
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024 10185

iMCB-PGO: Incremental Minimum Cycle Basis
Construction and Application to Online Pose

Graph Optimization
Keyu Chen , Fang Bai , Shoudong Huang , Senior Member, IEEE, and Yuxiang Sun , Member, IEEE

Abstract—Pose graph optimization (PGO) is a fundamental tech-
nique for robot localization. It is typically encoded with a sparse
graph. The recent work on the cycle-based PGO reveals the merits
of solving PGOs in the graph cycle space, which brings the compu-
tation of the minimum cycle basis (MCB) into the robotics commu-
nity. However, due to batch-MCB’s inability to handle the graph
topology changes, it is hard for its use in real-time applications. In
practice, PGOs are constructed incrementally, which requires us
to solve MCB problems in an incremental setting. In this letter, we
propose an exact method to solve MCB problem in an incrementally
constructed graph. Methodology-wise, we first compute a tight su-
perset called isometric set which contains an MCB, and then apply
independence tests to evaporate redundant cycles to form an MCB.
Our main contribution is the construction of an effective algorithm
to update the superset, namely the isometric set, in an incremental
setting. Our update rules preserve the optimality, thus yielding an
exact incremental MCB algorithm, which is termed as iMCB. We
integrate our iMCB algorithm into the cycle-based PGO, forming
the iMCB-PGO approach. We validate the superior performance
of our iMCB-PGO on a range of simulated and real-world datasets.

Index Terms—Incremental minimum cycle basis, cycle-based
pose graph optimization, SLAM back-end.

I. INTRODUCTION

POSE graph optimization (PGO) is a prevalent approach
to estimate robot poses in perception tasks such as simul-

taneous localization and mapping (SLAM) [1]. Recently, Bai
et al. [2], [3], [4] advanced relative pose parameterizations by
using all the relative poses in a graph as state variables, and
constrained the cycle consistency using different cycle bases of

Manuscript received 25 February 2024; accepted 27 June 2024. Date of
publication 7 August 2024; date of current version 8 October 2024. This article
was recommended for publication by Associate Editor Z. Hua and Editor C.
D. Richmond upon evaluation of the reviewers’ comments. This work was sup-
ported in part by Hong Kong Research Grants Council under Grant 15222523 and
in part by City University of Hong Kong under Grant 9610675. (Corresponding
author: Yuxiang Sun.)

Keyu Chen is with the Department of Mechanical Engineering, The Hong
Kong Polytechnic University, Kowloon, Hong Kong (e-mail: keyu.chen@
connect.polyu.hk).

Fang Bai is with Surgical Augmented Reality (SURGAR), 63000 Clermont-
Ferrand, France, and also with School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore 641651 (e-mail: fang.bai@
yahoo.com).

Shoudong Huang is with the Robotics Institute, Faculty of Engineering
and Information Technology, University of Technology, Ultimo, NSW 2007,
Australia (e-mail: shoudong.huang@uts.edu.au).

Yuxiang Sun is with the Department of Mechanical Engineering, University
of Hong Kong, Kowloon, Hong Kong (e-mail: yx.sun@cityu.edu.hk).

Digital Object Identifier 10.1109/LRA.2024.3440088

Fig. 1. Pose graph optimization in cycle space. There are three cycles corre-
sponding to three effective constraints.

Fig. 2. An example of the spanning tree (in black solid lines) and chords (in
red dotted lines) of a graph, and indicator vectors.

the graph. In particular, their recent work [4], termed cycle-based
PGO, see Fig. 2, emphasized the importance of using small
cycles, which brings the computation of the minimum cycle
basis (MCB) into the robotics community. In contrast to other
relative pose parameterizations [5], [6], [7], the cycle-based
PGO can be effectively solved by the sequential quadratic pro-
gramming (SQP) technique. At its core, the cycle-based PGO
factorizes a matrix whose structure is decided by the used cycle
basis. In practice, PGO instances are rather sparse and thus have
a low-dimensional cycle space. As a result, in the cycle-based
PGO, the matrix to factorize has a much smaller dimension in
comparison to its vertex-based nonlinear least squares (NLS)
formulation [8], [9], [10], [11]. By using a minimum cycle basis,
the authors [4] demonstrate the superiority of the cycle-based
PGO over the classical vertex-based PGO formulation.

