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Abstract—High-Definition (HD) maps can provide precise geo-
metric and semantic information of static traffic environments for
autonomous driving. Road-boundary is one important information
presented in HD maps since it distinguishes between road areas and
off-road areas, which can guide vehicles to drive within road areas.
But it is labor-intensive to annotate road boundaries for HD maps
at the city scale. To enable automatic HD map annotation, current
work uses semantic segmentation or iterative graph growing for
road-boundary detection. However, the former could not ensure
topological correctness since it works at the pixel level, while the
latter suffers from inefficiency and drifting issues. To provide a
solution to the aforementioned problems, in this letter, we propose
a novel system termed csBoundary to automatically detect road
boundaries at the city scale for HD map annotation. Our network
takes as input an aerial image patch, and directly infers the con-
tinuous road-boundary graph (i.e., vertices and edges) from this
image. To generate the city-scale road-boundary graph, we stitch
the obtained graphs from all the image patches. Our csBoundary
is evaluated and compared on a public benchmark dataset. The
results demonstrate our superiority.

Index Terms—Autonomous driving, city-scale road-boundary
detection, HD map, self-attention.

I. INTRODUCTION

ROAD boundary is important for autonomous vehicles. It
can distinguish road areas from off-road areas, so that ve-

hicles could be constrained within safe regions and potential ac-
cidents could be avoided. Early work usually detects road bound-
aries with on-vehicle sensors, such as LiDAR and camera [1],
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[2]. However, robustly detecting road boundaries is challenging,
since boundaries are long-and-thin and usually with irregular
shapes. Moreover, occlusions often happen on real roads, which
severely degrades the detection performance. To provide a solu-
tion to the aforementioned problems, high-definition maps (HD
maps) have been widely used in existing autonomous driving
systems. Recent progress in this area has witnessed several meth-
ods using aerial images to automatically annotate line-shaped
objects (e.g., road-lane and road-boundary) in HD maps.

Typically, HD maps are hand-labeled from bird-eye-view
(BEV) images, such as high-resolution aerial images, or over-
head images from pre-built point-cloud maps. With the rapid
development of aerial photography and remote sensing, high-
resolution aerial images could be easily accessed all over the
world. In addition, unlike pre-built point-cloud maps that are
expensive to create and update, high-resolution aerial images
are more cost-effective. In our previous work, we released a
benchmark dataset of aerial images, topo-boundary [3], for
road-boundary detection. With this dataset, we propose to auto-
matically annotate a city-scale HD map of road boundaries in
New York City (NYC) in this work.

As a kind of geographic information system (GIS), HD map
has two primary ways to record spatial data: vector representa-
tion and raster representation. For line-shaped objects such as
road curbs, vector representation (i.e., graph with vertices and
edges) is usually adopted. Therefore, to automatically annotate
the HD map of road boundaries, we need to obtain the graph
of road boundaries. In real-world applications, since the aerial
images usually cover a very large area (e.g., a whole city), we
cannot directly produce the whole graph of the area due to the
limitation of computation resources. Instead, we apply a sliding
window to crop image patches and stitch the obtained graph
of each patch into the final city-scale HD map. In this way,
automatic HD maps annotation is divided into two sub-tasks:
(1) predict the graph of road boundaries within an image patch,
and (2) stitch the graph of different patches into a large city-scale
graph as the final draft HD map.

