consuming hand engineering.
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Fig. 1. Snapshots of different driving scenarios (left to right: ClearDay,
RainySunset and DrizzleNight) with global route directions and sensor data
information. For visualization, we project the lidar data (y-channel, i.e., the
height information) and radar data (relative speed to the ego-vehicle) to the image
plane. Brighter points mean larger values. It can be seen that the information
characteristic from lidar and radar is more consistent than from the camera in
different environmental conditions.

In recent years, with the unprecedented success of deep learn-
ing, an alternative method called end-to-end control [3]–[12]
has arisen. This paradigm mimics the human brain and maps the
raw sensory input (e.g., RGB images) to control output (e.g.,
steering angle) in an end-to-end fashion. In addition, it substi-
tutes laborious hand engineering by learning control policies
directly on data from human drivers with deep networks, where
explicit programming or modeling of each possible scenario is
not needed. Moreover, it can adapt to complex noise character-
istics of different environments during training, which cannot
be captured well by analytical methods.

While end-to-end driving has been considerably fruitful, there
exist three critical deficiencies in the prior works.

1) The visual information is stressed too much. Most works
depend solely on cameras for scene understanding and decision
making [3]–[14]. However, although cameras are versatile and
cheap, they have difficulty capturing fine-grained 3-D informa-
tion. In addition, perception relying on cameras is prone to be
affected by challenging illumination and weather conditions,
such as the DrizzleNight case shown in Fig. 1. Because of dim
light and rain drops in this scene, the blue car far ahead left
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can be difficult to recognize. In such scenarios, vision-based
driving systems can be dangerous. However, the blue car is
quite distinguishable by observing the speed distribution from
the radar data.

2) The probabilistic nature of executable actions is not well
explored. Most works output deterministic commands to the
vehicle [15], [16]; however, non-determinism is a key aspect of
controlling, which is useful in many safety-critical tasks such as
collision checking and risk-aware motion planning [17]. A more
reasonable approach, therefore, should be predicting a motion
distribution indicating what could do rather than what to do for
the driving platform.

3) The prior end-to-end methods are not evaluated sufficiently
in terms of the navigation task. Most works are evaluated by
first collecting a driving dataset with ground-truth annotations
(e.g., expert control actions) and then measuring the average
prediction error offline on the test set [6], [9], [10], [13], [14],
[17]. However, different from the computer vision tasks such
as object detection, the priority of driving should be safety and
robustness rather than accuracy. As indicated in [18], the offline
prediction error cannot well reflect the actual driving quality.
Therefore, online evaluation is more reasonable and should be
given more attention. One critical concern for online evaluation
is the environmental complexity, yet prior related works either
test their methods in static maps [11], [12], [16], [19], [20], or
scenarios with low-level complexity [3]–[5], [7], [8], [15].

The aforementioned limitations motivate our exploration to
enhance the perception capability for end-to-end driving sys-
tems. To this end, we propose a mixed sensor setup combin-
ing a camera, lidar and radar. The multimodal information is
processed by uniform alignment and projection onto the image
plane. Then, ResNet [21] is used for feature extraction. Based on
this setup, we introduce a probabilistic motion planning (PMP)
network to learn a deep probabilistic driving policy from expert
provided data, which outputs both a distribution of future motion
based on the Gaussian mixture model (GMM) [9], [17], [22], and
a deterministic control action. Finally, we evaluate the driving
performance of our model online on a new benchmark with
extensive experiments. The main contributions of this letter are
summarized as follows.
� An end-to-end navigation method with multimodal sensor

fusion and probabilistic motion planning, named PMP-net,
for improving perception capability and considering uncer-
tainties in the future.

� A new online benchmark, named DeepTest, to perform
analysis of driving systems in high-fidelity simulated en-
vironments with varied maps, weather, lighting conditions
and traffic densities.

� Extensive evaluation and human-level driving performance
of the proposed PMP-net, presented in unseen urban and
rural areas with extreme weather and heavy traffic.