The cycle-based PGO requires an effective algorithm to com-
pute an MCB, which in general is considered expensive. With
that being said, for real-time SLAM applications, the pose graph
is created incrementally, as new vertices and edges are added
when the sensor explores the environment. This prohibits the

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9287-5370
https://orcid.org/0000-0001-9606-3943
https://orcid.org/0000-0002-6124-4178
https://orcid.org/0000-0002-7704-0559
mailto:keyu.chen@connect.polyu.hk
mailto:keyu.chen@connect.polyu.hk
mailto:fang.bai@yahoo.com
mailto:fang.bai@yahoo.com
mailto:shoudong.huang@uts.edu.au
mailto:yx.sun@cityu.edu.hk

10186 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

usage of the cycle-based PGO in real-time, due to its inability
to handle the constant graph topology changes. Thus, it is of
great importance to develop an MCB algorithm, which can
incrementally handle newly added vertices and edges, of course
by making the most of the obsolete MCB. We term such an
MCB algorithm as an incremental MCB algorithm, a.k.a. iMCB
in short. While an exact iMCB seems difficult, it does not
compromise the research of approximate iMCB algorithms [12],
for example by using the cycle constructed by a newly added
edge and the shortest paths between the endpoints of the edge, an
idea initialized in [13] and later matured by Forsgren et al. [14].

In this work, we propose an exact iMCB algorithm that is able
to incrementally update the MCB online as new edges added.
The bottleneck of the MCB algorithm [4] is the construction of
the superset, which itself requires computing all-pairs-shortest-
paths (APSP). Enlightened by the above fact, we report two
algorithmic findings with proofs, aiming for an exact iMCB
algorithm. Specifically, we propose an incremental APSP algo-
rithm in Section III, an incremental isometric superset updating
algorithm in Section IV. Both are backed with exact proofs.
These two findings directly result in an efficient and exact iMCB
algorithm that is integrated into the cycle-based PGO approach,
forming the iMCB-PGO SLAM backend. Lastly, we integrate
iMCB-PGO into proSLAM [15], a stereo-camera based SLAM
system, to demonstrate the real-time performance of the pro-
posed iMCB-PGO SLAM backend. Our code is open-sourced.1

The contributions of this letter are summarized as follows:
1) We develop an effective incremental APSP algorithm with

exact proofs. We propose the old-win-rule to handle paths
with the same weight, which is much faster than the
lexicographic path comparison rule in [4].

2) We develop an incremental isometric superset construc-
tion algorithm by gradually incorporating isometric cycles
passing through the new edge, with proved exactness.

3) We propose an exact iMCB algorithm by incorporating
the above two findings.

4) We propose iMCB-PGO by integrating the above iMCB
algorithm into the cycle-based PGO.

5) We validate our results with a range of simulated and
real-world datasets, including integrating iMCB-PGO into
proSLAM for a real-time demonstration.

II. A BRIEF REVIEW OF THE MCB PROBLEM

We introduce prerequisites in graph theory, including concept
of the spanning tree and chords, vector representation of cycle
and concept of Horton set and isometric set.

A. Spanning Tree and Chords

In this letter, we consider a connected undirected graph
G(V,E), where V is the set of vertices and E is the set of
edges. A tree is a connected subgraph without cycles or loops.
A spanning tree is a special tree which contains every vertex of
the graph. Given a spanning tree, the off-tree edges are called
chords, as shown in Fig. 2. In general, the spanning tree of a
graph is not unique.

1Our code is available at: https://github.com/lab-sun/iMCB-PGO

B. Cycles and GF(2)

In an undirected graph, a cycle is a subgraph in which every
vertex has even degree. A cycle is a circuit if it is connected and
each of its vertices has exactly degree two [16]. In this letter, the
cycles we are concerned with are all circuits.

A cycle can be described by the set of traversed edges, e.g.,

C1 = {e1, e2, e3}
in Fig. 2. This set can be further described using an “indicator
vector”, where 1 means that the corresponding edge is traversed
by the cycle and otherwise not. This way, the cycle C1 can be

expressed as a vector: C1 =
[
1 1 1 0 0 0

]T
, as illus-

trated in Fig. 2. The indicator vector is a vector of ones and zeros
that lies on the modulo-2 Galois field, termed GF(2) for short,
where the arithmetics on GF(2) are defined by extending the
standard arithmetics with the modulo-2 operation. The concept
of GF(2) is useful when talking about cycles. In specific, the
modulo-2 summation of two cycle vectors on GF(2) corresponds
to the symmetric-difference of the corresponding two edge sets,
and thus can be used to describe the cycle concatenation. The
independence of two cycles is described by the orthogonality of
the two cycle vectors on GF(2) where the inner-product of these
two vectors on GF(2) equals to 0.

