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Expanding Sparse LiDAR Depth and Guiding Stereo
Matching for Robust Dense Depth Estimation

Zhenyu Xu'”, Yuehua Li

Abstract—Dense depth estimation is an important task for ap-
plications, such as object detection, 3-D reconstruction, etc. Stereo
matching, as a popular method for dense depth estimation, has been
faced with challenges when low textures, occlusions or domain gaps
exist. Stereo-LiDAR fusion has recently become a promising way to
deal with these challenges. However, due to the sparsity and uneven
distribution of the LiDAR depth data, existing stereo-LiDAR fusion
methods tend to ignore the data when their density is quite low or
they largely differ from the depth predicted from stereo images.
To provide a solution to this problem, we propose a stereo-LiDAR
fusion method by first expanding the sparse LiDAR depth to a
semi-dense depth with RGB image as reference. Then, based on
the semi-dense depth, a varying-weight Gaussian guiding method
is proposed to deal with the varying reliability of guiding signals.
A multi-scale feature extraction and fusion method is further used
to enhance the network, which shows superior performance over
traditional sparse invariant convolution methods. Experimental
results on different public datasets demonstrate our superior accu-
racy and robustness over the state of the arts.

Index Terms—Computer vision for automation, sensor fusion,
Al-based methods.

1. INTRODUCTION

ENSE depth estimation is an important task in robotic vi-
D sion. It plays a crucial rolein various applications, such as
object detection and 3-D reconstruction, etc. Stereo matching is
one way to estimate dense depth. Traditional methods basically
follow the procedure including matching-cost calculation, cost
aggregation, disparity iteration and results refinement. Recently,
deep learning [1] has been employed in stereo matching. Some
end-to-end networks based on the encoder-decoder structure

Manuscript received 21 August 2022; accepted 10 January 2023. Date of
publication 26 January 2023; date of current version 3 February 2023. This
letter was recommended for publication by Associate Editor A. I. Comport and
Editor C. C. Lerma upon evaluation of the reviewers’ comments. This work
was supported in part by the National Natural Science Foundation of China
under Grant U21B6001, in part by the National Key Research and Development
Program of China under Grant 2018AAA0102700, in part by the Ten Thousand
Talents Program of Zhejiang Province under Grant 2019R51010, and in part by
the Stable Support Project of State Administration of Science, Technology and
Industry for National Defence Grant, PRC under Grant HTKJ2019KL502005.
(Corresponding author: Yuehua Li.)

Zhenyu Xu is with the Research Center of Intelligent Robotics, Zhejiang Lab,
Hangzhou 311121, China (e-mail: xuzhenyu@zhejianglab.com).

Yuehua Li is with the Research Center of Beijing, Zhejiang Lab, Hangzhou
311121, China (e-mail: liyh@zhejianglab.com).

Shigiang Zhu is with Zhejiang Lab, Hangzhou 311121, China (e-mail:
zhusq@zhejianglab.com).

Yuxiang Sun is with The Hong Kong Polytechnic University, Kowloon, Hong
Kong (e-mail: sun.yuxiang @outlook.com).

Our code is available at: https://github.com/xzy-yqm/EG-Depth.

Digital Object Identifier 10.1109/LRA.2023.3240093

, Member, IEEE, Shigiang Zhu, and Yuxiang Sun

, Member, IEEE

with 2-D convolution have been proposed [2]. Some recent
state-of-the-art (SOTA) methods [3], [4] adopt the 3-D convolu-
tional neural network (CNN). Although promising performance
has been achieved by the existing methods, there are still some
open challenges, for example, low textures and occlusions in the
environments, as well as domain gaps especially when there are
no sufficient training data. Although there are some solutions,
such as domain translation [5], feature-layer normalization [6],
multi-scale feature extraction [7], the performance is still not
satisfactory.

As an accurate distance-measurement device, 3-D LiDAR
provides another way to obtain depth data. It is capable of
producing accurate depth in low-texture environments and per-
forms well across different domains. However, it is still very
expensive to obtain dense depth data with LiDARs, because
the price significantly increases with the increasing number of
light beams. Although LiDARSs can only produce sparse depth
measurements, the depth data are still valuable to dense depth
estimation. Some works have adopted the idea of incorporating
the sparse LiDAR depth into depth estimation to produce dense
depth [8], [9]. But existing methods mainly focus on the regions
with LiDAR points. For the regions without LiDAR points,
the depth estimation performance is not satisfactory. To deal
with the challenges in domain adaption and depth completion,
stereo-LiDAR fusion has attracted great interests in recent years.
For example, directly fusing the sparse LiDAR points in the
input [10] or feature layer [11], [12], and directly using the
sparse LiDAR points to guide the stereo matching [13]. These
two methods have become the mainstream ways.

