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InconSeg: Residual-Guided Fusion With Inconsistent
Multi-Modal Data for Negative and Positive Road

Obstacles Segmentation
Zhen Feng , Yanning Guo , David Navarro-Alarcon , Yueyong Lyu, and Yuxiang Sun

Abstract—Segmentation of road obstacles, including negative
and positive obstacles, is critical to the safe navigation of au-
tonomous vehicles. Recent methods have witnessed an increas-
ing interest in using multi-modal data fusion (e.g., RGB and
depth/disparity images). Although improved segmentation accu-
racy has been achieved by these methods, we still find that their
performance could be easily degraded if the two modalities have
inconsistent information, for example, distant obstacles that can
be viewed in RGB images but cannot be viewed in depth/disparity
images. To address this issue, we propose a novel two-encoder-two-
decoder RGB-depth/disparity multi-modal network with Residual-
Guided Fusion modules. Different from most existing networks that
fuse feature maps in encoders, we fuse feature maps in decoder. We
also release a large-scale RGB-depth/disparity dataset recorded in
both urban and rural environments with manually-labeled ground
truth for both negative- and positive-obstacles segmentation. Ex-
tensive experimental results demonstrate that our network achieves
state-of-the-art performance compared with other networks.

Index Terms—Negative obstacles, road obstacles, multi-modal
fusion, semantic segmentation, autonomous vehicles.

I. INTRODUCTION

ROAD-OBSTACLE segmentation is a fundamental capa-
bility for autonomous vehicles. Road obstacles can be

generally divided into two categories: positive obstacles and
negative obstacles. Positive obstacles refer to those that stand
on the ground, such as pedestrians, vehicles, bicycles, etc. These
obstacles have attracted great attention in the robotics research
community because detection or segmentation of positive ob-
stacles is critical to downstream tasks, such as tracking [1] and
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Fig. 1. Negative effects caused by the inconsistency between the RGB-depth
images. In this figure, depth increases from red to blue. The white oval in (a) and
(d) highlight the same area, where the inconsistency can be clearly seen, that is,
there is no valid information in the depth image but there is valid information
in the RGB image. In (b) and (c), ’only RGB’ means the network is trained and
tested with only RGB images. We can see that the inconsistency leads to inferior
segmentation performance in these areas for FuseNet, but our network can give
better results. , , and refer true positive, false negative, and false positive
of negative obstacles. , , and refer true positive, false negative, and false
positive of positive obstacles.

navigation [2], etc. Negative obstacles refer to those that have
heights lower than the ground, such as potholes, cracks, etc. They
can cause discomfort to passengers. Large negative obstacles
can even cause accidents, such as roll over to vehicles [3]. So,
accurate detection or segmentation of negative obstacles is also
of great importance to the safety of autonomous vehicles.

Many effective segmentation methods have been respectively
proposed for positive obstacles [4] and negative obstacles [5].
But most of them use single-modal visual data (e.g., only
RGB images). Since visual images could be affected by envi-
ronmental lighting conditions, these methods could be easily
degraded. To address this problem, many multi-modal (e.g.,
RGB-depth/disparity, RGB-thermal) fusion networks have been
proposed. These networks could produce superior results over
single-modal networks [6], [7], [8].

However, we observe that when there exists inconsistency be-
tween different modals of data, the segmentation performance of
these data-fusion networks is not better or even inferior to those
using a single modal of data. Note that in this letter, inconsistency
refers to that one modal contains some information, but the other
modal does not have the corresponding information in the same
region. Fig. 1 shows an example for such inconsistency. We can
see that the vehicle highlighted in the white ovals is too far (out
of the depth measurement range), so that the depth data become
invalid. In addition, due to shadows, there is no valid depth
data at the potholes. Our experiments show that data-fusion
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networks (e.g., FuseNet [7]) with inconsistent RGB-depth data
present inferior segmentation performance to those with only
RGB images.

To provide a solution to this issue, we propose a novel RGB-
depth/disparity fusion network with Residual-Guided Fusion
modules in a two-encoder-two-decoder structure. Our fusion
strategy is expected to extract information from one modality
that is missing from the other so that the information could
be complemented, and hence increase the segmentation perfor-
mance. Fig. 1 shows that our network produces better results than
FuseNet when given two modalities with inconsistent informa-
tion, and also shows that our network produces better results than
a single modality when fusing inconsistent RGB-depth images.