II. RELATED WORK

End-to-end control is designed with deep networks to directly
learn a mapping from raw sensory data to control outputs.
The pioneer ALVINN system [23] developed in 1989 uses a
multilayer perceptron to learn the directions a vehicle should

steer. With the recent advancement of deep learning, end-to-end
control techniques have experienced tremendous success. For
example, using more powerful modern convolutional neural
networks (CNNs) and higher computational power, Bojarski
et al. [3] demonstrate impressive performance in simple real-
world driving scenarios such as on flat or barrier-free roads. Xu
et al. [6] develop an end-to-end architecture to predict future
vehicle egomotion from a large-scale video dataset. However,
these works only realize a lane-following task and goal-directed
navigation is not studied.

To enable goal-directed autonomous driving, Codevilla
et al. [5] propose a conditional imitation learning pipeline. In this
work, the vehicle is able to take a specific turn at intersections
based on high-level navigational commands such as turn left
and turn right. Follow-up works include [7], [12], [13] and [14].
Another trend of adding guidance to the control policy is using
global route, which is a richer representation of the intended
moving directions than turning commands. For example, Gao
et al. [4] render routes on 2D floor maps and call them intentions.
Then, a neural-network motion controller maps intentions and
camera images directly to robot actions. Pokle et al. [16] follow
this idea and implement a deep local trajectory planner and a
velocity controller to compute motion commands based on the
path generated by a global planner. However, these two works
only focus on indoor robot navigation. For outdoor driving
applications, Cai et al. [20] realize high-speed autonomous
drifting in racing scenarios guided by route information with
deep reinforcement learning. However, the control policy is only
evaluated in static maps. Hecker et al. [10] propose to learn a
control policy with GPS-based route planners and surround-
view cameras. However, as with many other works [6], [9],
[13], [17], this work is only evaluated offline by analysing the
average predicting error, providing unclear information of the
actual driving quality.

Inspired by the route-guided navigation methods mentioned
above, we use a global planner to compute paths towards des-
tinations in outdoor driving areas. For the low-level reactive
control, we implement an end-to-end network translating the
global route into driving actions (steering, throttle and brake).
Based on this architecture, point-to-point autonomous driving
can be realized. The network is trained with imitation learning
and can adapt to varied environments to drive appropriately
(e.g., slow down at intersections) and safely (e.g., slow down
for a car, and urgently stop for jaywalkers). Similar to [4]
and [16], we assume that the localization information is available
during system operation. However, different to [4] and [16],
our work focuses on complicated outdoor driving scenarios,
and combines multimodal sensors complementing each other
to generate unified perception results.

In addition, our approach relates to the work of probabilistic
driving models. To improve the capability of handling long-
term plans with imitation learning, Amini et al. [9] propose a
variational network to predict a full distribution over possible
steering commands. Similarly, Huang et al. [17] propose to use
GMM to predict a distribution of future vehicle trajectories.
These works explicitly consider uncertainties of future motions
on logged data with offline metrics. By contrast, we evaluate our
probabilistic driving model online with varied environmental
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Fig. 2. The architecture of our probabilistic motion planning network (PMP-net). It receives the multimodal sensory input and plans a motion distribution for
3 seconds in the future, based on which a PID controller is designed to generate a control action a2. In addition, PMP-net generates another action a1 in an
end-to-end fashion. Then the variance of the planned motion distribution is used to fuse the dual actions for controlling the vehicle.

conditions (e.g., rainy night with heavy traffics), which has not
been studied in this context before.

III. METHODOLOGY

A. Formulation

We formulate the problem of autonomous vehicle navigation
as a goal-directed motion planning task to be solved by an
end-to-end network architecture with imitation learning. The
goal is to control the vehicle to drive safely and robustly in
complex outdoor areas to achieve point-to-point navigation, like
a human driver. To this end, we design a probabilistic driving
model using multimodal perceptions from the camera, lidar
and radar. In addition, we choose the latest CARLA simulation
(0.9.7) [24] to train and evaluate the system.1 The entire pipeline
of our PMP-net is shown in Fig. 2.