Few past works have exactly the same scope as this work (i.e.,
automatically annotate the city-scale HD map of road boundaries
from BEV aerial images), while they focus on related tasks, such
as road-lane detection [4]–[6], road-network detection [7]–[10],
road-curb detection [11], [12] and road-boundary detection [3],
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[13]. These works could be classified into three primary cat-
egories: segmentation-based methods, iterative-graph-growing
methods, and graph-generation methods. Most early works
on line-shaped object detection belong to segmentation-based
methods [14], [15]. They first predict the segmentation map
of the target object and conduct post-processing algorithms to
extract the final graph, such as skeletonization. Due to the poor
topology correctness of segmentation-based methods, some re-
cent work [7], [8], [11], [12] iteratively grow the graph vertex-
by-vertex in a sequential manner. Even though this category
of methods presents much better topology correctness, they
suffer from the drifting issue (i.e., error accumulation) and awful
parallelization capability. To address the shortcomings of the
aforementioned works, He et al. [9] first proposed to directly
generate the graph of line-shaped objects by using a carefully de-
signed graph encoding scheme. In this paper, we first predict the
key vertices of the input aerial image, then predict the adjacency
matrix of the obtained key vertices for graph edges. Since the
length of the obtained key vertices is variant, in the past, RNN
and iterative operations are utilized to handle various length
input [16]. But RNN and iterative operations are not efficient
and cannot make full use of long-term memories, thus a better
approach for adjacency matrix prediction is required. Compared
with RNN that requires sequential operations, transformer [17]
can directly handle various length input and is easier to be
parallelized. Considering the aforementioned characteristics of
transformer, in this paper, we propose to use it for adjacency
matrix prediction, so that the graph could be generated with-
out neither complicated post-processing nor iterative steps. To
the best of our knowledge, this is the first paper that makes
use of transformer to predict graphs for automatic HD map
annotation. The contributions of this work are summarized as
follows:

1) We propose a new approach to define keypoints of line-
shaped objects for road-boundary graph vertex detection.

2) We propose a novel adjacency matrix prediction network
named attention for adjacency network (AfANet).

3) We design a system named csBoundary for city-scale
road-boundary HD map automatic annotation in aerial
images.

II. RELATED WORKS

A. Segmentation-Based Methods

Many early works on line-shaped object detection extract
graphs by two-step segmentation-based methods [10], [14], [15],
[18]. They first predict the segmentation probabilistic map.
Since segmentation maps are in the raster format, a series of
post-processing is then conducted to refine the segmentation
results and extract the graph by geometric techniques, such
as binarization and skeletonization. Batra et al. [15] made use
of the orientation map to enhance the segmentation result of
road networks, and trained another network to refine the seg-
mentation result, which greatly improves the correctness of
the final output. However, even with carefully-designed post-
processing, this category of method still suffers from serious
topology errors, such as incorrect disconnections and ghost
connections.

B. Iterative-Graph-Growing Methods

RoadTracer [7] is believed to be the first work that predicts
the graph of line-shaped objects by iterative-graph-growing
methods. The authors first manually selected several initial
vertices of the road network. Then, starting from these initial
vertices, a decision-making network was trained to predict the
coordinate of the next vertex. In this way, the road-network
graph was generated vertex-by-vertex through iterative graph
growing. This method is also adapted to other tasks, such as road-
boundary detection [3], [13] and road-curb detection [11]. [13]
could present satisfactory results on road-boundary graph pre-
diction, but it only works on the highway with simple and clean
scenarios. Our previous work [3] could achieve good detection
performance, but it takes a huge amount of time for training and
inference due to the inefficient iterative steps. Moreover, since
the prediction error is accumulated with the growing graph, this
category of method is difficult to be extended to city-scale tasks.

C. Graph-Generation Methods

Directly predicting graphs from images is a challenging task,
since graphs may have different numbers of vertices and the
relationship between vertices (e.g., edges) is difficult to formu-
late. There are some past works utilizing vector fields to achieve
graph prediction [9], [19], [20]. Xue et al. [19] aimed to predict
line segments of an image. They proposed a vector field named
attraction field which could be predicted by segmentation net-
works. Then the authors designed a decoding scheme to recover
line segments from the predicted attraction field. Similarly, [20]
proposed a new vector field to predict the polygon of buildings
in satellite images. [9] is believed to be the first work that detects
line-shaped objects in BEV images of this category of methods.
In this paper, each pixel of the input image was encoded by
a 19-dimensional vector. Then the 19-dimensional encoding
tensor was predicted by neural networks. Finally, the graph was
decoded from the predicted encoding tensor by the proposed
decoding algorithm. However, this method cannot distinguish
edges with small included angles. Moreover, this category of
methods heavily relies on the heuristic decoding algorithms,
which limits their generalization ability.

D. Transformer

Transformer [17] has been widely applied in deep learning
tasks in recent years. The main module of transformer is the
self-attention layer, which could handle various length input.
Compared to RNN that has been widely used in the past, trans-
former is much more efficient due to the good parallelization
ability [17]. Transformer has been applied in graph neural net-
works (GNNs) [21], but extracting graphs from images is not
fully explored yet. To the best of our knowledge, this is the first
work that uses transformer for automatic HD map annotation.