We also note that for positive-obstacle segmentation, there
exist a large number of datasets in the research community [9],
but for negative obstacles, there exist limited datasets. Moreover,
existing negative-obstacle datasets are collected mainly from
urban environments. So, we build a large-scale dataset with man-
ually labelled masks for negative and positive obstacles in both
urban and rural environments. This dataset is captured by a ZED
stereo camera with inconsistent RGB-depth/disparity (RGB-D)
images. The main contributions of this letter are summarized as
follows:

1) We propose a novel RGB-D fusion network for nega-
tive and positive road obstacles segmentation in a two-
encoder-two-decoder structure.

2) We design a novel Residual-Guided Fusion (RGF) module
to address the inconsistency issue between multi-modal
data through extracting complementary features for the
missing features of RGB images from depth images.

3) We release a large-scale RGB-D dataset (there are 5,000
images with manually-labelled ground truth) for segmen-
tation of negative and positive road obstacles. Moreover,
our code is open-sourced1.

II. RELATED WORK

A. Single-Modal Semantic Segmentation Networks

Chen et al. [10] introduced atrous convolution into spatial
pyramid pooling to increase receptive fields, and designed
DeepLabV3+ in the encoder-decoder structure [11]. Recently,
Transformer has achieved superior performance in computer
vision. Many semantic segmentation networks based on the
transformer structure have been proposed. For example, Azad
et al. [12] combined the transformer structure with DeepLabV3+
to design TransDeepLab for medical image segmentation.

B. Multi-Modal Semantic Segmentation Networks

Multi-modal fusion is commonly achieved by feature addition
or concatenation. For example, Hazirbas et al. [7] proposed
FuseNet with an RGB encoder and a depth encoder to fuse
RGB-depth images by element-wise addition. Sun et al. [13]
proposed RTFNet by fusing RGB and thermal images in the
two-encoder-one-decoder structure by element-wise addition.
Fan et al. [6] design AA-RTFNet by introducing attention mod-
ules into RTFNet as skip connections between the encoder and
the decoder. Some networks fuse multi-modal features with
attention modules. For example, Seichter et al. [8] designed an
RGB-depth fusion layer with a squeeze and excitation module

1Our code and dataset: https://github.com/lab-sun/InconSeg.

in ESANet. Sun et al. [14] proposed RFNet with an attention
feature complementary module to fuse RGB-depth images for
segmenting obstacles on roads. Feng et al. [3] proposed MAFNet
that fuses RGB feature maps and disparity feature maps using
channel attention modules and dual attention modules. Ying
et al. [15] proposed UCTNet with an uncertainty-aware self-
attention module to avoid the influence of unreliable information
in depth images. Some networks specially design fusion modules
to fuse multi-modal features. For example, Chen et al. [16]
proposed SA-Gate module to fuse RGB-HHA images that firstly
separates features from both modalities and then aggregates
features to generate fusion results. Valada et al. [17] proposed the
CMoDE fusion framework to adaptively fuse modalities for the
alleviation of the influence caused by environmental condition
changes. The CMoDE fuses the predicted maps of each modality
via a domain-expert method. Valada et al. [18] proposed UpNet
and adopted a late-fused convolution technique to fuse multi-
modal data. They released an outdoor dataset with multi-spectral
images to evaluate their network. Pfeuffer et al. [19] proposed
Faster-LSTM-ICNet that speeds up LSTM-ICNet and achieves
robust segmentation performance in adverse weather conditions.
Wang et al. [20] proposed the transformer-based TokenFusion to
learn the correlations among multi-modal features. TokenFusion
aligns multi-modal features by residual positional alignment
strategy after fusion.

C. Road-Obstacle Datasets

Pinggera et al. [21] released a dataset with 2,104 labelled
frames for detecting small obstacles. The dataset is collected
from 13 street scenarios. There are two classes (i.e., obsta-
cle and free space) in the dataset. Fan et al. [6] released the
Pothole-600 dataset with 600 pairs of RGB and transformed
disparity images for road potholes segmentation. Han et al. [22]
released the Puddle-1000 dataset with 985 images for water
puddles segmentation. The authors captured images with a ZED
camera. The ground truth masks are labeled on the left images.
Bijelic et al. [23] released a multi-modal adverse weather dataset
captured by a stereo camera for object detection, gated camera,
radar, LiDAR, and far-infrared camera. They also proposed a
real-time multi-modal fusion network to fuse these modalities.

