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Topo-Boundary: A Benchmark Dataset on
Topological Road-Boundary Detection Using

Aerial Images for Autonomous Driving
Zhenhua Xu , Student Member, IEEE, Yuxiang Sun , Member, IEEE, and Ming Liu , Senior Member, IEEE

Abstract—Road-boundary detection is important for au-
tonomous driving. It can be used to constrain autonomous vehicles
running on road areas to ensure driving safety. Compared with
online road-boundary detection using on-vehicle cameras/Lidars,
offline detection using aerial images could alleviate the severe oc-
clusion issue. Moreover, the offline detection results can be directly
employed to annotate high-definition (HD) maps. In recent years,
deep-learning technologies have been used in offline detection. But
there still lacks a publicly available dataset for this task, which
hinders the research progress in this area. So in this letter, we
propose a new benchmark dataset, named Topo-boundary, for
offline topological road-boundary detection. The dataset contains
25,295 1000 × 1000-sized 4-channel aerial images. Each image is
provided with 8 training labels for different sub-tasks. We also de-
sign a new entropy-based metric for connectivity evaluation, which
could better handle noises or outliers. We implement and evaluate
3 segmentation-based baselines and 5 graph-based baselines using
the dataset. We also propose a new imitation-learning-based base-
line which is enhanced from our previous work. The superiority
of our enhancement is demonstrated from the comparison. The
dataset and our-implemented code for the baselines are available
at https://tonyxuqaq.github.io/Topo-boundary/.

Index Terms—Road-boundary detection, imitation learning,
large-scale dataset, autonomous driving.

I. INTRODUCTION

ROAD boundary refers to the dividing line between the
road area and off-road area. It can be used to constrain

self-driving cars running on road areas, which is important
to the safety of autonomous driving. Currently, most existing
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works rely on vehicle-mounted sensors (e.g., cameras or Li-
dars) [1]–[4] for online road-boundary detection. However, on-
line detection could be severely degraded by occlusions, which
is very common in real road environments. Moreover, online
detection could be restricted by limited computing resources
on vehicles, especially for deep-learning models that require
GPU. To relieve the aforementioned issues, some works resort
to detecting road boundary (or its analogies, such as lane or
curb) offline using bird-eye-view (BEV) point-cloud maps or
aerial images. As the results are presented in BEV images,
they can also be directly utilized for annotating high-definition
(HD) maps. So we detect road boundaries offline in this letter.
Moreover, our detection results are presented in the form of
topological graphs (i.e., vertices and edges). This is important
because besides pixel-level annotations, the topological graphs
can also identify road-boundary instances and find the spatial
connection information of the boundaries.

The published literature working on topological road-
boundary detection is very limited. Most of existing works focus
on the analogy problem: line-shaped object detection, such as
road-lane, road-curb and road-network detection [5]–[11]. They
can be generally divided into two categories: segmentation-
based solutions and graph-based solutions. A typical pipeline
of the former is first using semantic segmentation to get rough
detection results, and then performing heuristic post-processing
algorithms on the segmentation maps to refine the results. The
latter directly finds the graph structure for the line-shaped objects
through iterative graph growing. With the great advancement of
artificial intelligence, deep-learning technologies are adopted by
current existing methods, and great superiority over traditional
algorithms is achieved. However, deep-learning-based methods
require large-scale datasets to train a model. To the best of our
knowledge, there is still no publicly available datasets for road-
boundary detection in BEV images, which hinders the research
process in this area. This motivates us to build a large-scale
benchmark dataset, named Topo-boundary, for road-boundary
detection.