III. THE PROPOSED METHOD

A. The Method Overview

In this paper, we aim to solve the problem of automatically an-
notating city-scale road-boundary HD maps using aerial images.
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Suppose the input is a set of aerial image patches {Ii}Ni=1 which
covers a large area (e.g., a whole city), then the output should
be a city-scale road-boundary graph G = (V,E). Since the city-
scale aerial images cover a very large area, the road-boundary
graph could not be obtained directly due to the limitation of
computation resources. Therefore, the problem is divided into
two sub-problems: (1) how to detect the road-boundary graph
Gi in a single aerial image patch Ii cropped by a sliding window;
and (2) how to stitch the predicted graph of all patches {Gi}Ni=1

into the final city-scale road-boundary graphG. The graphG can
be used as the draft HD map of road boundaries for autonomous
driving. The pseudocode of our system is shown in Algorithm
1, and the corresponding section I D is listed in the comment of
each key step. Please refer to our supplementary document [22]
for more details. The system diagram is provided in Fig. 1.

Like [9], our csBoundary belongs to the graph-generation
method and it predicts the road-boundary graph without heuristic
post-processing or iterative operations. csBoundary first pre-
dicts two probabilistic maps by the feature pyramid network
(FPN) [23], including a keypoint map and a road-boundary
segmentation map. These two maps are then concatenated with
the input aerial image Ii into a 6-D feature tensor. Based on
the predicted keypoint map, we conduct a series of processing
to find the local maximum, and extract the coordinates of graph
vertices, whose length is denoted byM . To predict the adjacency
matrix of vertices, inspired by the self-attention mechanism in
transformer networks, we propose the attention for adjacency
network (AfANet). Taken as input the 6-D feature tensor and
coordinates of extracted graph vertices, AfANet directly outputs
the adjacency matrix. Centering at each extracted vertex, we
crop a L× L-sized region of interest (ROI) on the 6-D feature
tensor and calculate a 1024-length local feature vector by the
AfANet encoder. Similarly, the whole 6-D feature tensor is sent
to the encoder to obtain a 1024-length global feature vector.

These two feature vectors are concatenated together with the
coordinate of the current vertex as the final vertex embedding,
whose length is 2050. After processingM extracted vertices, we
have M 2050-length vertex embedding vectors. Then, AfANet
predicts the adjacency matrix of graph vertices by the decoder
network. Based on the predicted graph vertices and adjacency
matrix, we can compute the graph Gi of the input aerial image
patch Ii. Finally, we stitch the graph of all patches {Gi}Ni into
the final city-scale road-boundary graph.

B. Aerial Image Data Split and Expansion

In this paper, the aerial images are from the benchmark
dataset released in our previous work [3]. In the dataset, there
are 2,049 4-channel 5000× 5000-sized high-resolution aerial
image tiles that cover 5 boroughs of the whole NYC. Due to
the memory limitation of GPU devices, we split each tile into
25 1000× 1000-sized image patches. The data split method is
visualized in Fig. 2. In our previous work, we did not consider
graph stitching and removed some image patches based on pro-
posed filtering rules. While in this paper, we keep all the image
patches and follow the idea of [10] for city-scale graph stitching.
For each image patch, we expand its size to create overlapping
areas between adjacent image patches. The overlapping areas are
critical to the stitching process. More details will be discussed
in the following subsections. The visualization for the image
expansion is shown in Fig. 3.

C. FPN and Keypoint Map

Feature pyramid network (FPN) [23] is widely used in the
past works on line-shaped object detection [5], [11], [13] due
to its great ability to capture multi-scale image features. In
csBoundary, FPN is utilized for keypoint map and segmentation
map prediction. The keypoint map can detect keypoints of road
boundaries, and some keypoints will be treated as vertices of the
output graph. The segmentation map is used to detect foreground
road-boundary pixels. Unlike human pose estimation [24] and
road network detection [9] that usually have clearly defined
unique keypoints (e.g., joints for human skeleton and crossroad
for road network), road boundaries are usually polylines without
branches. Therefore, it is hard to find unique keypoints with clear
semantic meanings. To provide a solution to conquer this, we
make use of the orientation map [15] that records the direction
vector of each pixel, and define pixels whose orientation has
large enough differences with adjacent pixels as keypoints. In
short, pixels where the road-boundary curvature is large enough
are treated as keypoints. In addition, within each image patch,
we define the intersection points of the road-boundary and image
edges as keypoints for graph stitching. Sometimes the keypoints
defined by the aforementioned methods may be too sparse, thus
we add extra lines to create more intersection points as auxiliary
keypoints. Examples of keypoints are visualized in Fig. 4.