D. Difference With Existing Works

Different from the aforementioned multi-modal fusion net-
works, our network adopts a two-encoder-two-decoder structure
and fuses the feature maps restored by multiple stages of the
decoder. We quantify missing features of the RGB modality
through an RGF module. We also extract complementary fea-
tures for the missing features from another modality through
the RGF module. Moreover, different from the aforementioned
datasets, our dataset contains more images with both negative
and positive obstacles.

III. THE PROPOSED NETWORK

A. The Overall Architecture

The overall architecture of our proposed InconSeg is shown
in Fig. 2. There are two data streams: a depth/disparity stream
and an RGB stream. The depth/disparity stream takes as input
depth or disparity images. Since depth and disparity images can
be easily converted to each other, in the following text, we use
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Fig. 2. Overall architecture of our proposed InconSeg. There are two streams: an RGB stream and a depth/disparity stream. Each stream has a 5-stage encoder
and 5-stage decoder. The output of the RGB stream ŷrgb is the output of InconSeg. The encoder is adopted from ResNet-152 [24]. The outputs of the first three
stages of the depth/disparity decoder are fused into the stages of the RGB decoder at the same level by our proposed Residual-Guided Fusion (RGF) module.

depth instead of depth/disparity for convenience. Each stream
has a 5-stage encoder and a 5-stage decoder. The output of the
RGB stream ŷrgb is the output of the network InconSeg. In the
encoders, each stage reduces the resolution of the input image
by half. In the decoders, each stage doubles the resolution and
reduces the number of channels of feature maps by half. The
output of the depth stream ŷd is only used during training. The
encoders are borrowed from ResNet-152 [24].

In each stream, the inputs of each stage of the encoder
are fused with the output of each stage of the decoder at the
same level by element-wise addition. Different from existing
networks, such as MAFNet [3] and AA-RTFNet [6], we fuse the
outputs of both decoders at the same level to avoid the negative
effects caused by the inconsistency of the feature maps extracted
by the encoders. The outputs of the last two stages of the depth
decoder are fused into the same-level stage of the RGB decoder
via element-wise addition. The outputs of the first three stages
of the depth stream decoder are fused with the output of the
same-level stage of the RGB decoder by our proposed RGF
module. The three RGF modules are placed in the RGB decoder.
Then-th RGF module is placed behind then-th stage of the RGB
decoder, where n ∈ [1, 2, 3].

B. The RGF Module

As aforementioned, the purpose of the RGF module is to
quantify the missing features between the RGB features and
the ground truth. The RGF module extracts the complementary
features of the RGB features from the depth features instead of
directly fusing them, thus addressing the degradation of fusion
performance caused by inconsistent data between both features.
The structure of our RGF module is shown on the right bottom
of Fig. 2. The module has two inputs: RGB feature maps and
depth feature maps.

Firstly, the RGF module generates the missing features of
RGB modality. Specifically, the RGB feature maps generate
RGB predicted mask ŷn through a 1× 1 convolutional layer,

where n represents the n-th RGF module. It should be noted that
the first RGF module does not contain the 1× 1 convolution.
The residual mask ynres is generated through an element-wise
subtraction between ŷn and the ground truth yn. The residual
mask ynres represents the residual features. We call ynres as
missing features of the RGB feature map. ŷn and yn have the
same resolution as the RGB feature maps. yn is generated from
the original ground truth y with down-sampling using the nearest
neighbor method.