Our dataset is derived from the NYC Planimetric
Database [12]. The raw geographic data (a large whole map,
see Fig. 1) in the NYC Planimetric Database covers the whole
New York City, including 2147 5000× 5000-sized 4-channel
(i.e., red, green, blue and an infrared channel) aerial image tiles
(i.e., small squared aerial image constituting the large whole
map) and a set of polylines as the road-boundary ground-truth
label. To build our Topo-boundary, we convert the polyline
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Fig. 1. The pipeline to create our dataset from the NYC Planimetric Database. The raw geographic data contains 2147 data tiles. The different colors represent
the 5 boroughs and water areas in the New York City. Each tile (T ) is with 5000× 5000 size. We split each tile into 25 smaller patches (T = {Pi}25i=1). Each
patch (P ) contains a 4-channel 1000× 1000-sized aerial image I and ground-truth road boundaries Ggt. The Ggt in the figure is annotated by polylines, of which
edges and vertices are denoted by cyan lines and yellow points, respectively. Based on Ggt, we generate 8 types of ground-truth labels for different tasks. The
filtering step is to remove patches based on pre-defined rules. After filtering, 25,295 patches finally remain in our Topo-boundary. For better visualization, only
RGB channels of the patch image are visualized. Moreover, the width of the ground-truth polylines is increased (the actual width is one pixel). This figure is best
viewed in color.

label to graph (i.e., vertices and edges) and split every tile into
25 smaller 1000× 1000-sized patches. After removing patches
with inappropriate annotations, such as patches without road
boundaries, 25,295 patches remain. Each patch consists of a
4-channel image and 8 labels for different sub-tasks, such as
binary semantic segmentation, orientation learning [6], etc. The
dataset can be used for both segmentation-based solutions and
graph-based solutions for road-boundary detection.

To facilitate future research on road-boundary detection,
we implement and evaluate multiple baselines, including 3
segmentation-based baselines, 5 graph-based baselines. We also
design and compare a new imitation-learning-based baseline
which is enhanced from our previous work iCurb [11]. For all
the baselines, the input is a 4-channel aerial image, the output is
the graph representing road boundaries. Our implemented code
for these baselines are open-sourced along with our dataset.

As line-shaped objects are usually long, thin and irregular,
only using pixel-level metrics is not sufficient to evaluate the
performance of a method. In past works, average path length
similarity (APLS) has been widely used to evaluate topology
correctness [13]. But since in most cases road boundaries are
simple polylines without branches, APLS suffers from random-
ness and inefficiency. Inspired by the naive connectivity metric
proposed in [14], we design a new entropy-based connectiv-
ity metric (ECM) to evaluate the connectivity of the obtained
road-boundary graph, which is effective and more efficient. We
summarize our contributions here:

1) We release the Topo-boundary benchmark dataset for
topological road-boundary detection using aerial images.
To the best of our knowledge, this is the first publicly
available dataset for this task.

2) We propose new evaluation metrics for the task, includ-
ing relaxed pixel-level metrics and a new entropy-based
connectivity metric.

3) We quantitatively evaluate 9 baseline models using the
proposed dataset, which could facilitate comparative study
for future methods.

4) We open-source our-implemented code for the baselines.
The code can also be modified with a little effort for other
line-shaped object detection.

II. RELATED WORKS

A. Segmentation-Based Line-Shaped Object Detection

There are very few segmentation-based works directly de-
tecting road boundaries topologically. So we review several
line-shaped object detection works [5], [6], [15]. Volodymyr
et al. [15] proposed the first deep-learning model with iterative
refinement for road-network detection using aerial images. Their
solution was further improved by Anil et al. [6], in which the
authors not only proposed better networks and a training scheme,
but also utilized the orientation map to enhance the semantic
segmentation results. Different from the above letters using iter-
ative refinement, the solution proposed by Mattyus et al. [5] first
put forward connection candidates to correct disconnections,
and then trained another network to filter candidates. Although
segmentation-based solutions are efficient to carry out, they can
only produce results at the pixel-level. Moreover, they were often
implemented with multi-stage pipelines, so they could not be
optimized as a whole, making the graph sensitive to incorrect
topology.

B. Graph-Based Line-Shaped Object Detection

Taken images as input, graph-based methods can directly out-
put the graph representing target objects. Iterative graph growing
is the most commonly used technique, which generates vertices
along with the line-shaped object starting from an initial vertex.
Past works focusing on other line-shaped objects are similar to
our task, such as road-lane detection [9], [16], road-network
detection [7], [8], [17] and road-curb detection [11]. Road-
Tracer [7] is believed to be the first work in this category. In [7],
the authors trained a multi-layer CNN and successfully extracted
the graph of very large road networks. Liang et al. [14] directly
worked on road-boundary detection in the BEV point-cloud
map. They facilitated semantic segmentation by direction map
prediction and proposed cSnake for iterative graph growing. To
better solve the graph growing task, line-shaped object detection
was first analyzed from the perspective of imitation learning in
our previous work iCurb [11]. iCurb presented superiority over
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other works on road curb detection owing to the training strategy
and graph growing policy.