D. Vertex Extraction

Graph vertices are extracted from the predicted keypoint map
by finding local peaks. After obtaining the predicted keypoint
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Fig. 1. The system overview of csBoundary. (a) Taken as input a 4-channel aerial image Ii, we first predict the keypoint map and segmentation map of road
boundaries by using FPN. Then these maps are concatenated into a new 6-channel feature tensor; (b) Based on the predicted keypoint map, a set of processing
is conducted to extract the vertex coordinates of the graph of which the length is M ; (c) For each extracted vertex, we crop a L× L-sized ROI centering at the
keypoint. Then the ROI is sent to an encoder network to calculate the local feature vector. Similarly, a global feature vector can be obtained. Then we concatenate
feature vectors with the keypoint coordinate into the final embedding of the current vertex; (d) AfANet predicts the adjacency matrix of extracted vertices based
on the vertex embeddings. Then, the road-boundary graph Gi of Ii is obtained based on vertices and the adjacency matrix. Finally, we stitch the graph of all aerial
images {Gi}Ni=1 into the final city-scale road-boundary graph G. For better visualization, only RGB channels are visualized for aerial images. Please zoom in for
details.

Fig. 2. Visualization of data split in the original dataset. The aerial images
of the dataset cover the whole NYC. There are 5 boroughs in NYC and they
are illustrated in different colors. In each borough, there are a set of image
tiles whose size is 5000× 5000. Considering the limited GPU memory, each
image tile is further split into 25 1000× 1000-sized image patches. There are
no intersection areas between adjacent patches.

Fig. 3. Visualization of image patch expansion. In this paper, all aerial image
patches are expanded into 1100× 1100-size, which creates intersection areas
between adjacent patches (light gray and dark gray areas). Dashed rectangles
on the right represent the original image edges. These intersection areas will
benefit the graph stitching process.

map, we first find its skeleton. Then, for isolated keypoints
whose corresponding skeleton instances are short, we directly
use the center of the skeleton as graph vertices. While for
rounded-corner keypoints that many points gather together,
the skeleton will be curved line segments, then we only add

Fig. 4. Demonstration of keypoints. There are generally two types of key-
points. (1) Intersection keypoints. This category of keypoints is the intersection
points of road boundaries and manually defined lines, such as the edge of the
current patch (blue dash line), the edge of adjacent patches (green dash line)
and extra lines (orange dash line); (2) Corner keypoints. They could be gathered
keypoints at rounded-corners (yellow points in region (A) or isolated keypoints
locating at curve road boundaries with sharp corners or gradual curvature
changes (yellow points in region (B)). All keypoints are uniquely defined.

endpoints of the curved line segments into the graph vertex set.
In the final graph, the rounded-corner vertices are connected
by corresponding skeletons directly without adjacency matrix
prediction. The vertex extraction pipeline is shown in Fig. 5.

E. Adjacency Matrix Prediction

After graph vertex extraction, the connection relationship
between vertices (i.e., edges) should be predicted. In past works,
this is usually done by heuristic algorithms that decode edges
from carefully designed vector field maps [9], [20]. To further
enhance the effectiveness and efficiency of graph edge predic-
tion, inspired by transformer and self-attention mechanism, we
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Fig. 5. Vertex extraction pipeline. Yellow points denote the skeleton of the
predicted keypoint map, and red points represent the extracted graph vertices.
(a) For gathered keypoints (i.e., whose skeleton is a curved line segment), we
only keep two endpoints of the skeleton and add them into the graph vertex set
(red points), while other points are not added (cyan line). In the final graph,
we will connect the endpoints by the cyan line; (b) For isolated keypoints, we
directly calculate its skeleton and add the center point of the skeleton into the
graph vertex set.

propose the attention for adjacency net (AfANet) to predict the
adjacency matrix of the graph.