Secondly, we extract complementary features for the missing
features. Specifically, we subtract the RGB feature maps with
depth feature maps by element-wise subtraction to get the dif-
ference between them. The channel of the different features is
adjusted to the number of classes through a 1× 1 convolution.
It should be noted that the first RGF module does not contain the
1× 1 convolution. Then, a residual unit with a 3× 3 convolution
is used to generate the predicted residual mask ŷnres. ynres is used
to guide the generation of ŷnres. The channel of ŷnres is adjusted
to that of the RGB feature maps by a 1× 1 convolution. After
that, the adjusted result is fused with the RGB feature maps
through an element-wise multiplication. Finally, the adjusted
result, fusion result, and RGB feature maps are concatenated
along the channel dimension. The output of the RGF module
is generated by a 1× 1 convolution, which is fed into the next
stage in the RGB decoder.

C. The Structure of Decoders

The structure of each stage of the decoders is shown in
Fig. 3. Firstly, the input feature map is fed into a two-branch
residual structure. The residual structure reduces the resolution
of the input feature map by half. The upper branch has a
1× 1 Convolution-BN-ReLU layer. The lower branch has three
3× 3 Convolution-BN-ReLU layers. The first layer in the lower
branch reduces the resolution of the input feature map by half.
The other layers in the lower branch keep the number of channels
unchanged. The outputs of both branches are fused through
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Fig. 3. Structure of each stage of the decoder. The input feature map first passes
through a two-branch residual structure. The upper branch has one Convolution-
BN-ReLU layer. The lower branch has three sequential Convolution-BN-ReLU
layers.

an element-wise addition. Secondly, the output of the residual
structure is fed into a global average pooling layer to adjust the
resolution to 1× 1. Thirdly, a Fully Connected (FC)-BN-ReLU
layer and an FC layer are used to generate the weights of different
channels of the fusion result. The FC-BN-ReLU layer reduces
the number of channels by half, and the FC layer restores the
number of channels. Fourthly, a Sigmoid layer is used to map
the generated channel weights into [0,1]. The output of the
residual structure is fused with the mapped weights through
element-wise multiplication. Finally, a transposed Convolution-
BN-ReLU layer is used to double the resolution. The output
of the transposed Convolution-BN-ReLU layer is the output of
each stage of the decoders.

D. The Loss Functions

To extract residual features of RGB feature maps from depth
feature maps for semantic segmentation, the depth stream needs
to have the ability to achieve semantic segmentation indepen-
dently. So, in the training process, the loss between the ground
truth y and the output of the depth stream ŷd also needs to
be calculated. We calculate the cross-entropy loss Lseg(y, ŷd)
between the ground truth y and the output of the depth stream
ŷd, as well as the cross-entropy loss Lseg(y, ŷrgb) between the
ground truth y and the output of the RGB stream ŷrgb, to train
the InconSeg.

In the n-th RGF module, we use the cross-entropy loss
Lseg(yn, ŷn) between the ground truth yn and RGB predicted
mask ŷn to guide the generation of RGB residual features ynres.
We also use the cross-entropy loss Lseg(y

n
res, ŷ

n
res) between the

RGB residual features ynres and predicted residual features ŷnres
to guide the extraction of RGB residual features from depth
feature maps. So, the loss Ln

RGF of the n-th RGF module is
represented as: Ln

RGF = Lseg(yn, ŷn) + Lseg(y
n
res, ŷ

n
res). The

losses of each RGF module are also used to train our Incon-
Seg. To sum up, the total loss Ltotal calculated as: Ltotal =
Lseg(y, ŷd) + Lseg(y, ŷrgb) +

∑3
n=1 Ln

RGF . We use the Ltotal

to train our InconSeg.

IV. THE RELEASED DATASET

A. Data Collection and Processing

As aforementioned, the multi-modal datasets with negative
obstacles are very limited in the research community. Existing
negative road-obstacle datasets are mainly small-scale and col-
lected from urban scenes. So, in this work, we build and release

Fig. 4. Equipment for data collection and some sample roadmaps for data
collection. Roadmap 1 and Roadmap 3 are urban scenes. Roadmap 2 and
Roadmap 4 are rural scenes. The scenes are in Liaoning Province, China.

Fig. 5. Sample RGB images, depth images, disparity images, and ground truth
in our NPO dataset. Depth and disparity values increase from red to blue. and

represent negative obstacles and positive obstacles, respectively.

a large-scale dataset with both negative and positive obstacles
for road-obstacle segmentation.