C. Evaluation Metrics for Topological Correctness

In the past works on road network detection, topological cor-
rectness was usually measured by shortest-path-based metrics,
such as APLS [13] and too long/too short (TLTS) similarity [18].
However, due to the random sampling process, these metrics
suffer from inefficiency and randomness. Alternatively, in [14],
a naive metric measuring the connectivity of road boundaries
was proposed, but it is too sensitive to noises and may cause
incorrect evaluation results. iCurb modified the naive metric
and addressed the problem to some extent. However, incorrect
evaluation still happens. So in this work, we make further
revisions to this metric and propose an entropy-based metric
for connectivity evaluation.

D. Datasets for Line-Shaped Object Detection

To the best of our knowledge, [14] is the only published work
on road-boundary detection using BEV images. In [14], a dataset
was created, which contained BEV point-cloud images, RGB
images and elevation gradient images. But unfortunately, the
dataset was not publicly available. In the road-network detec-
tion area, the data was obtained from commercial geospatial
datasets [13] or by processing raw geographic images collected
from public platforms [19]. Although these datasets are pub-
licly available, due to the topological differences between road
networks and road boundaries, they could not be used in our
task.

III. THE PROPOSED DATASET

To create our Topo-boundary dataset, we generate images and
ground-truth labels from the raw geographic data provided by the
NYC Planimetric Database [12]. The WGS84 coordinate system
is used in [12], while in our Topo-boundary, all the coordinates
are transformed to the image coordinate system to facilitate
research in this area. Fig. 1 shows the processing pipeline to
create our Topo-boundary. We first split large data tiles into
patches, then generate ground-truth labels for each patch, and
finally remove inappropriate patches according to predefined
rules.

A. Splitting Data Tiles Into Patches

The raw geographic data covers the whole area of the New
York City, including 2147 data tiles. Each tile (T ) is a 5000×
5000-sized image with road-boundary ground-truth label. Each
pixel represents 1 feet (around 15.2 cm). We split each tile into
25 smaller patches (T = {Pi}25i=1) to reduce the GPU memory
cost during training. Since our task is mainly performed at the
patch level, the subscript i is removed from Pi for expression
conciseness in the following text. Each patch (P ) contains a
4-channel (red, green, blue, infrared, the infrared channel is more
sensitive to vegetation and soil) 1000× 1000-sized aerial image
I and ground-truth road boundariesGgt. We useGgt to generate
8 labels for different sub-tasks.

The raw ground-truth label for road boundaries is the PAVE-
MENT_EDGE feature from the NYC Planimetric Database.

PAVEMENT_EDGE is manually annotated in the form of poly-
lines (a kind of graph without branches), of which the vertices
and edges are recorded using the WGS84 coordinate system.
The polylines cover road-surface edges, airport runways and
alleys. From the whole map PAVEMENT_EDGE, we obtain the
ground-truth road boundary Ggt for each patch P .

Unlike tile images, PAVEMENT_EDGE cannot be directly cut
and split because: (1) some edges e = (va, vb) may have one
vertex va in a patch while the other vertex vb in another patch;
(2) some road boundaries may be cut into multiple pieces by
different patches. For the former, we replace the vertex outside
the patch (i.e., vb) with the intersection point of e and the patch
edge. For the latter, we split the corresponding road boundaries
into multiple instances and update PAVEMENT_EDGE.

After processing PAVEMENT_EDGE, for each patch, the
ground-truth road boundary is still a set of polylines Ggt =
{Gi

gt}Ni=1. Each polyline represents an road-boundary graph
instance Gi

gt = (Vi, Ei), where Vi and Ei are the set of vertices
and edges in Gi

gt, respectively. Vertices Vi are recorded in a list,
and then edges in a graph can be easily obtained by connecting
two neighboring vertices in the list, thus the edge set Ei is
omitted. Note that Gi

gt is sparsely distributed (i.e., adjacent
vertices are not eight-neighboring to each other in the image
coordinate system).