B. Dataset Collection

To make the model successfully learn the knowledge of
goal-directed reactive control in the context of outdoor driving,
we collect a large-scale dataset with a global planner and an
expert demonstrator in CARLA. At the beginning of each driving
episode, the ego-vehicle is spawned at a random positionp. Then
a collision-free coarse route (ranging from 350 m to 1500 m)
from p to a destination d is provided by a global planner. The
vehicle then follows this route at a speed of around 40 km/h
while reacting to local environments to avoid collisions, such as
slowing down for a forward-facing car that is moving slowly.
Additionally, the vehicle reasonably slows the speed down to
15 km/h at intersections to ensure safety. In the process of data
collection, we record the vehicle velocities, yaw angles, RGB

1Different from the older versions of CARLA (0.8.x) used in [5], [7] and [8],
which contain only two urban maps, the latest CARLA environment provides
seven maps covering both urban and rural areas, with more available sensors,
improved physical dynamics and more realistic illuminations. http://carla.org/
2019/12/11/release-0.9.7/

images, lidar/radar data and expert driving actions (i.e., steering,
throttle and brake) at 10 Hz. Moreover, in order to increase the
complexity of our dataset, we focus on the following two aspects:

1) Complexity of Environments: a) The datasets from prior
works [5], [7], [8] are generated only in one map with two lanes
and 90-degree turns (Town01 in Fig. 3). By contrast, we use
five urban maps for data collection, which consist of different
types of intersections and even roundabouts, and multiple lanes
on roads; b) We set nine combinations of weather (clear, drizzle
and rainy) and illumination (daytime, sunset and night). Heavier
rain leads to more puddles on roads, and thus brings a greater
reflection effect for visual perception.

2) Complexity of Road Agents: a) We set pedestrians with
different appearances (children and adults) randomly running or
walking along the sidewalks and crosswalks. They occasionally
disobey traffic rules and cross the road abruptly without previ-
ous notice, which increases the safety burden for autonomous
driving; b) We set different types of vehicles (e.g., cars, trucks,
vans, jeeps, buses, motorcyclists and bicyclists) with multiple
appearances navigating around the cities at varied speeds. Based
on a) and b), we apply four levels of traffic density for data
collection: empty, few, regular and dense. Note that these road
agents are controlled by the AI engine from CARLA to construct
realistic city scenarios.

The setups mentioned above can be partially viewed in Fig. 3
and more can be viewed in our supplementary videos. These
help to generate sufficient interactions between the ego-vehicle
and road agents in diverse environments. Based on these setups,
we finally collect 360 high-fidelity driving episodes, which last
10.8 hours in total with 389 thousand frames and cover a driving
distance of 247 km.

C. Model Architecture

1) Global Planning: The global planner is separate from the
deep networks. It is implemented with the A∗ algorithm to plan
a high-level coarse route from the start point to the destination

http://carla.org/2019/12/11/release-0.9.7/
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Fig. 3. Overview of our dataset: varied maps, weather and illumination conditions with increasing traffic densities (top to bottom). Noticeable road agents are
bounded by color boxes. Note that this figure shows only a small part of the environmental setups; please see contexts in Section III-B for more details. Columns
(a–c) show there can sometimes be jaywalkers running across the roads, for which the ego-vehicle will urgently slow down or completely stop to ensure safety. In
addition, it can be seen that in rainy scenarios, especially in RainyNight, the surroundings are considerably blurred (e.g., the unclear motorcyclist in the Regular
setting of column (f)), leading to potential risks for the vision-based driving models [5], [7], [8], [14].

based on static town maps. Similar to [16] and [20], we down-
sample the full global routeGf to local relevant routesG during
navigation, which is shown in (1):

G = {(xk, yk) |1 ≤ k ≤ 130} ⊂ Gf . (1)

Note that the first waypoint (x1, y1) in G is the closest waypoint
in Gf to the current location of the vehicle, and the distance
of every two adjacent points is 0.4 m. The waypoints are then
flattened into a 260-dimensional vector to be processed by dense
layers with fully connected ReLU layers. The extracted feature
is a higher dimensional vector fg ∈ R2048.

2) Multi-Perception: With the aim to capture environmental
information, the camera records color textures in a 2D image
plane, while the lidar captures 3-D spatial locations and the radar
records movement information (i.e., speeds of obstacles relative
to the ego-vehicle). We combine these sensors together in our
network so that the vehicle is able to sense different dimensions
of its surroundings.