Inspired by [14], which tackles low density and imbalanced
distribution problem by constructing a network to expand the
sparse LiDAR data, we propose a much lighter and more flexible
expansion scheme to expand sparse LiDAR points to a semi-
dense depth maps using RGB information. Then, the cooperation
among further data fusion, stereo-matching guiding and the
proposed expansion scheme is explored. Instead of modifying
sparse invariant convolution [15] to a multi-scale version [16],
we combine the sparse expansion with normal multi-scale fea-
ture extraction [7], [17] to obtain the sparse features for further
data fusion. A novel stereo-matching guiding method is also
proposed to absorb the expanded data in the guidance rather
than using the original sparse data only [13]. Finally, the dense
depth can be obtained by cost aggregation through the commonly
used cascaded 3D CNN [7], [18]. The experimental results
demonstrate that the sparse expansion can not only improve
the stereo-matching guiding but also boost the performance
of sparse feature fusion. Even with small percentage of sparse
inputs, the proposed network notably increases the robustness
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against domain shifts. The main contributions of this letter are
summarized as follows:

1) We propose a novel light-weight sparse expansion scheme
to flexibly use the RGB information and the corresponding
sparse LiDAR points to generate a semi-dense depth map.

2) We propose a novel varying-weight Gaussian guiding
method to exploit the expanded points together with orig-
inal LiDAR points for cost volume aggregation guidance.

3) We are the first to combine the normal multi-scale feature
extraction with sparse data expansion to deal with sparse
feature extraction, which shows superior performance
than sparse invariant convolution.

II. RELATED WORK
A. Stereo Matching

The existing end-to-end stereo matching networks mainly
adopt the encoder-decoder structure. They can be generally
divided into 2-D CNN-based methods [2] and 3-D CNN-based
methods [3]. The 3-D CNN-based methods, such as [4], [7],
are leading the KITTTI lead board. However, compared to 2-D
convolution, 3-D convolution requires more memories and com-
putation resources. By utilizing simplified cost aggregation [19]
or coarse-to-fine cascaded convolution [18], the computation
load can be reduced at the promise of depth estimation accuracy.

As aforementioned, stereo matching faces some problems,
such as low textures, occlusions, and domain gaps. To deal with
the former two problems, Rao et al. [20] incorporated global
texture information into depth estimation, while edge-stereo [21]
exploits the edge cues to enhance the performance. For the latter,
input domain transformation [5], feature normalization [6] and
multi-scale feature extraction [7], [18] are popular methods.

B. Depth Completion

Depth completion with 3-D LiDAR points is another way
to recover dense depth data. Compared to depth prediction
methods [22], [23] based on monocular images, depth com-
pletion networks [24], [25] could produce depth with higher
accuracy, because the depth information of some sparse points is
prior-known. With the available sparse depth information, Uhrig
et al. [15] proposed sparse invariant convolution, which proved
to be more effective than ordinary convolution.

The KITTI depth completion benchmark has been widely
used for evaluating depth estimation performance with sparse
LiDAR points as input. Performance increment can be observed
when RGB images are introduced to the depth completion
task [26]. Most existing depth completion works [24], [25]
focus on robust depth estimation with both RGB images and
sparse LiDAR points. With RGB information, experimental
results from [11], [27] demonstrate that the ordinary convolution
tends to produce more robust results than the sparse invariant
one. From the results of [11], [27], it can be observed that
these methods focus on regions with LiDAR points distributed.
Extrapolation to regions without sparse points is still an open
question.

Different from the existing works, our work regards the sparse
LiDAR points as complementary information to enhance stereo
matching in the way of fusion and guidance. Motivated by
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depth completion, the sparse LiDAR points are expanded to
semi-dense maps with the guidance of RGB image for further
processes. Besides, the feature extraction method is also studied
to get better semi-dense depth features.

C. Stereo-LiDAR Fusion

With stereo images and sparse LiDAR points, stereo-LiDAR
fusion networks are supposed to produce more robust and accu-
rate dense depth estimation results. There are mainly two ways to
incorporate sparse LiDAR points with stereo images: fusing the
sparse points in different stages, and utilizing the sparse points
to guide the cost aggregation of cost volumes.