B. Generating Ground-Truth Labels for Each Patch

For each patch, we generate 8 different types of labels for
different tasks. The labels are: annotation sequence SA, dense
sequence SD, binary map MB , instance map MI , endpoint
map ME , inverse-distance map MID, direction map MD and
orientation map MO. All the label maps are generated from
ground-truth road boundaries (Ggt) within the current patch
by our processing algorithms, and are recorded in the image
coordinate system of the current patch.

1) Annotation Sequence and Dense Sequence: As the
ground-truth road boundaries are annotated vertex-by-vertex as
chain sequences, the vertices of a road boundary instance Gi

gt

are ordered starting from an initial vertex to the end vertex. We
call the ordered vertices of Gi

gt as the annotation sequence SA.
SA is critical to generate other labels and can be applied to train
graph-based solutions. However, graph-based solutions trained
by SA suffer from the teacher forcing problem [20], which is
caused by the data distribution mismatch between the training
and inference period. It is also analyzed in [7]. To address this
problem, the training label for iterative graph generation should
be generated on-the-fly. Therefore,SA needs to be densified. For
every two adjacent vertices in SA, interpolation is conducted to
obtain the dense sequence SD. In SD, any two adjacent vertices
are eight-neighboring to each other. The densification process is
illustrated in Fig. 3.

2) Binary Map, Instance Map and Endpoint Map: Binary
map MB is commonly used for semantic segmentation. The
dense sequence SD can be directly used to generate MB by
setting all the pixels covered by SD as 1 (i.e., foreground
pixels) and the other pixels as 0 (i.e., background pixels). In this
way, we can get the binary map of a patch and its topological
correctness can be guaranteed. The instance map MI can be
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Fig. 2. Visualization of label maps for a patch. (a) 4-channel patch image I (only RGB is visualized here); (b) Binary map MB ; (c) Instance map MI . Different
road boundary instances are labeled with different gray values; (d) End-point map ME ; (e) Inverse-distance map MID . Each pixel value is the reciprocal of its
shortest distance to the boundary; (f) Direction map MD . The red channel is the Sobel derivative of columns, the green channel is the Sobel derivative of rows,
and the blue channel is the sum of the other two channels; (g) Orientation map MO . Pink arrows are the schematic demonstration of directional information of the
road boundary. For better visualization, the line width in (b) and (c) is increased (the actual width is one pixel). This figure is best viewed in color. Please zoom in
for details. For more examples, please see our supplementary document.

Fig. 3. The sequence densification process for a part of a sample patch.
The orange pixels represent vertices in the annotation sequence SA. They are
interpolated to realize every two adjacent vertices eight-neighboring to each
other. The interpolation result is the dense sequence SD . SA can be regarded as
a subset of SD , which contains only the key vertices. The figure is best viewed
in color.

obtained similarly, but pixels covered by different instances are
multiplied with instance IDs.

To facilitate segmentation and generate candidate initial ver-
tices for iterative graph generation, endpoint prediction is re-
quired in some solutions [11], [14]. For each road boundary
instance Gi

gt in a patch, there are 2 endpoints. We multiply each
endpoint by a Gaussian kernel function.

3) Inverse-Distance Map and Direction Map: Inverse-
distance map (MID) prediction is first proposed in [21] to
facilitate semantic segmentation. The value of each pixel in this
map is the reciprocal of its shortest distance to the ground-truth
road boundary. Compared with the binary map MB , MID is
more informative considering that all the pixels of MID are
encoded with information. The generation ofMID is accelerated
by GPU parallelism in our implementation.

To further make use of the spatial information in MID, the
authors in [14] generate the direction map MD based on MID.
The direction map is a vector field (MD ∈ R2×H×W ) of normal
directions to the road boundary. It is calculated by taking the
Sobel derivative of MID followed by a normalization step. In-
tuitively, MD records the direction to the closest road boundary
of each pixel by unit vectors. The application of MD and MID

encourages the neural network to focus on road boundaries.
4) Orientation Map: Orientation learning [6] makes use of

the direction and connection information of road networks,
which greatly enhances the performance of semantic segmenta-
tion. Thus we provide the orientation map for this task to assist
road-boundary detection. Due to the bi-direction nature of road
boundaries, we regard them as undirected graphs. For each road