Specifically, we project the lidar point clouds and radar data
to the image plane with the same width and height as the camera
images. We name it the ralidar image (250× 600× 4), in which
the first three channels encode 3-D coordinates and the forth
channel encodes relative speeds, as shown in Fig. 4. In this way,
the multimodal measurements are aligned on the same space
and can be uniformly processed with CNNs. In this work, we
use ResNet34 [21] as the backbone to extract environmental
features from the camera and ralidar images. The results are
feature vectors f i ∈ R2048 and fr ∈ R2048.

3) End-to-End Action Generation: In addition to the sensory
data and the global route, our network also takes as input the
velocity of the ego-vehicle (vx, vy) to the dense layers. The
extracted feature is a higher dimensional vector fv ∈ R2048.
Then the features [f i,fr,fv,fg] are handled in two ways:
a) we concatenate them into a vector f c ∈ R8192 for further
processing, and b) in the spirit of [16], we fuse them with
an attention mechanism defined in (2), where the coefficients
a = [ai, ar, av, ag] reflect the relative importance of the features
in changing environments.

ff = aif i + arfr + avfv + agfg. (2)

Fig. 4. Multimodal data processing. We achieve data alignment by projecting
the lidar pointclouds and radar measurements to the image plane by combining
them together to form the ralidar image. Then, two ResNet34 modules are used
to extract features from the camera and ralidar images. Brighter points mean
larger values in the projected images. Noticeable road agents in the projected
radar image are bounded by white boxes.

The coefficients a are computed by transforming f c with dense
layers and softmax activation. After such feature fusion, a
control action a1 composed of steering, throttle and brake is
generated by projecting ff with fully connected ReLU layers.
Inspired by [18], we use the L1 loss function for this module as
it is better correlated to the online driving performance.

4) Probabilistic Motion Planning: In this module, we aim to
learn a full parameterized distribution over possible ego-motions
(i.e., velocities and yaw angles) for 3.0 s into the future, as shown
in Fig. 2. We adopt the GMM to represent such a distribution
due to its excellent approximation properties. Specifically, the
combined feature f c in our work is transformed by dense layers
into GMM parameters (i.e., weight, mean and variance) to de-
scribe the distribution of future motions. Similar to [9] and [17],
the negative log-likelihood (NLL) loss function is used for this
module.

As mentioned in [22], the advantage of probabilistic modeling
is that we can make a decision by evaluating its statistical
properties. In this work, based on the mean values (μ) of the
planned motion distribution, we further design a PID controller
to calculate a control action a2 composed of steering, throttle
and brake. The target point for this PID controller (assume k
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TABLE I
WE EVALUATE DIFFERENT DRIVING MODELS ON OUR DEEPTEST DRIVING BENCHMARK. ↑ MEANS LARGER NUMBERS ARE BETTER, ↓ MEANS SMALLER

NUMBERS ARE BETTER. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

_ _ _ _ _

-

-

frames in the future) is set to the point 5 m ahead of the vehicle
by calculating the integral with μ. Then, the final action af to
control the vehicle is computed by examining the reliability of
the motion distribution through its accumulated variance σ2:

af = (1− λ)a1 + λa2, λ = e−c1·max(0,
∑k

i σ2−c2). (3)

In this way, higher planning uncertainty leads to smaller λ, thus
the final action will depend more on a1. We believe that we
can take advantage of both end-to-end control and probabilistic
modeling by performing such reliability-aware action fusion.

IV. EXPERIMENTS AND DISCUSSION

A. Training Setup

We train the proposed PMP-net on our large-scale driving
dataset introduced in Section III-B. The full dataset is divided
into a training set and a validation set according to the ratio
of 7:1, leading to 340 K training samples.2 We use the Adam
optimizer with a learning rate of 0.0001, and the batch size is
90. Based on these setups, the model is trained on two Nvidia
GeForce RTX 2080 Ti GPUs for about 75 hours, with 234 K
training steps to achieve convergence. For comparison, we also
train and finetune three other baselines on the same training set,
which are for visual navigation:
� CIL: The conditional imitation learning network intro-

duced in [5]. This maps the camera images and ego-
velocities directly to control actions, based on four discrete
commands for goal-directed navigation: follow lane, turn
left, turn right and go straight at the intersection.