The work [10] directly fuses the sparse LiDAR points in
the input stage by projecting them to the image plane. The
networks [12], [28] extract the sparse features in 2-D and 3-D,
respectively. Similar to depth completion, Zhang et al. [11]
used ordinary convolution for sparse feature extraction and got
superior results than the sparsity-invariant one. In our work, we
make a step further by adopting multi-scale feature extraction
to obtain features with more diversity receptive fields.

For using sparse LiDAR points as guidance, Wang et al. [10]
utilized the sparse information for conditional normalization
of the cost volume. Paggi et al. [13] exploited it to conduct a
Gaussian modulation for cost volume along the depth dimension.
Huang et al. [14] introduced a learnable network to expand
sparse LiDAR points in the height and width dimensions of
images for further guidance, which inspires us to do the expan-
sion before fusion and guidance. But different from the existing
work [14] that constructs a network to learn the patterns of sparse
LiDAR expansion, we propose a simple yet effective expansion
method with the guidance of RGB images.

III. THE PROPOSED NETWORK

A. Network Overview

Fig. 1 displays the overview architecture of our proposed
dense depth estimation network. It mainly consists of four
parts: 1) the sparse expansion (SE) module, which expands the
sparse LiDAR points with the guidance of an RGB image to
a semi-dense depth map; 2) the multi-scale feature extraction
and fusion (MFEF) module, in which the features of the input
stereo images and the features of the semi-dense depth map are
extracted respectively. The extracted features are then fused by
concatenation at multiple scales; 3) varying-weight Gaussian
guiding (VWGG) module, which generates varying Gaussian
distributions depending on the reliability of the semi-dense
depth map to modulate the 4-D cost volumes for guiding cost
aggregation. The cost volume refers to the volume constructed
by correlation and concatenation between features from the two
images and the semi-dense depth map; 4) cascaded 3-D CNN is
adopted along with the multi-scale features to get the final depth
map.

B. Sparse Expansion (SE) Module

Depth completion works, such as [12], [28], have shown
powerful capability to recover depth from monocular images and
sparse LiDAR points. The work [14] implies that the expansion
in the height and width dimension of sparse depth points is
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The architecture of our proposed network. It consists of four modules: sparse expansion (SE) module, multi-scale feature extraction and fusion (MFEF)

module, varying-weight Gaussian guiding (VWGG) module, and cascaded 3-D CNN module. We initially expand the sparse LiDAR points with the guidance of an
RGB image. Based on the semi-dense depth map, we use the MFEF module to obtain features from the LiDAR data and stereo images. After fusing the features,
the cost volume is constructed and guided by the semi-dense depth map with the VWGG module. Finally, the depth map can be obtained after cost aggregation

through the cascaded 3-D CNN. The figure is best viewed in color.

Algorithm 1. The Sparse Expansion Algorithm.

Input: RGB image I and LiDAR projected image D
1 begin

2 | for D(z,y) >0, x € [0,W—1],y € [0,H—1]: do
3 for D(z+a,y+ ) =0, a,8 € [-R,R]: do
4 if 0<z+a<W and 0<y+[ < H: then
5 d;gb <
L My, 0) L+ o,y +B,0)]
if d,q, <t: then

6 | Dexp(e +a,y + ) < D(z,y)

7 end

8 end

9 end

10 end

1 forz € [0,W —1], y€ [0,H —1]: do

12 Initialize: Dan(z,y) =0

13 if D(z,y) > 0: then

14 | Dan(z,y) < D(z,y)

15 end

16 if Dexp(z,y) > 0: then

17 ‘ Dall(wv y) — Dexp(xv y)

18 end

19 end
20 end

beneficial for guiding stereo matching. This motivate us to find
a simple yet effective way to do the expansion of sparse LIDAR
points with monocular visual cues.