Fig. 4. Sample inappropriate patches. The cyan lines represent the ground-
truth polylines for road boundaries. (a) A patch without road boundaries inside.
Such case happens frequently near ocean and suburb areas; (b) A patch in
which ground-truth road boundaries have intersection points. This is usually
caused by alleys that snapped to the road boundary. Intersection points are not
reasonable considering the topological characteristics of the road boundary; (c)
A patch with very complicated scenarios. For these patches, few methods can
obtain reasonable results, especially for graph-based methods. Therefore they are
removed at this stage. For better visualization, only RGB channels of the patch
image are visualized, and the width of the ground-truth polylines is increased
(the actual width is one pixel).

boundary instance Gi
gt, we randomly select one end vertex as

the starting point while the other as the ending point. Then from
the starting point, for every two adjacent vertices, we calculate a
directional vector and convert it to a radian value r. For all pixels
covered by the edge connecting these two adjacent vertices, their
values are set to r. Intuitively, the value of each foreground pixel
is the radian value of the edge it belongs to. Fig. 2 displays all
the label maps for a sample patch.

C. Removing Patches According to Pre-Defined Rules

We remove the inappropriate patches according to the follow-
ing predefined rules:

1) The patch with no road boundary inside. Such a case is
quite common, especially in suburb area images;

2) The patch with intersection points. In the raw ground-truth
label of the road boundary, some alleys are snapped to it
and cause intersections, which is not appropriate. Thus we
remove these patches;

3) The patch that has very complex scenarios, such as over-
lapping interchanges.

The cases in the removed patches would happen in city-scale
real-world applications. So, this could be treated as a limitation
of our work at this stage. Fig. 4 shows sample inappropriate
patches.
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D. Data Splitting

After filtering, there are finally 25,295 patches remaining
in our Topo-boundary. We randomly split these patches into a
training set (10,236 patches), a validation set (1,770 patches), a
testing set (3,289 patches) and a pretraining set (10,000 patches).
The pretraining set is used for multi-stage methods, like [5],
or to pretrain the feature extraction module of the graph-based
solutions to accelerate the training convergence, such as [9]. If
pretraining is not needed, the samples in this set could be used
for training. The boroughs of New York City (e.g., Queens or
Manhattan) is not considered during data splitting. The above
data splitting scheme is adopted in the experiments of this letter.
Users are free to split the dataset according to their needs.

IV. EVALUATION METRICS

To ensure comprehensive and fair comparison, we design our
evaluation metrics, including 3 relaxed pixel-level metrics (i.e.,
Precision, Recall and F1-score), the naive connectivity met-
ric [14], APLS [13] and an entropy-based connectivity metric
(ECM) for topological correctness measurement. For all the
metrics, larger values indicate better performance.

A. Pixel-Level Metrics

Pixel-level metrics (i.e., Precision, Recall and F1-score) mea-
sure the prediction accuracy of every pixel. Unlike most past
works that directly compare the prediction results with the
ground truth, in this work we use the relaxed version of these
metrics following [9], [11], [14].

Let Gpre denote the predicted graph and Ggt denote the
ground-truth graph. Note that both graphs have been densified.
Precision is the ratio of pixels in Gpre that fall within τ distance
to Ggt. Recall is the ratio of pixels in Ggt that fall within τ
distance to Gpre. Distance τ reflects the tolerance of inaccuracy.
If τ = 1, the relaxed pixel-level metrics degenerate into the
commonly-used hard pixel-level metrics. In this letter, we report
the evaluation results with τ as 2, 5 and 10 pixels, respectively.

B. The Proposed Entropy-Based Connectivity Metric (ECM)

Assume the predicted road boundary instances are Gpre =
{Gj

pre}Mj=1 and the ground-truth instances areGgt = {Gi
gt}Ni=1.