2Note the test set is not considered because we evaluate our model online
in Section IV-B by making the ego-vehicle directly interact with dynamic
environments.

� CIL-R: We replace the original image processing module
of CIL (which is relatively shallow) with ResNet34, to
evaluate if deeper models perform better for our task.

� INT: The intention-net introduced in [4] with the backbone
of ResNet34 for fair comparisons. This maps the camera
images and global routes to control actions. Note that the
original intention-net takes the indoor floor maps rendered
with routes for directions. We replace it with the local
relevant routes G introduced in (1).

B. Evaluation

1) DeepTest Benchmark: We evaluate the online driving per-
formance for different models on our proposed DeepTest bench-
mark in CARLA. Compared with the previous benchmarks in [7]
and [24], DeepTest has many more environmental setups, such
as more test maps, weather conditions and interactions with road
agents. In addition, different to [7] and [24], we set zero tolerance
for collision events, which means that any degree of collisions
with static (e.g., trees) or dynamic (e.g., pedestrians) objects
leads to a failed episode.

In our benchmark, different methods are tested on four maps.
For each map, we set three levels of traffic densities: empty,
regular and dense. Therefore, each driving model relates to 12
driving tasks. Note that denser traffic leads to harder driving
tasks as it involves more dynamic obstacles on the road. In
each task, we further set 18 goal-directed episodes with varied
weather conditions. Therefore, to fully evaluate PMP-net and the
other three baselines, 864 driving episodes should be conducted.
Finally, the evaluation process costs 4 days on our computer
and covers a driving distance of 855 km. Compared with the
environmental setups in the training set (Section III-B), we
consider new maps, illuminations and weather in DeepTest to
test the generalization capability. Specifically, we add an unseen
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Fig. 5. Online evaluation results of PMP-net in our DeepTest benchmark. The environment setups, driving velocities and control actions are shown in yellow
text. Noticeable road agents (e.g., jaywalkers) are bounded by green boxes. The range of steering is [−1, 1], while for throttle and brake the range is [0, 1].
The sample driving behaviors are: (c) lane-following, turning at (b, d, e) intersections or (a) roundabouts, (g) lane-changing, (f, h, i, j) vehicle-, bicyclist- or
motorcyclist-following, and (k, m) urgently slowing down for jaywalkers. All of these behaviors are performed autonomously and safely by PMP-net in an
end-to-end fashion without hand-crafted rules.

rural map Town07 and an urban map Town06. Town07 brings new
challenges to test the negotiation skills with narrow roads and
many non-signalized crossings. In addition, we add four extreme
illumination and weather conditions: ClearDark, DrizzleDark,
StormDark and StormSunset. The new Dark and Storm (i.e.,
heavy rain) settings, which are shown in Fig. 5, bring extra
challenges to the drive with limited vision. Similar to [5], we
do not consider traffic lights in this work. For quantification of
the driving performance, three metrics are adopted as follows:
� SR: success rate. An episode is considered to be successful

if the agent reaches a certain goal without any collision
within a time limit. Based on this, we calculate the success
rate for models in different tasks.

� WL: The proportion of the period in a wrong lane to the
total driving time.

� OVSP: The proportion of the overspeeding period to the
total driving time. The speed limit is set to 20 km/h at
intersections and 50 km/h elsewhere.

2) Quantitative Analysis: We show the results on the
DeepTest benchmark in Table I. In the following, the analyses
are given from two perspectives: the ability and the quality of
autonomous driving.

Ability: Success rate (SR) is used to measure the self-driving
ability, which is a crucial concern in this area.

It can be seen that the CIL model presents the worst results,
which can not even achieve a successful episode in Town07.
In addition, although in Town03 we only set new routes with

similar environments to the training dataset, CIL still presents
low SRs (16∼38%). With the help of a deeper backbone in
CIL-R, the performance is improved. For example, the SR in
Town03-empty increases from 38% to 83%.