First, for each extracted graph vertex, we calculate a vertex
embedding by the AfANet encoder. Then we put the embedding
vector of all vertices into the AfANet decoder and obtain the
adjacency matrix.

1) AfANet Encoder: The vertex embedding is produced by a
multi-layer convolutional encoder network. Each vertex embed-
ding is of 2050-length, which is concatenated by a 1024-length
global feature, a 1024-length local feature and the normalized
2-D coordinates of the corresponding vertex. The global feature
is obtained by directly passing the 6-D feature tensor through the
encoder network. For the local feature, we crop a L× L-sized
ROI (L is 64 in our experiment) on the 6-D feature tensor and
send it to another branch of the encoder network. Suppose M
vertices are extracted, then we will have a M × 2050-sized
feature tensor containing the information of all vertices by the
encoder network.

2) AfANet Decoder: AfANet decoder is inspired by the self-
attention mechanism. It can handle various length input and
predict the adjacency matrix of the input directly. Suppose the
size of the input is M × d, then the shape of output is M ×M .
The attention module of AfANet decoder is modified from the
original self-attention module [17]:

Attention(Q,K,V) = softmax(norm(Q) · norm(K)) ·V
(1)

The AfA module only utilizes Q(Query) and K(Key), and out-
puts the dot-product attention map as the adjacency matrix:

AfA(Q,K) = norm(Q) · norm(K) (2)

The structure of the AfANet decoder is visualized in Fig. 6.

F. Graph Stitching

Following the Broad Area Satellite Imagery Semantic Seg-
mentation (BASISS) method [10], before extracting vertices
from keypoint maps, we stitch predicted keypoint maps by
averaging the intersection areas (e.g., for an intersection area

Fig. 6. The visualization of AfANet decoder. Taken M × 2050-sized vertex
embedding tensor as input, AfANet decoder predicts the M ×M -sized adja-
cency matrix of extracted graph vertices. (a) The general network structure of
the AfANet decoder; (b) The modified attention module; (c) The AfA module.

Fig. 7. Demonstration of graph stitching. The blue image patch is adjacent
to the red one (blue patch on the left and red patch on the right). For better
visualization, they are placed vertically. The gray areas are the intersection
areas. The graph of the blue patch (yellow edge and orange vertex) and the
red patch (green edge and cyan vertex) are predicted separately. Purple vertices
are shared by both patches. These two patches could be stitched together easily
by connecting exclusive vertices of two patches with the shared vertices.

of two keypoint maps, its value is the average of corresponding
areas of these two keypoint maps). In this way, the intersection
area of adjacent predicted keypoint maps will be exactly the
same. Then, we extract vertices from the keypoint map of both
image patches, and there will be some shared vertices within
the intersection area. The graph of the two adjacent image
patches could be stitched together easily by connecting exclusive
vertices of two patches with the shared vertices. An example
demonstrating the graph stitching process is shown in Fig. 7.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

We use the dataset released from our previous work topo-
boundary [3]. But different from topo-boundary, in this paper,
we aim to solve the city-scale road-boundary graph detection
problem, while topo-boundary only focuses on patch-scale de-
tection. Topo-boundary also removes some image patches by
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Fig. 8. Qualitative visualization. Each subfigure is of 2000× 2000-sized. (a) The ground truth (cyan lines); (b) Results of OrientationRefine (green lines); (c)
Graph obtained by enhanced-iCurb (orange lines); (d) Graph obtained by Sat2Graph (orange lines). It cannot present reasonable results since its encoding scheme
cannot be well adapted to our task; (e) Graph obtained by csBoundary. Yellow points are normal vertices, red points are rounded-corner vertices, orange lines are
normal edges and cyan lines are edges connecting corresponding rounded-corner vertices. Please zoom in for details.

proposed filtering rules, such as hard patches with complicated
scenarios. In this paper, we consider all patches without filtering.

There are 2,049 4-channel 5000× 5000-sized aerial image
tiles in the dataset. We split each tile into 25 1000× 1000-sized
image patches considering the limited memory resources of
GPU devices. Then for city-scale graph stitching, we expand
each image patch into 1100× 1100-size. We split the dataset
by borough (Manhattan, Brooklyn, Queens, Bronx, and Staten
Island), which is visualized in Fig. 2. In our experiments, the
Staten Island borough is for testing, while other boroughs are
for training and validation.