C. Cycles Basis

All the cycles of graph G span a cycle space, denoted by
Cyc(G). Using the notion of GF(2), the cycle space Cyc(G)
is a vector space over GF(2) spanned by all the cycle vectors,
i.e., the GF(2) vector representations of cycles in graph G. A
cycle basis of Cyc(G), denoted by B, comprises m− n+ 1 (m
is the number of edges and n is the number of vertices in G)
independent cycles that can express all the cycles in G using cy-
cle concatenations, for example via the symmetric-difference of
edge sets, or via the modulo-2 summation of the corresponding
cycle vectors. By independence, it is meant that any cycle in B
cannot be obtained from cycle concatenations using the rest of
the cycles in B. Typically, there exist multiple cycle bases in
the cycle space Cyc(G), which are all equivalent under cycle
concatenations. For example, in Fig. 2, a cycle basis of graph G
can be chosen as B = {C1, C2, C3}, where C1 = {e1, e2, e3},
C2 = {e2, e4, e6} and C3 = {e1, e5, e6}. With this cycle ba-
sis, another cycle C4 = {e1, e3, e4, e6} can be expressed as
C1 + C2.

D. Minimum Cycle Basis (MCB)

The weight of a cycle is the total weight of the edges traversed
by the cycle. The weight of a cycle basis is the total weight of
the cycles in the cycle basis. We are particularly interested in the
cycle basis whose weight is minimal, termed a minimum cycle
basis (MCB) [16]. If each edge in the graph has weight 1, an
MCB is also a minimum length cycle basis (MLCB). In this
work, we are concerned with the computation of an MCB, by
assuming the edge weights are positive.

There exist a body of literature studying the MCB problem,
see [16] for a review. In early days, people held a belief that an
MCB problem was NP-hard. The first breakthrough comes from
Horton [17], who identified a superset of MCBs, which brings
the computation of an MCB into polynomial time. In his work,
Horton found that for a cycle in an MCB, any two of its vertices
are connected by a shortest path in the cycle. Thus, the potential

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lab-sun/iMCB-PGO

CHEN et al.: IMCB-PGO: INCREMENTAL MINIMUM CYCLE BASIS CONSTRUCTION AND APPLICATION TO ONLINE POSE GRAPH OPTIMIZATION 10187

candidate cycleC of MCB can be represented by an edge-vertex
pair (vx, euw), which is called a Horton cycle:

C(vx, euw)
def
= Pxu ∪ euw ∪ Pxw, (1)

where Pab is a shortest paths between vertex a and vertex b. The
set of Horton cycles, called Horton set, is a superset of an MCB,
defined as

H = {C(vx, euw)|vx ∈ V, euw ∈ E}. (2)

Lastly, an MCB can be extracted by applying an independence
test, e.g., using Gaussian elimination on GF(2) as in [17].

Orthogonally, DePina [18] made another important break-
through by discovering the concept of support vector. A set
of support vectors, incrementally constructed with an update
law, form the orthogonal complementary space to an MCB
on GF(2). In [18], DePina showed how an MCB can be con-
structed progressively by finding a Horton cycle each time that
is non-orthogonal to the current support vector. DePina’s sup-
port vectors fundamentally reshaped people’s understanding on
cycle independence. Practically, to benefit faster computation,
independence tests are restricted to off-tree edges, by removing
the edges of a spanning tree in Horton cycles and support vectors.
In later work from Amaldi et al. [19], a super fast independence
test algorithm, such a spanning tree is constructed incrementally.

For an implementation of Horton and DePina’s approaches,
we refer to [20].

E. Recent Advancement

The Horton set contains many redundant cycles. In particular,
Horton found that if the shortest paths are unique, each Horton
cycle (of N vertices) will contain exactly N duplicates. If there
exist multiple shortest-paths, the same property can be obtained
by using the idea of consistent shortest paths.

Definition 1: Consistent shortest paths. Let Pxy denote the
shortest path between vertices x and y. For any two vertices s
and t on Pxy , if Pst is contained by Pxy, i.e., Pst ⊆ Pxy , the
path Pxy is called consistent shortest path.

Definition 2: Isometric cycles. A cycle C is isometric if for
any two vertices x and y on C, Pxy is contained by C, i.e.,
Pxy ⊆ C.

Amaldi [21] systematically studied the property of the iso-
metric cycles, and found that given consistent shortest paths, the
set of isometric cycles, called isometric set, contains an MCB.

Lemma 1. ([21]): The isometric set, a.k.a., the set of isometric
cycles constructed from consistent shortest paths, contains a
minimum cycle basis.