The procedure of sparse expansion is illustrated in Fig. 2. For
simplicity, we project points in the LiDAR coordinate frame into
the camera frame using the extrinsic and intrinsic parameters.
Thus, the input of the sparse expansion module is an RGB image
I and a LiDAR projected image D, where I(z, y, ¢) represents
the value of each channel ¢ € [0,C — 1] at the pixel location
(x,y),x € [0,W —1],y € [0, H — 1], and D(z,y) represents
the corresponding depth value. W, H is the width and the height
of the image while C' is the channel number (C' = 3 for RGB
image). We expand a valid sparse point, D(z,y) > 0, to its

Fig. 2. The procedure of sparse expansion. The valid depth value of the
projected LiIDAR image is expanded to its invalid neighbourhood when the mean
difference of the value on all RGB channels is less than a predefined threshold.
The figure is best viewed in color.

invalid neighborhoods, D(z + a,y + 8) < 0,,5 € [-R, R],
if the mean difference of RGB value between the valid sparse
point and the neighborhood point is smaller than a given thresh-
old ¢. R is the maximum neighborhood range, which equals
2 in Fig. 2. After the expansion of all valid sparse points,
the expansion depth map, Dexp, Where Dexp(x,y) denotes
the depth value at the pixel location (z,y),x € [0, W — 1],y €
[0, H — 1], can be obtained. Then, the final output semi-dense
depth map D,y can be generated by combining the original
sparse depth D and the expansion one Dexp. Algorithm 1
describes the detailed expansion process.

C. Multi-Scale Feature Extraction and Fusion
(MFEF) Module

The results from depth completion [27] and stereo-LiDAR
fusion [11] demonstrate that ordinary convolution is superior
to sparse invariant convolution [15] when the image and sparse
depth data are fused. We make a step further to adopt multi-scale
feature extraction [7] for both image and expanded sparse points
feature extraction, as it has the potential to increase the receptive
filed of the features to increase the robustness. Given a pair
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The procedure of the varying-weight Gaussian guiding (VWGG) module based on the sparse expansion of the original LIDAR data. The data in semi-dense

depth maps are divided into three types: the original LiDAR data, the expanded sparse data and the invalid data. We process the features in the constructed cost
volume with corresponding coordinates (z, y) by modulating with a Gaussian function for the valid data while leaving the invalid data untouched. Parameters, such
as the weight, variance of the Gaussian function, is made varying depending on the reliability of the sparse data. Given the same distribution of original cost volume
(blue curve/data points), features of the invalid data keep unchanged (blue curve/data points), while those of the original LiIDAR data, the expanded sparse data are
modulated by varying Gaussian functions (black curves in right up, right down sub-figures) and result in the red, green modulated curves/data points respectively.

of stereo images and an expanded semi-dense depth image, a
kind of UNet-like [7], [17] encoder-decoder structure is used for
multi-scale feature extraction. Similar to the method in HSM-
Net [17], the spatial pyramid pooling (SPP) is utilized to broaden
the receptive filed of the lowest resolution. Specifically, the input
is first fed into the encoder with five residual blocks, and then
goes through the SPP module to the corresponding five decoder
blocks. The average pooling size is set to (H X s) x (W x s),
s€{1/32,1/64,1/96,1/128}.

D. Varying-Weight Gaussian Guiding (VWGG) Module

Guiding stereo matching by Gaussian modulation of the
constructed cost volume along the depth dimension has been
proposed in [13]. With the proposed SE module, Gaussian
guiding can be expanded along the height and width of the image
dimension. However, the reliability varies when the original
sparse points are expanded to their neighborhoods. To solve
this problem, we propose the VWGG module. Fig. 3 shows its
procedure.

Different from GSM [13] that uses the same Gaussian dis-
tribution hyer-parameters for cost volume modulation, we use
varying weight depending on the reliability of the valid sparse
depth points. In general, the original sparse points are more
reliable than the expanded ones, so higher weight and lower
variance should be assigned to the Gaussian distribution of
the original sparse points compared to the expanded ones. Be-
sides the previous defined sparse depth image D, Deyp, we
introduce the binary masks M and Mexp, where M(z,y) =
1, Mexp(z,y) =1,2 € [0,W — 1],y € [0, H — 1], specifying
which elements of D, Deyp, are valid respectively. To guide the
stereo matching, the sparse depth map D, Dexp, are converted
to the sparse disparity map D', Dy, ,, following GSM [13] by
the equationd = b - f/z, where d = D'(x, y) or D, (, y) de-
notes the disparity value, z = D(x, y) or Dexp (2, y) represents

the depth value, the focal length f and baseline b are the setup
used to acquire stereo images.