B. Implementation Details

In our experiments, we first train the FPN for 10 epochs
with the learning rate as 0.001 and decay rate as 10−4. Then
we extract graph vertices based on predicted keypoint maps.
To enhance the performance of AfANet, we first pre-train the
network with ground-truth graph vertices, and then train AfANet
with the graph vertices extracted from predicted keypoint maps
for 20 epochs. The adjacency matrix label can be calculated
by using graph vertices and ground-truth road-boundary binary
label maps. During inference, we run an extra graph stitching
step. We conduct experiments on a PC with an i7-8700 K CPU
and an RTX3090 GPU. For better evaluation and comparison, in
our experiments, we provide the patch-scale evaluation results
(i.e., graph within a single patch) which are the same as topo-
boundary, and the city-scale evaluation results (i.e., graph after
the stitching step).

C. Evaluation Metrics

In our experiments, we have 5 metrics for evaluation, includ-
ing 3 pixel-level metrics (i.e., Precision, Recall and F1-score)

following our previous work [3], and two topology-level metrics,
i.e., Average path length similarity (APLS) [25] and too long/too
short (TLTS) similarity [26]. These metrics are sufficient to pro-
vide a comprehensive and fair comparison for different methods.

1) Pixel-Level Metrics: Precision, Recall and F1-score are
three relaxed metrics to measure the correctness of the pre-
dicted graph at pixel level. We first rasterize the predicted
road-boundary graph (i.e., convert vector graph to raster im-
age), and denote obtained foreground pixels as P = {pi}Np

i=1.
Similarly, we rasterize the ground-truth road-boundary graph as
Q = {qi}Nq

j=1. Suppose the relax ratio is τ . Then we have

Precision =
|{p|d(p,Q) < τ,∀p ∈ P}|

|P | ,

Recall =
|{q|d(q, P ) < τ,∀q ∈ Q}|

|Q| ,

F1-score =
2Precision ·Recall

Precision+Recall
, (3)

where | · | represents the number of elements of a set, and d(e, S)
calculates the shortest Euclidean distance between an element e
and a setS. Relax ratio τ could reflect the level of error tolerance.
In our experiments, we show the results by setting τ as 2, 5 and
10 pixels, respectively.

2) APLS and TLTS: In many past works, APLS and TLTS
are utilized to measure the topology correctness of the obtained
graph. Let G denote the ground-truth graph and P denote the
predicted graph. Then we randomly select two vertices {g1, g2}
from G, and calculate the shortest path between g1 and g2
as l(g1, g2). Finally, we find the two corresponding vertices
{p1, p2} in P and calculate l(p1, p2). Then the APLS score of
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TABLE I
THE PATCH-SCALE QUANTITATIVE COMPARATIVE RESULTS

The Best Results are Highlighted in Bold Font. For All the Metrics, Larger Values Indicate Better Performance.

TABLE II
THE CITY-SCALE QUANTITATIVE COMPARATIVE RESULTS

The Best Results are Highlighted in Bold Font. For All the Metrics, Larger Values Indicate Better Performance.

TABLE III
THE TIME CONSUMPTION OF THE METHODS. WE REPORT THE AVERAGE TIME

TAKEN FOR ONE EPOCH

this vertex pair is

APLS = 1−min(1,
|l(g1, g2)− l(p1, p2)|

l(g1, g2)
) (4)

After sampling a certain number of vertex pairs, the final
APLS score is the mean of APLS of all vertex pairs. TLTS
also relies on randomly sampled vertex pairs and shortest path
calculation. Define an error tolerance threshold φ (default value
is 0.05 in our experiment), if the difference between l(g1, g2)
and l(p1, p2) is larger enough, i.e.,

|l(g1, g2)− l(p1, p2)| > l(g1, g2) · φ, (5)

then this vertex pair is said to be too long or too short. TLTS is
the ratio of vertex pairs that are not too long or too short.