In addition, Amaldi et al. [21] established a method to extract
the isometric set from the Horton set, by assuming the shortest
paths are consistent. The key idea is to identify all the equivalent
cycles in the Horton set, by a result recapitulated as follows:

Lemma 2. ([21]): Let sx(y) be the first vertex (except x) on
the shortest path Pxy. For any cycle C = C(x, e(u, v)), with
e(u, v) /∈ Pxu, e(u, v) /∈ Pxv , and sx(u) �= sx(v).

1) If x = u then C = C(v, e(u, v)).
2) If x �= u, let x′ = sx(u).
a) If x = sx′(v) then C = C(x′, e(u, v)).
b) If x �= sx′(v), u = sv(x

′) then C = C(v, e(x, x′)).
c) If x �= sx′(v), u �= sv(x

′) then C is not isometric.
The cycle equivalence can be summarized as a graph G†,

where each vertex in G† denotes a Horton cycle, and an oriented
edge h1 → h2 (h1, h2 ∈ H) describes the equivalence obtained

from h1 to h2 using Lemma 1. In [21], Amaldi proved that
equivalent Horton cycles form connected components in G†,
and furthermore an isometric cycle (of N vertices) corresponds
to a connected component in G† with exactly N vertices. Later,
Bai et al. [4] proved that the connected component is actually
a double-linked circuit, which enables compact storage and fast
traversal on G†, using a C++ vector-based implementation.

Lemma 3. ([4]): All representations of an isometric circuit
belong to the same connected component.

Lemma 4. ([4]). All representations of an isometric circuit C
in G† form a double-linked directed cycle with |C| vertices.

The isometric set is a tight superset to MCB, with few re-
dundancies, from which an MCB can be effectively extracted
using independence test. We use Amaldi’s [19] independence
test algorithm which has been implemented in [4].

The remaining issue, and of course the computational bottle-
neck of MCB, is the construction of consistent shortest paths.
In [4], Bai et al. approached this problem by a modified Di-
jkstra algorithm, termed LexDijkstra, which replaces the path
comparison in Dijkstra using the lexicographic comparison.

Definition 3: Lexicographical Comparison Rule (LCR).
There exists a unique path Pxy that satisfies exactly one of the
following three conditions with respect to any other path P ′

xy .
1) ω(Pxy) < ω(P ′

xy)
2) ω(Pxy) = ω(P ′

xy), len(Pxy) < len(P ′
xy)

3) ω(Pxy) = ω(P ′
xy), len(Pxy) = len(P ′

xy) and min_
index(Pxy \ P ′

xy) < min_index(P ′
xy \ Pxy).

min_index(P) is defined as the minimal edge index on
path P .

The lexicographic comparison ensures the uniqueness and
consistency of shortest paths [22]. The most expensive part in
lexicographic comparison is the last step, which requires path
traversals. However, it suffices to compare to a common shared
vertex, rather than the root of the shortest path tree.

Lemma 5. ([4]): In lexicographic comparison, the path
traversals in the worst case stop at a common vertex shared
by the two paths.

However, the LexDijkstra algorithm in [4] does not scale
well for graphs created incrementally, as which may result
in redundant computations if the shortest paths between two
vertices are known and unchanged. Therefore, we require a new
method to update consistent shortest paths incrementally, and
this letter bridges this gap by proposing a set of update rules
with proved exactness.

III. INCREMENTALLY UPDATING SHORTEST PATHS

Given the graph with V vertices and E edges, all-pair short-
est paths are stored in the form of all-pair shortest path trees
(APSPT), a matrix each entry of which is the pair of distance in-
formation and path information. Distance information contains
weight ω and length l, and path information is represented by
predecessor vertex Pre. For example, Pre(x, y) is the vertex
preceding y along the shortest path from x to y, with distance
ωxy and length lxy , as shown in Fig. 4(a).

A. Incremental Reduction

There are two cases when adding a new edge, forming a bridge
and forming a cycle. The vertex from which the trajectory starts
in the current loop is caller va. A protruded vertex, represented as
vu, is a newly introduced vertex in our evolving graph, stemming

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

10188 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

Fig. 3. Topology of pose graph growing. The pose graph extends from va to
vu over odometry edges (black) and loop closure edge (red). The dashed line
represents the connection between va and vw , which is omitted for clarity.

from the trajectory’s extension and is anticipated to participate
in an upcoming loop closure. Another vertex in the loop closure
is named as vw. Fig. 3 shows the topology of graph growing.

In a path update process, we are often required to compare
two paths (e.g., an old path and a new path). If one path is strictly
shorter than the other in distance, we simply choose the shorter
one. However, things become complicated if two paths have
exactly the same distance. The LCR, defined in Definition 3, is
one approach to disambiguate two paths in this case, by further
comparing lengths and edge IDs of non-intersected parts. Here,
we notice in an incremental setting, it suffices to use an Old-
Win-Rule (OWR) in most cases.