For each pixel with coordinates (x, y) in corresponding sparse
image such that element is valid, we process the features by
modulation with a Gaussian function centered on the disparity
d =D'(x,y) or d = Dy, (z,y). On the other hand, each point
with M(z,y) = 0 or Mexp(x,y) = 0 is left untouched. Given
the original cost volume V € RW>H*D>E "where D is the max
disparity, F'is the feature length of the constructed cost volume,
the guided cost volume G € RW*H*DxF "can be obtained by
multiplying modulation function in two steps regardless of the
value of M(z,y), Mexp(,y) as:

_(d-D'(z.y)?

My=1-M(z,y) - [1—k1-e 2} ;D

_ (d-Dlyep ()2
2c2
1-— k’g - € 2 s

(2)
g($7y’d) :MQ']\/II 'V(m7y7d)a (3)

M; =1— Mexp(z,y) -

where k1, ko determine the weight of the Gaussian for origi-
nal sparse points, expanded sparse points, respectively. ci, co
represent the variance of respective original sparse points and
expanded sparse points, respectively. Depending on the reliabil-
ity of sparse points, weights k1 > ko and ¢; < c5 are applied for
guiding the stereo matching while the best setting is obtained by
experiments.

E. Cascaded 3-D CNN

Cost aggregation should be done to obtain the final depth
map, which is commonly implemented in the hourglass form of
2-D [2], [19] or 3-D CNN [3], [7]. Recent works [4], [20] have
shown the superior performance of 3-D CNN over 2-D CNN,
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even though 3-D CNN always consumes more memories and
computing resources. To deal with the high computation burden
of 3-D CNN, coarse-to-fine cascaded 3-D CNN [7], [18] has
been proposed to improve the efficiency of cost aggregation.
Instead of uniform sampling a predefined range [18] to get the
disparity search range in next stage, the disparity uncertainty
estimation-based method [7] is adopted in our network. The
network is trained at different scales with the multi-scale loss:

L= p1Ly + p2Lls + ps3Lls, 4

where L is the loss of on the finest level and L3 is the loss on
the coarsest level. The weight for each loss is set fixed as 2, 1,
0.5 according to the results in [7].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets

1) Sceneflow: This is the large synthesis dataset for stereo
matching and scene flow. We use this dataset for training our
network before evaluating its robustness in other datasets with-
out fine-tuning.

2) Middlebury: This is an indoor stereo dataset with full,
half, and quarter resolutions. This dataset is used for the robust-
ness evaluation with the model pretrained on the SceneFlow
dataset.

3) KITTI Stereo Evaluation 2012 and 2015: The two are the
stereo datasets collected by a car in the real world. These datasets
are also used for the robustness evaluation with the model trained
on the SceneFlow dataset.

4) KITTI Depth Completion: This dataset is released for
depth completion and depth prediction with stereo images,
sparse depth maps and semi-dense ground-truth depth maps in
the real world. It consists of 42,949 pairs of training images
and 3,426 pairs of validation images. Since the test set does
not contain stereo images, we split the validation set into two
sub-sets, 2,426 pairs of stereo images for testing and 1,000 for
validation, which is commonly adopted in LiDAR stereo fusion
works [10], [11], [12]. This dataset is used for training and
evaluating from scratch.

B. Implementation Details

Our implementation is based on Pytorch. The Adam (5; =
0.9, B2 = 0.999) optimizer is employed for training the whole
network in an end-to-end way. The smooth L-1 loss function
is used during training and all the intermediate outputs are
included in the loss calculation. We train the network from
scratch on the SceneFlow dataset and KITTI depth completion
dataset, respectively. During training, the images from the KITTI
depth completion dataset are cropped down to 256 x 1216 patch
first on the bottom of images, and then randomly cropped to
256 x 512 patches into the network, while the images from
the SceneFlow dataset are randomly and directly cropped to
256 x 512 patches into the network. For both datasets, the
leaning rates start at 10~3 and reduces to half in epoch 12, 16,
and 18. A total of 20 epochs are run on two NVIDIA V100 GPUs
with a batch size of 8.

During training, data augmentation is applied to improve
network robustness. Different chromatic augmentation [17] and
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asymmetric masking [7] are used for stereo images. Random
masking, which randomly replaces a rectangular region in the
projected LiDAR image with zeros, is applied only in the ro-
bustness evaluation to raise the robustness in face of nonuniform
distribution of LiDAR data.