In our task, topology errors mainly refer to disconnections.
Therefore, the topology correctness metric should suffice the
following principles: (1) Punish incorrect disconnections; (2)
Assign shorter ground-truth instances Gi

gt less weights; (3)
Longer incorrect disconnection receives a larger penalty; (4) The
prediction whose dominant Gj

pre has higher dominance should
receive a higher score. Dominant predicted instance Gj

pre is the
instance with the highest dominance value, where dominance
value is the ratio of the length of Gj

pre to the sum of the length
of predicted instances assigned to Gi

gt.
Among metrics used in the past work, the widely applied

path-based metrics, like APLS and TLTS, meet almost all afore-
mentioned requirements. However, they suffer from randomness
and inefficiency due to the random sampling process. Because of
this, in [14], an alternative naive connectivity metric is proposed.
The authors first match instances in Gpre with instances in
Ggt by minimizing the Hausdorff distance [22]. If an instance

Gj
pre matches with Gi

gt, Gj
pre is assigned to Gi

gt. For each
ground-truth instanceGi

gt, letMi denote the number of assigned
predicted instances. Then the connectivity of instance Gi

gt is

Ci =
1(Mi>0)

Mi
, and the final connectivity of the whole patch is

the average sum of Ci of all ground-truth instances.
This naive metric can reflect the connectivity of the prediction

to some extent, but it fails to meet most aforementioned princi-
ples. To relieve this problem, in our previous work iCurb [11],
we made some adjustments to the naive metric. The matching
method is changed to a voting scheme. Each pixel of Gj

pre finds
its Euclidean-closestGi

gt and makes a vote, thenGj
pre is assigned

to the ground-truth instance Gi
gt that wins the most votes. This

voting scheme is more stable than the Hausdorff distance that
is sensitive to noises. In addition, a weighting hyper-parameter
that gives the longer Gi

gt larger weights is assigned to each Gi
gt.

However, the connectivity metric from the iCurb letter cannot
meet all the requirements.

Therefore, in this letter, we further modify the connectiv-
ity metric and propose an entropy-based connectivity metric
(ECM), which is shown in the following equation:

ECM =
N∑

i=1

αie
−Ci , where Ci =

Mi∑

j=1

−pj log(pj), (1)

where Ci is the connectivity of the i− th ground-truth instance
Gi

gt; αi is the completion of Gi
gt, which is equal to the sum

of the length of assigned instances in Gpre projected onto
Gi

gt divided by the length of Gi
gt; N is the total number of

Gi
gt in the current patch; Mi is the number of predicted road

boundary instances Gj
pre that are assigned to Gi

gt, and pj is the
dominance of Gj

pre. Entropy is a definition created by Shannon
in information theory to measure information content. An event
with greater uncertainty tends to have larger entropy. If the
dominant predicted instance Gj0

pre has large dominance value,
Gi

gt should have good connectivity measure Ci since Gj0
pre can

well approximate Gi
gt with more certainty. In summary, ECM

assigns longer predicted graph instances with larger weights to
calculate Ci, so that short instance could not greatly affect the
final evaluation results. Therefore, ECM shows better ability
to handle noises and outliers. An example comparing different
connectivity metrics is shown in Fig. 5.

V. BASELINE MODELS

In this work, we implement several segmentation-based base-
lines and graph-based baselines. We also design a new imitation-
learning-based method which is enhanced from our previous
work iCurb [11].

A. Segmentation-Based Baselines

1) Naive Baseline: This baseline is proposed by ourselves.
Firstly, we employ U-net [23] to obtain the segmentation map of
road boundaries. Then, the segmentation results are refined by
filtering noisy segments. Finally, the refined segmentation map
is skeletonized to get the graph for the road boundaries.

2) Deeproadmapper: This baseline (ICCV2017) [5] pro-
poses to fix disconnections in road network predictions. Due
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Fig. 5. Comparison of topology metrics. (a) The ground truth; (b)-(f) are
predictions with different incorrect disconnections. The evaluation score of
each metric is shown in prediction sub-figures. (b), (c) reflects whether metrics
suffice principle 1: (c) has more disconnections, thus the connectivity score of
(b) should be larger than that of (c). All three metrics meet the requirement.
Similarly, (b),(d), (b),(e), (b),(f) reflect whether metrics suffice principle 2,3 and
4, respectively. From the comparison, we find that both APLS and ECM work
well for all cases, while the naive connectivity metric and pixel-level metrics
fail to follow the principles. Please zoom in for details.

to the similarity between our task and road network detection,
we adapt their method for road-boundary detection.