The dataset is recorded with an on-vehicle ZED stereo camera
in both urban and rural environments in Qingyuan of Fushun
City, Liaoning Province, China. The camera and vehicle are
shown in Fig. 4. We collect data on 7 different roads at different
times to increase the diversity of the dataset. Fig. 4 shows
several sample roadmaps for data collection. We totally collect
20 image sequences with 90,204 groups of images (1, 242×
2, 208 resolution). Each group contains a left RGB image, a
right RGB image, and a 16-bit depth image produced by the
ZED camera. The dataset contains various lighting conditions,
such as normal lights, large-area shadows, dim lights, and sun
glare. There are also different weather conditions, such as sunny,
cloudy, and snowy. We use the LEAStereo [25] algorithm with
left and right images to generate disparity images. We manually
label negative obstacles (i.e., potholes and cracks) and positive
obstacles (i.e., pedestrians, cars, and motorcycles) in 5,000
images.

We name our dataset Negative and Positive Obstacle (NPO)
dataset. To the best of our knowledge, our NPO dataset is the
largest dataset for semantic segmentation of road obstacles that
include negative obstacles. Some sample images of our dataset
are shown in Fig. 5.

B. Dataset Analysis

In our NPO dataset, there are 2,960 images collected from
urban scenes and 2,040 images collected from rural scenes. The
dataset can be divided into two types based on the conditions of
the road surface: normal roads with 3,465 images and abnormal
roads (e.g. snow, puddles) with 1,535 images. The images in this
dataset are collected under a variety of weather conditions, that
is, 4,231 images from sunny days, 583 images from snowy days,
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Fig. 6. Pixel ratio for each class in our dataset.

and 204 images from cloudy days. In our NPO dataset, 4,596
images include negative obstacles, and 3,105 images include
positive obstacles. Fig. 6 shows the pixel ratio for each class.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Datasets

1) NPO Dataset: We randomly split NPO dataset into three
sets: training (2,500 groups of RGB-D images), validation
(1,250 groups of RGB-D images), and testing (1,250 groups
of RGB-D images). The resolution of the images is reduced to
288× 512 during training and testing.

2) Pothole-600 Dataset: To verify the ability of our network
to tackle inconsistency in multi-modal data, we randomly add
interference information to disparity images in Pothole-600
dataset [6], so that inconsistent information exists in the RGB im-
ages and disparity images. We use the Pothole-600 dataset with
random inconsistent information to validate the performance of
our network. We also resize the images to the same resolution
as the images in the NPO dataset.

B. Training Details

We implement our InconSeg with PyTorch. The network is
trained and tested on a PC with NVIDIA RTX 3090 graphics
card. We use the pre-trained weight of ResNet [24] from PyTorch
to initialize the parameters of the first four encoder stages. Dur-
ing training, we use the stochastic gradient descent optimizer.
We set the initial learning rate, the momentum, and the decay
strategy as 0.01, 0.90, and 0.95, respectively.

C. Ablation Study

1) Ablation on the Position of the RGF Module: We con-
duct experiments to select the best structure for our InconSeg.
We place the RGF module at different positions in the RGB
decoder to design several variants. Firstly, we use the simple
element-wise addition to replace the RGF modules in InconSeg.
Secondly, we design five variants, each one with a RGF module
at different stages of the RGB decoder, for example, the RGF
module is placed after the first stage of the RGB decoder in a
variant. Finally, we sequentially place 2, 3, 4, and 5 RGF modules
into the RGB decoder from the first stage, respectively. We use
the metrics, mean Accuracy (mAcc), mean F-score (mF1), and
mean Intersection-over-Union (mIoU) [3], over both negative
and positive obstacles to quantitatively evaluate the performance
of the variants. The details for all variants and their results are
displayed in Table I. We can see that the variant without any
RGF module presents the worst result. This demonstrates that
our proposed RGF module is beneficial to InconSeg. Comparing
variants B with G, we can find that the performance improvement

TABLE I
RESULTS (%) OF THE ABLATION STUDY ON THE POSITION OF OUR

RGF MODULE

TABLE II
RESULTS (%) OF THE ABLATION STUDY ON THE

STRUCTURE OF THE RGF MODULE

brought by our RGF module gradually decreases as the resolu-
tion of the input data of RGF module decreases. The reason
may be that the smaller the resolution of the feature maps, the
less information the feature maps contain. So, the RGF module
extracts fewer residual features from small-resolution feature
maps. Comparing variants H, J, I, and K, we find that variant
I with three RGF modules presents the best results in terms of
all metrics. According to the experimental results, we choose
variant I as our InconSeg (see Fig. 2).