C. Evaluation on KITTI Depth Completion

Qualitative analysis is first done by comparing our network
with the recent open-source works, such as stereo matching
network CF-NET [7], stereo-LiDAR fusion network GSM [13],
and depth completion network PE-NET [9]. As shown in Fig. 4,
depth maps and errors in two different cases are visualized. Our
proposed network is able to produce high-precision depth esti-
mation, while the network CF-NET [7] fails in distant regions.
Comparing the depth maps between PE-NET [9] and ours, we
can see that ours outperform the depth completion network
PE-NET [9], especially in the top region (e.g., the sky area)
without sparse LiDAR points. Compared to the stereo-LiDAR
fusion network GSM [13], higher-precision depth estimation
results can be obtained by our network as seen from the errors,
and more detailed recovered depth results can be observed in
our depth maps, especially in the tree regions.

Then quantitative analysis is performed by comparing our
proposed network with classic stereo matching methods [2],
[3], top-performing depth completion works [8], [24] and SOTA
stereo-LiDAR fusion networks [10], [11], [12]. We adopt the
metrics used in the official KITTI depth completion bench-
mark [15], namely, RMSE, MAE, IRMSE, and IMAE. These
metrics have been widely used in depth completion [8], [24]
and stereo-LiDAR fusion works [10], [11], [12].

The results are illustrated in Table 1. From the results, we
have several observations: 1) The stereo networks [2], [3] per-
form well on the inverse depth metric iRMSE, and the depth
completion works [8], [24] obtain outstanding results on depth
metrics (i.e. MAE, RMSE). The reason may be that the stereo
networks are trained to predict the disparity while the depth
completion networks are trained to estimate the depth. Similar
results can be observed for the stereo-LiDAR fusion network.
For example, CCVN [10] that is trained to predict the disparity
ranks 1st in terms of IRMSE and 2nd in terms of IMAE,
VolumPropagation [12] that predicts the depth directly ranks 1st
in terms of RMSE; 2) Even with more information, the network
is not guaranteed to obtain better performance on all the metrics.
For example, the performance of Listereo [11] with extra stereo
information is inferior to [8], [24]. With more LiDAR data, the
stereo-LiDAR fusion network VolumPropagation [12] fails to
outperform the stereo networks [2], [3] in terms of IRMSE; 3)
The robustness of SOTA stereo-LiDAR fusion networks [10],
[11], [12] on different metrics is far from satisfactory. The
reason may be that the depth metrics (i.e. MAE, RMSE) tend
to be sensitive to far distances and the inverse depth metrics is
vulnerable to short distances.

For our proposed network, we first train it to predict disparity
and then convert the disparity to depth map like [2], [3], [10].
This results in the tendency of better performance on inverse
depth metrics than depth metrics. By properly integrating the
stereo images and LiDAR data, our network succeeds in outper-
forming the stereo networks [2], [3] in terms of all the metrics.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 05,2023 at 05:27:22 UTC from IEEE Xplore. Restrictions apply.



1484
Left Image
Truth Depth
0m 40 m 80m O0m
[ EEREE———
)
CF-NET -
>20m, 2213mm; <20m, 185mm
GSM
>20m, 1525mm; <20m, 167mm
PE-NET
>20m, 1695mm; <20m, 216mm
Ours
>20m, 681mm; <20m, 48mm
0m 40 m 80m Om 2
Fig. 4.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 3, MARCH 2023

40 m 80m Om 80 m

>20m, 1863mm; <20m, 229mm

>20m, 502mm; <20m, 67mm

40 m 80m Om 2 m

EET .

0m

m
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TABLE I
QUANTITATIVE COMPARATIVE RESULTS ON THE KITTI DEPTH COMPLETION DATASET

method Modality RMSE(mm) | MAE(mm) | IRMSE(l1/km) | IMAE(1/km)

GC-NET [3] Stereo 1031.4 405.40 1.681 1.036
PSM-NET [2] Stereo 884.0 332.00 1.649 0.999
PE-NET [9] Mono+LiDAR 730.08 210.55 2.17 0.94
semAtt-NET [8] Mono+LiDAR 709.4 205.49 2.030 0.900
DySPN [24] Mono+ LiDAR 709.1 192.71 1.880 0.820
Listereo [11] Stereo+LiDAR 832.2 283.91 2.190 1.100
CCVN [10] Stereo+LiDAR 749.3 252.50 1.397 0.807
VolumPropagation [12] | Stereo+LiDAR 636.2 205.10 1.872 0.987
Ours Stereo+LiDAR 675.5 197.16 1.600 0.787

The best results are highlighted in bold font, and the second best results are highlighted in italic font.