3) Orientationrefine: This baseline (CVPR2019) [6] utilizes
the orientation map to enhance the segmentation of road net-
works and achieves improvements. Besides, an extra network is
trained to refine the segmentation results iteratively. This work
can be directly used for our task without many modifications.

B. Graph-Based Baselines

1) Roadtracer: This baseline (CVPR2018) [7] is believed to
be the first work that solves the line-shaped object detection
problem by an iterative graph generation approach. However,
the network for feature extraction is merely a multi-layer CNN
without skip connections.

2) Vecroad: This baseline (CVPR2020) [8] greatly improves
RoadTracer, but follows the same core idea. Res2Net [24]
is utilized as the backbone for multi-scale feature extraction.
However, there is a limited improvement to the training strat-
egy. Both VecRoad and RoadTracer work on road network
detection, which has different topological characteristics with
the road boundary (i.e., road boundaries are scattered polylines
without branches while the road network is a connected graph
with many intersections), thus we modified their exploration
algorithm and the overall pipeline to make them applicable for
our task. Besides, road network detection only requires coarse
detection of the road centerline, while road boundary detection
expects the fine structure of both sides of the road. Therefore,
our task has higher demands compared with road network
detection.

3) Convboundary: This baseline (CVPR2019) [14] is the
only graph-based work that directly focuses on road-boundary

detection. It is a two-stage solution. First, it predicts the inverse-
distance map, endpoint map and direction map simultaneously.
Then, based on these three maps, a model named cSnake is
trained to generate the final graph vertex-by-vertex.

4) Dagmapper: This baseline (ICCV2019) [9] is designed
for road-lane detection. The input of both DagMapper and
ConvBoundary are BEV images of pre-built point-cloud map.
Compared with aerial images, BEV images of point-cloud map
has much higher resolution and simpler scenarios. For example,
the occlusion issue in the point-cloud map is relieved and only
the near-road area is covered, which could be regarded as a kind
of attention. However, the point-cloud map is time-consuming
and expensive to obtain and update, while aerial images are more
and more publicly available all over the world. Therefore, our
task is more suitable for wide-area applications.

5) Icurb: This baseline (RAL2021) [11] is the first work
that solves the iterative graph generation from the perspective
of imitation learning. iCurb has a DAgger-based [25] training
strategy, which greatly enhances the performance. This work
focuses on road-curb detection, which is a subclass of road
boundary, thus it can be directly applied to our task.

Except RoadTracer, the code of all the graph-based baselines
are not publicly available. So we implement them by ourselves.

C. The Proposed Imitation-Learning-Based Baseline

We propose a new imitation-learning-based solution based on
our previous work iCurb [11], and the new solution is named
as enhanced-iCurb. To the best of our knowledge, iCurb is
the first work to solve the line-shaped object detection from
the perspective of imitation learning. In [11], a DAgger-based
solution is proposed. For each patch, the solution runs a round
of restricted exploration as well as N rounds of free exploration,
and aggregates the training dataset using the generated samples.
Let π∗ denote the expert policy and π̂ denote the learner policy.
The task is to learn the π̂ to mimic π∗. Let v̂t and v∗t respectively
denote the actions produced by π̂ and π∗ at time t. During the
sampling period, vt is used to denote the vertex to update the
graph.

With the obtained prediction v̂t, we set the closest pixel of
the ground-truth road boundary to v̂t as the label v∗t to train
iCurb. This algorithm generates the label on-the-fly and can
ensure iCurb not be affected by the teacher-forcing problem.
However, v∗t heavily relies on v̂t and does not have a unique
value, thus π̂ may make unpredictable actions and may converge
to a sub-optimal policy. In our experiments, for example, we find
that the edge length of the road boundary predicted by iCurb is
almost random sometimes. It requires careful parameter tuning
to prevent this. To make the training process more stable and
predictable, the orientation map MO is leveraged to calculate
v∗t and v∗t has a unique value. We first obtain the radian rt−1

of the previous vertex vt−1, then we find the first vertex of the
ground-truth road boundary inMO whose radian value has large
enough difference with rt−1, and this vertex is used as v∗t to train
iCurb. The new algorithm does not rely on v̂t so that it guarantees
unique v∗t , which improves the quality of the final graph. So the
label v∗t generated by enhanced-iCurb is more reasonable and
effective.
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TABLE I
THE QUANTITATIVE COMPARATIVE RESULTS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. FOR ALL THE METRICS, LARGER VALUES