By changing the model structure to INT, better generaliza-
tion performance on certain new environments is achieved, for
example, the SR in Town06-Regular increases from 11%
to 61%. However, INT performs worse than CIL-R in Town03
and some other new environments such as Town05-Dense.
Generally, INT and CIL-R have similar low-level performances
in outdoor driving areas, especially in heavy traffic. This is
because they only use visual perception, which often has troubles
in tough environments such as StormDark. By contrast, PMP-net
achieves a much higher SR in all evaluation setups, which
indicates a superior generalization capability. In particular, the
SR increases to 100% in all environments for the empty traffic,
and to 72∼88% for regular and dense traffic.

Quality: We use WL and OVSP to evaluate the driving quality
of different models. Due to the lack of concrete direction guid-
ance, CIL and CIL-R both have high WL values (3.35∼66.05%).
Specifically, they often navigate the vehicle to drive in the correct
direction but in the wrong lanes. With the help of the global
route information, the models are able to drive more accurately,
as we can see by the WL values for INT and PMP, which are
all close to 0%. However, INT tends to control the vehicle to
drive at high speeds without slowing down at intersections.
This unsafe phenomenon leads to high values of OVSP for INT
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(5.85∼37.12%). While PMP still performs well on this metric
(0.0∼0.4%).

Generally, the remarkable improvements of PMP-net on the
benchmark w.r.t. the other three baselines confirm that our
proposed model can effectively learn and deploy the driving
knowledge in complex dynamic environments.

3) Qualitative Analysis: Fig. 5 shows the qualitative results
of PMP-net. When there are no obstacles ahead on straight roads,
our model drives relatively fast, at about 40 km/h (Fig. 5-(c)).
When taking turns or following road agents, our model rea-
sonably slows down as a human driver would, as shown in
Fig. 5-(a, b, d, f, i). In addition, we show some results in extreme
conditions. In Fig. 5-(e), the traffic is heavy with many vehicles
driving at an intersection. Although the model is directed to
turn right, it applies full brake as another vehicle blocks the
road ahead. Moreover, in Fig. 5-(g,h), we set dense traffic on
a dark night where slow-moving obstacles are ahead of the
ego-vehicle. In these scenes with limited vision, PMP-net is also
able to drive safely by reducing the throttle to slow down when
changing/following lanes. Furthermore, the most challenging
scene is shown in Fig. 5-(m). In the StormDark environment,
there is a small child running across the road abruptly without
any previous notice. For this scene, it is difficult to raise alarm
even for a human driver because the surroundings cannot be
seen clearly. Surprisingly, our model slows down timely by
applying brake to avoid an accident. Fig. 5-(k) is another similar
scenario. For interpretation, the planned motion distribution of
Fig. 5-(m) is attached, where we can see that the planned speed
drops rapidly within a short horizon (∼0.5 s) with low variance.
We accredit such prominent performance to our multimodal and
probabilistic setup. More related driving behaviors are shown in
supplementary videos.3

V. CONCLUSION

In this letter, to realize autonomous driving in outdoor dy-
namic environments, we proposed a deep navigation model
named PMP-net, which is based on multimodal sensors (a
camera, lidar and radar) and probabilistic end-to-end control.
We collected a large-scale driving dataset in the CARLA sim-
ulator and trained the model with imitation learning. In order
to fully evaluate the driving performance, we further proposed
a new online benchmark DeepTest, of which the environmental
complexity has not been previously considered. By setting varied
illumination, weather and traffic conditions in different towns,
we showed that our model achieves excellent driving and gener-
alization performance in both unseen urban and rural areas with
extreme weather and heavy traffic with dynamic objects (e.g.,
vehicles, bicyclists and jaywalkers).

To further extend PMP-net for real autonomous vehicles, the
reality gap should be considered. 1) For discrepancy of sensory
input, we can finetune the model with real-world data. The
sensor readings of lidar and radar are more consistent than those
of a camera with real/simulated deployments, which can help
regularize the finetuning process for domain adaption. 2) For

3Demo videos and a supplementary file including model parameters and
benchmark visualization are available at https://sites.google.com/view/pmpnet/

discrepancy of driving platforms, we can adjust the parameters
of the PID controller to adapt to different vehicle properties [14],
due to the modular design of our network.
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