Compared to top-performing depth completion works [8], [24]
and SOTA stereo-LiDAR fusion networks [10], [11], [12], our
proposed network ranks Ist in terms of IMAE and 2nd in terms
of all the other metrics, which shows that it is robust on different
ranges. This is probably due to the expansion of the guided
LiDAR data and corresponding multi-scale features for fusion.
Particularly, we do observe the slight performance gap with
VolumPropagation [12] in terms of RMSE, and with CCVN [10]
in terms of IRMSE. This may be caused by the expansion errors
of the over-exposed image regions, such as glass under sunlight,
which presents similar RGB appearance but quite different depth
values.

D. Ablation Study

To verify the effectiveness of each proposed module in our
network, various ablation studies have been performed. Table II
displays the results.

1) Ablation on the SE Module: To evaluate the performance
of our proposed SE module, we keep the Gaussian guiding
weight fixed, that is ko = k1 = 10, co = ¢; = 1. From Table II,
our proposed SE module achieves better performance in terms

of almost all the metrics [15] than that without SE. Further
exploration on the expansion range and expansion threshold
demonstrates that the performance tends to increase with larger
expansion range, while higher threshold leads to inferior RMSE
and iRMSE but superior MAE and iMAE. This is consistent
with our intuition that direct expansion without considering
the reliability may bring smooth but high-variance results. For
the final model, we select the max range R = 2 and threshold
t = 255 as the setting in the SE module to reserve the smooth
results and deal with high-variance problem by cooperating with
the VWGG module.

The computation complexity of the SE module is quite low
with floating point operations (FLOPs) equaling to W x H %
(1 + (C + 8)4R?), the inference time of which is 12 ms for a
single thread on NVIDIA TESLA V100. By contrast, the expan-
sion network [14] needs 0.14 ms * 1216 * 256 * 5% = 2.179 s
for a sparse image on KITTI depth completion dataset with
resolution of 1216%256 and 5% density.

2) Ablation on the VWGG Module: The VWGG module
is proposed to balance the accuracy and completion perfor-
mance. The best modulation parameters [13] k1 = 10, ¢; =1
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TABLE II
ABLATION STUDY OF THE PROPOSED NETWORK ON THE KITTI DEPTH COMPLETION DATASET. ROUND R, t: THE EXPANSION TO THE NEIGHBOURHOODS IN THE
ROUND FORMAT WITH MAX RANGE R AND THRESHOLD ¢. k2, c2 IS THE MODULATION HYPER-PARAMETERS FOR THE EXPANDED POINTS

Modules Method Metrics
RMSE(mm) | MAE(mm) | IRMSE(1/km) | IMAE(1/km)
no expansion 735.54 227.81 1.6732 0.8543
round 1 10 693.47 210.52 1.6507 0.8454
SE round 1 255 758.40 197.78 1.6388 0.8067
round 2 10 694.63 204.05 1.6159 0.7917
round 2 255 697.70 195.50 1.6724 0.7896
no VWGG 737.84 252.51 1.6756 0.8754
ko =10,c0 =1 697.70 195.50 1.6724 0.7896
VWGG ko =8,c0 =2 683.60 196.85 1.6483 0.7948
ko =2,c0 =38 675.50 197.16 1.6000 0.7872
ko =1,c0 =10 690.07 198.41 1.6028 0.7867
no feature fusion 696.00 200.70 1.6393 0.7983
MFEF sparse invariant convolution 708.60 199.88 1.6482 0.7826
multiscale convolution 675.50 197.16 1.6000 0.7872
The best results are marked bold for each module and each metric.
TABLE III TABLE IV

ABLATION RESULTS ON THE KITTI DEPTH COMPLETION DATASET FOR
PROPOSED MODULES

RMSE MAE IRMSE | IMAE

method
(mm) (mm) (1/km) (1/km)
GSM 764.66 | 231.09 1.6935 | 0.8284
MFEF+SE 737.84 | 252.51 1.6756 | 0.8757
GSM+MFEF+SE 684.70 | 200.63 1.6218 | 0.7886
VWGGH+SE 692.47 | 199.77 1.6355 | 0.7882
VWGG+MFEF+SE | 675.50 | 197.16 1.6000 | 0.7872

are adopted in our proposed network for the original LiDAR
points. The max range R = 2 and threshold ¢ = 255 is selected
for the SE module for further cooperating with the VWGG
module. The ablation results for the VWGG module is given in
Table II. Without the VWGG module, relative high performance
degradation can be observed, which shows the value of expanded
data. Obviously, with the proposed module, which allocates
relative low weight k5 but high variance ¢, for modulating the
expanded points, we can greatly improve our network on RMSE
and gain better results on iRMSE or iMAE at a slight loss of
MAE. More ablation results compared with GSM [13] are given
in Table III, which demonstrate the superior of our proposed
module on all metrics.