2) Ablation on the Structure of RGF Module: For the struc-
ture of the RGF module, we design several variants with different
methods to generate different features between RGB feature
maps and depth feature maps. We use the following 7 methods to
generate different features: 1) Subtract depth feature maps from
RGB feature maps, denoted as R−D; 2) Subtract RGB feature
maps from depth feature maps, denoted as D −R; 3) Add
RGB feature maps and depth feature maps, denoted as R+D;
4) Concatenate RGB feature maps with depth feature maps,
denoted asR�D; 5) Calculate the absolute value of the result of
the first method, denoted as |R−D|; 6) Calculate the absolute
value of the result of the second method, denoted as |D −R|; 7)
Add the 5-th and 6-th methods, denoted as |R−D|+ |D −R|.
The purpose of the 5-th and 6-th is to turn negative values into
positive ones in the different features generated by the first and
second methods. The details and results of variants are displayed
in Table II. We can find that the D −R method presents the best
performance. We also find that the negative values of different
features are beneficial to the generation of residual features.
According to the experimental results, we use theD −Rmethod
to generate different features in the RGF module.

3) Ablation on Modality: We design several variants to
demonstrate that our InconSeg performs better than using a
single modality when fusing inconsistent RGB-D images. we
design single-modal variants by removing the RGB stream or
the depth stream from InconSeg. The single-modal variants are
trained by RGB, depth, and disparity images, respectively. We
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Fig. 7. Results of the ablation on modality. We can see that our InconSeg achieves better results with multi-modal fusion than with one-single modality.

TABLE III
COMPARATIVE RESULTS (%) ON THE TESTING SET OF OUR NPO DATASET

compare the results of these variants with those of the multi-
modal fusion InconSeg. We also use ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-152 as the backbone in the
encoders to design several variants. The results of these variants
are shown in Fig. 7.

The variant with the RGB modality achieves the best results
among the single-modal variants. In the variants with the same
encoder, we can find that the variants fusing two modalities
perform better than those with only one modality. This shows
that the fusion strategy of InconSeg is effective with different
encoders. The results demonstrate that InconSeg can achieve
better results than a single modality even when fusing two
modalities of data with inconsistent information.

D. Comparative Study

We compare our proposed InconSeg with well-known net-
works: DeepLabV3+ [11], FuseNet [7], AA-RTFNet [6],
MAFNet [3], ESANet [8], RFNet [14], CMoDE [17], SA-
Gate [16], TokenFusion [20]. The first seven networks are trained

with three single-modal data (i.e., RGB, depth, disparity) and
two multi-modal data (i.e., RGB-depth data and RGB-disparity
data), respectively. The multi-modal networks are trained with
single-modal images by removing the RGB stream or the
depth stream, except SA-Gate and TokenFusion. The compared
networks can be divided into 3 types according to fusing strategy:
1) Fusing with sample concatenation and addition, including
DeepLabV3+, FuseNet, and AA-RTFNet; 2) Fusing with at-
tention module, including ESANet, MAFNet, and RFNet; 3)
Fusing with specialized modules, including CMoDE, SA-Gate,
and TokenFusion. We use the metrics, Acc, F1, and IoU for
negative and positive obstacles, as well as mAcc, mF1, and
mIoU, to quantitatively evaluate the overall performance of the
networks. We also test the inference speed for each network on
RTX 3060 and RTX 3090.