D. Comparative Results

In this section, we evaluate csBoundary together with the
other three baseline models that belong to different categories of
methods. The city-scale evaluation results are shown in Table II
and patch-scale evaluation results are listed in Table I. The
average time usage is shown in Table III. The qualitative results
are visualized in Fig. 8.
� OrientationRefine (ICCV2019) [15]: This baseline is a

typical segmentation-based work. It first predicts the seg-
mentation map of road networks and then corrects the
segmentation results by another refinement network.

� Enhanced-iCurb (RA-L2021) [3]: This baseline is the state-
of-the-art iterative-graph-growing work. Starting from ini-
tial vertices, it iteratively generates the road-boundary
graph vertex by vertex.

� Sat2Graph (ECCV2020) [9]: This baseline is believed to
be the first work that can directly predict the graph of
line-shaped objects from the graph generation perspective.
After extracting keypoints, Sat2Graph can obtain graph
edges by decoding the predicted vector field map.

From Tables I and II, it is found that pixel-level metric scores
are similar for patch-scale evaluation and city-scale evaluation,
since pixel-level metrics focus on locality, which is not greatly
affected by the graph stitching process. However, APLS and
TLTS of the city-scale results are much lower than that of the
patch-scale results because city-scale evaluation requires longer
correctly connected paths in the final graph.

OrientationRefine presents good pixel-level performance,
since it directly optimizes the results on pixels. However, the re-
sults of OrientationRefine severely suffer from topology errors,
such as incorrect disconnections and ghost connections. More-
over, these topology errors could not be effectively corrected by
post-processing. Thus, this method has relatively worse APLS
and TLTS scores. Although enhanced-iCurb could better handle
the graph topology and presents satisfactory results in most
urban areas, its performance greatly drops when the scenario
is complicated and irregular (e.g., in suburbs) due to the error
accumulation and drifting problems. Besides, it takes a quite
long time to train due to the iterative operations that are hard to
accelerate. The original Sat2Graph cannot obtain meaningful
results because of the isomorphic encoding issue mentioned
in the last section of the Sat2Graph paper [9], which makes
the choice of keypoints not unique so that the graph vertices
cannot be accurately extracted. Thus, in the experiment, we use
graph vertices extracted by our method to implement Sat2Graph.
However, different from keypoints of the road network, the
road-boundary keypoints in this paper could be very far or
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TABLE IV
THE QUANTITATIVE RESULTS OF CITY-SCALE ABLATION STUDIES

The Best Results are Highlighted in Bold Font. For All the Metrics, Larger Values Indicate Better Performance.

closed to each other, which makes the encoding scheme of
Sat2Graph not suitable for our task. As a result, Sat2Graph
cannot effectively capture the connection information (i.e., edge)
between vertices, and has inferior outcomes. Compared to the
aforementioned baselines, the superiority of our csBoundary is
well demonstrated. csBoundary presents good topology correct-
ness as well as pixel-level performance without affecting the
efficiency thanks to the AfANet.

E. Ablation Studies

In the ablation studies, we evaluate the necessity of local
feature and global feature of the vertex embedding. The local
feature captures the local visual information of graph vertices,
which is critical to describe a vertex; the global feature is
shared by all vertices and it represents the spatial as well as
the visual information of the whole image. Both features are
critical for vertex embedding, and removing either of them will
harm the comprehensive description of a vertex, thus making
the final evaluation results degraded. Based on the results shown
in Table IV, the importance and necessity of local feature and
global feature of the vertex embedding are confirmed.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed csBoundary, a novel method to
automatically annotate city-scale road-boundary HD maps from
high-resolution aerial images. To achieve the goal, the graph
of the road-boundary needs to be correctly detected. We first
predicted the keypoint map and extracted graph vertices by pro-
posed algorithms. Then inspired by the self-attention mechanism
of transformer, we designed AfANet to obtain edges of the graph
by predicting the adjacency matrix of graph vertices. CsBound-
ary was evaluated on a public benchmark dataset released by
our previous work. Comparative experiments were conducted to
verify the superiority of csBoundary over past works. We also
justified the rationality of the design of csBoundary by several
ablation studies. The effectiveness and efficiency of csBoundary
were demonstrated by the experimental results. In the future, we
plan to adapt AfANet to other line-shaped object detection tasks
to illustrate the generalization ability of our proposed method.
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