3) Ablation on the MFEF Module: The MFEF module can
bring notable performance gain in terms of all metrics when
compared to the network without feature fusion. We also com-
pare our proposed module with the widely used sparse invari-
ant convolution-based method [15]. As shown in Table II, the
proposed module can achieve better performance in terms of
most metrics and comparable results in terms of iMAE. Results
in Table III imply that the MFEF module can help improve
the stereo-matching guiding of either our proposed method or
GSM [13].

E. Robustness Evaluation

The generalization capability across different domains is also
evaluated. We verify the robustness of the proposed network by

ROBUSTNESS EVALUATION OF THE PROPOSED NETWORK AGAINST
DOMAIN SHIFT

method KITTI2012 | KITTI2015 Middlebury

DI1_all(%) DI1_all(%) bad 2.0 (%)
PSM-NET [2] 15.1 16.3 39.5
CasStereo [18] 11.8 11.9 40.6
GA-NET [4] 10.1 11.7 32.2
CF-NET [7] 4.7 6.5 21.8
GSM [13] + 3% sparse 2.41 3.06 3.84
GSM [13] + 5% sparse 1.99 2.46 3.36
GSM [13] + 10% sparse 1.50 1.85 3.12
GSM [13] + 15% sparse 1.25 1.56 3.10
Ours + 3% sparse 2.3 3.9 2.7
Ours + 5% sparse 1.2 1.8 2.5
Ours + 10% sparse 0.7 0.9 2.2
Ours + 15% sparse 0.6 0.7 2.1

training only on the SceneFlow dataset and testing the perfor-
mance on the other three real-world datasets without fine-tuning.
The metric D1_all [29] is adopted for KITTI 2012/2015 dataset
while the metric bad 2.0 [7] is applied for Middlebury dataset. It
can be seen from Table IV that with only 3% of sparse points, our
proposed network can boost generalization performance than the
start-of-art stereo matching networks. Since the ground-truth
depth of the KITTI dataset is sparse itself, the exact percentage
of the sparse points with respect to the whole image is indeed
much lower than 3%. Extra test results on the Middlebury dataset
also demonstrate that the performance in terms of the metric
bad 2.0 [7] deteriorates to 16% when only 1% sparse points are
available. Compared with the other stereo LiDAR fusion method
GSM [13], our proposed network is superior even though the
performance gain decreases when the density of the sparse input
goes down.

Besides, the robustness to different resolution of LiIDAR data
is evaluated in Fig. 5. As the sparse density goes down from
5% to 1%, the performance of our network keeps outperforming
GSM [13], but the performance gain continuously decreases.
When the random masking is applied, the performance at low
density can be improved at the cost of gain loss at high density.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 05,2023 at 05:27:22 UTC from IEEE Xplore. Restrictions apply.



1486

[}
=)

T T
==& Ours without RM
[| —8— Ours with RM

|| =8— GSM

153
2

=

Performance Gain (%)
—_ m = o o
o [} W o] —
——

I L L L L

1% 2% 3% 4% 5%
Sparse LIDAR Density

Fig. 5. The performance gain with different resolutions of LiDAR data. RM
is short for random masking.

V. CONCLUSION AND FUTURE WORK

In this letter, we proposed a novel stereo-LiDAR fusion net-
work for robust dense depth estimation. By first expanding the
sparse LiDAR with the corresponding RGB image, a semi-dense
depth map can be obtained as a basis for sparse feature extraction
and stereo matching guiding. According to the reliability of
the sparse input, the varying-weight Gaussian guiding protocol
is then proposed for improving the guiding around the sparse
neighborhood, and multi-scale feature extraction and fusion is
applied for enhancing the feature receptive field. Experimental
results show that our proposed network performs well in terms
of all the metrics and is robust to different domains. We plan to
incorporate semantic information in the future to improve the
expansion performance when faced with abnormal conditions,
such as over-exposure.
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