1) The Overall Results on Our NPO Dataset: Table III
displays the results of all networks trained and tested on
our NPO dataset. Comparing the results of DeepLabV3+,
FuseNet, and AA-RTFNet, we can find that the best perfor-
mance is achieved when the input is the RGB modality data. In
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TABLE IV
COMPARATIVE RESULTS (%) ON DIFFERENT SCENES IN THE TESTING SET OF OUR NPO DATASET

Fig. 8. Sample qualitative results for the multi-modal networks. The odd and even columns in the first row represent the RGB image and their ground truth,
respectively. The odd and even columns in the second row represent disparity and depth images, respectively. The odd and even columns of the remaining rows
represent the results of different networks with RGB-disparity and RGB-depth, respectively. The third row to the last row are respectively the results of our InconSeg,
TokenFusion [20], and ESANet [8]. FN and FP represent false negative and false positive, respectively.

contrast, the performance degrades when the input is the incon-
sistent RGB-D modalities of data. This demonstrates that fusing
two modalities with inconsistent information using a simple
channel-concatenation or element-wise addition method is not
the optimal fusion method. The other compared networks adopt
attention modules or specialized-design modules to fuse multi-
modal features. However, the results of these networks with
multi-modal data are only slightly higher than the RGB modality
(e.g., ESANet, CMoDE), and some results are even worse than
the RGB modality. According to section V.C.3, our InconSeg
achieves better results than using a single modality (higher
1.88% and 2%) when fusing multi-modal data with inconsistent
information. Comparing all the results, our InconSeg achieves
the best performance, both in terms of fusing RGB-depth im-
ages or fusing RGB-disparity images, which demonstrates the
superiority of our InconSeg. The results of the inference speed
show that our InconSeg achieves an acceptable inference speed.

2) The Results in Different Scenes: We also evaluate the
multi-modal networks using images from different scenes.
Table IV displays the results of all the multi-modal networks.
According to the road conditions, we divide the testing set into
two subsets: normal roads, and abnormal roads with snow or
water. Similarly, according to the environment, we divide the
testing set into two subsets: urban scenes and rural scenes.
Comparing all the network results of abnormal roads and normal

roads, we can find that the water and snow on the road have a
large impact on results. Similarly, the results for urban scenes
and rural scenes show that obstacle segmentation in rural scenes
is more challenging than in urban scenes. We can see that our
InconSeg achieves the best performance in all the scenarios,
except the abnormal-road scene, in terms of whether fusing RGB
and depth images or fusing RGB and disparity images.

3) The Qualitative Results: Some sample qualitative results
for the top-3 multi-modal networks in Table III are shown
in Fig. 8. From the 5-th and 6-th columns, we can find that
it is a challenge to segment the negative obstacles when the
negative obstacles have a similar texture to the road. From the
last four columns, we can find that shadows with large areas
and oncoming sunshine are challenging for obstacle segmen-
tation. However, Fig. 8 illustrates that our proposed InconSeg
achieves state-of-the-art performance in these challenging sce-
narios. Fig. 8 also illustrates that the networks trained with RGB
images and disparity images have similar results as the networks
trained with RGB images and depth images.

4) The Overall Results on the Pothole-600 Dataset: The
results of all networks on the Pothole-600 dataset are displayed
in Table V. From the results, we can find that the multi-modal
fusion results of some networks are better than those using a
single modality. This indicates that these networks also have
some ability to overcome the negative effects of inconsistency
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TABLE V
COMPARATIVE RESULTS (%) ON THE AUGMENTED POTHOLE-600 DATASET

in multi-modal data. However, the multi-modal fusion results
of our InconSeg are significantly better than the single-modal
results. This indicates that our proposed InconSeg can better
solve the problem of inconsistency in multi-modal data. Com-
paring all the results, our InconSeg achieves the best results,
which also shows the superiority of our InconSeg.

VI. CONCLUSION AND FUTURE WORK

We proposed here a novel network with RGF modules for
the segmentation of negative and positive road obstacles. Our
proposed network addressed the performance degradation when
fusing two modalities with inconsistent information. We utilized
two independent data streams to extract features and predict
masks from RGB modality and depth modality, respectively.
The RGF module is used to extract and fuse the residual features
of RGB images from the output of the stages of the depth
decoder. In addition, we released a large-scale RGB-D dataset
with pixel-level labels of negative and positive road obstacles to
verify the performance of our network. The experimental results
demonstrate the superiority of our network. The results also
demonstrate that our network can achieve better results than a
single modality when fusing multi-modal data with inconsistent
information. However, our proposed network still has several
limitations, for example, segmentation results on the edge of
negative obstacles are inaccurate. So, in the future, we would
like to introduce the edge information of obstacles to improve
the segmentation performance.
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