INDICATE BETTER PERFORMANCE

Fig. 6. Qualitative demonstrations. Each row shows an example. The first column is the ground truth (cyan lines); column (b) to (d) are segmentation-based
baselines (green lines); column (e) to (i) are graph-based baselines and the last column shows the results of the new proposed imitation-learning-based baseline
(orange lines for edges and yellow nodes for vertices). For better visualization, the lines are drawn in a thicker width while they are actually one-pixel width. The
figure is best viewed in color. Please zoom in for details.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

We conduct experiments on a PC with an i7-8700 K CPU, an
NVIDIA GTX1080Ti GPU, and an RTX3090 GPU. The check-
point with the best performance on the validation set is selected
for inference. To measure the efficiency, we record the training
time cost as well as the inference time cost of each baseline, and
report their average time cost on each patch. For graph-based
baselines, the ground-truth initial vertices added with Gaussian
noise are used to start the iterative graph generation process.
Considering the trade-off between efficiency and effectiveness,
the number of rounds of the free exploration for both iCurb and
enhanced-iCurb is set to 1.

B. Evaluation Results

The comparative results are shown in Tab. I. Some qualitative
demonstrations are shown in Fig. 6. The average processing time
for efficiency evaluation is reported in Tab. II. As segmentation-
based baselines directly optimize on pixel values, they tend to

TABLE II
THE TIME CONSUMPTION OF THE BASELINES. WE REPORT THE AVERAGE TIME

TAKEN TO PROCESS A SINGLE IMAGE

present good F1-scores, even the naive baseline. Segmentation-
based baselines take relatively less time than graph-based base-
lines for training since they do not require an iterative process.
However, these baselines do not have satisfactory performance
on connectivity, because the spatial information of the patch
image cannot be fully leveraged. Compared with the Naive
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Baseline, DeepRoadMapper can propose candidate connections
to correct some disconnection and enhance the connectivity to
some extent. But it is still restricted by the accuracy of the
semantic segmentation. Once the segmentation network gives
poor results, DeepRoadMapper cannot effectively improve the
final performance. Moreover, generating correction candidates
increases the time cost. OrientationRefine iteratively refines the
obtained segmentation map in pixel-level with an extra network,
which can obtain more concise correction results. Thus Orien-
tationRefine achieves good connectivity and outperforms all the
other methods on F1-Score.

Instead of working on pixels, graph-based baselines gener-
ate the graph of road boundaries directly. Thus, they perform
well on connectivity. However, due to the sequential process
for graph generation, this kind of methods exhibit relatively
lower pixel-level accuracy when the patch image has compli-
cated scenarios. The training process of RoadTracer is fast
since it is a small network. But the performance is inferior
to others. VecRoad follows the similar idea of RoadTracer but
the network backbone is replaced with a more powerful one,
so its performance is improved but the training efficiency is
degraded. Even though ConvBoundary and DagMapper present
good results with point-cloud maps on their original tasks,
they do not present satisfactory performance on this task (i.e.,
road-boundary detection using aerial images). iCurb provides
a solution to this task using imitation learning. It gives better
F1-Score and connectivity thanks to the DAgger-based training
strategy. Enhanced-iCurb utilizes different algorithms to gen-
erate the training label and update the graph, which is more
stable and predictable. It has good performance on all metrics
and qualitative visualizations, thus the superiority of our new
proposed method is demonstrated.

VII. CONCLUSION

In this letter, we proposed a publicly available benchmark
dataset named Topo-boundary for topological road-boundary
detection using BEV aerial images. Topo-boundary has 25,295
patches. Each patch consists of a 4-channel aerial image and 8
labels for different deep-learning tasks. We also designed a new
metric for better connectivity evaluation. It was employed to
compare 9 baselines together with some metrics used in the past
works. The dataset and our implemented code for the baselines
were publicly available on our project page. In the future, we plan
to assign the prediction difficulty scores (i.e., smaller values for
easy cases, and larger values for hard cases) to further label the
dataset, so that the networks can be trained to be well adapted to
various scenarios. Moreover, the patches removed in this letter
will be considered for real-world applications.
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