Definition 4: Old-Win-Rule (OWR): LetPxy be the oldx− y
path and P ′

xy be the new x− y path (passing through the added
new loop-closure edge). If d(Pxy) = d(P ′

xy), we choose Pxy as
the shortest path between x and y.

The OWR in Definition 4 takes advantage of the fact that the
shortest paths in G are already consistent, which greatly reduces
the usage of LCRs and thus results in more effective updating
processes.

B. Updating Shortest Paths When Adding
a Loop-Closure Edge

In this case, the added new edge is euw, which introduces a
new cycle in graph G′, see Fig. 3 and Fig. 4(d). To evaluate the
impact of euw, we evaluate all pairs shortest paths in G′, and
update those that are subject to changes.

For any pair of vertices vs, vd where vs, vd �= vu, vw, the
insertion of edge euw contributes two additional paths between
vs and vd:
⎧⎨
⎩
P1 = Psu ∪ euw ∪ Pwd

ω1 = ωsu + ω′
uw + ωwd

l1 = lsu + l′uw + lwd

and

⎧⎨
⎩
P2 = Psw ∪ euw ∪ Pud

ω2 = ωsw + ω′
uw + ωud

l2 = lsw + l′uw + lud

Degenerate cases where vs or vd = vu or vw induce degenerate
paths Puu = ∅ or Pww = ∅. We compute the shortest path
between s and d in G′, denoted by P ′

sd, in three cases.
Case 1: If ω1 < ωsd or ω2 < ωsd and ω1 �= ω2, we choose

the shorter path as the new shortest path between vs and vd. The
pointers are updated as:

ω′
sd = ω1, l

′
sd = l1, P re′(vs, vd) = Pre(vw, vd) if ω1 < ω2

ω′
sd = ω2, l

′
sd = l2, P re′(vs, vd) = Pre(vu, vd) if ω1 > ω2

Case 2: If ω1 = ω2 < ωsd, we disambiguate P1 and P2 by
using the LCR to choose the lexicographically shorter path. The
corresponding pointers are updated similarly.

Case 3: Otherwise, i.e.,ω1, ω2 ≥ ωsd, we stick to the old path
by the OWR.

We assume the shortest paths in graph G are consistent. In
what follows, we show that the shortest paths in the new graph
G′ are also consistent following the above rules.

Theorem 1: For any two vertices vs, vd ∈ V with vs,
vd �= vu, vw and two arbitrary vertices vp and vq on path P ′

sd,
we have P ′

pq ⊆ P ′
sd.

Proof: We prove Theorem 1 by evaluating the weights of two
new paths P1 and P2 in two cases: 1) P1 or P2 and 2) old path.

No matter which path we choose (P1 or P2 and old path), we
prove that for any two vertices vp and vq on the chosen path, the
subpath ended by vp and vq is shortest path.

See Appendix for details of the two cases �.

C. Updating Shortest Paths When Adding an Odometry Edge

An odometry edge which connects an existing vertex va in G
and a newly added vertex vu in G′, does not change the cyclic
structure of the graph. Therefore, the shortest path between any
vertex vs in G to vu, denoted by P ′

su in G′, can be trivially
obtained by connecting the shortest path Psa and the new edge
eau, that is P ′

su = Psa ∪ eau. The corresponding pointers are
updated as follows.

For any vertex vs �= vu, va,

Pre′(vu, vs) = Pre(va, vs), P re′(vu, va) = vu

l′us = las + lua, ω′
us = ωas + ωua (3)

D. Smoothing Out Vertices of Degree Two for Faster
Computation

A chain of vertices of degree two (VoDT), e.g., a sequence
of odometry edges without a loop-closure, does not impact the
cyclic structure of a graph. However, these VoDT can increase
the complexity of shortest path search, and cause extra expenses
on managing the APSPT. To mitigate this issue, Bai et al. [4]
eliminated the chain of VoDT, for instance from vp to vq, by
replacing it with a crafted edge epq .

In an incremental algorithm, for a loop-closure edge, it is
possible that one of its end vertices, say vw, lies on the VoDT
chain. If so, vw should be marked as non-VoDT (activated) first,
as shown in Fig. 4(c). This step will incur the computation of
shortest paths between all vertices and vw without changing the
distance between any previous pair of vertices. The intermedi-
ate vertex vw could only be reached through its neighbouring
vertices, say vx and vy . Thus the shortest path from any vertex
vs to the intermediate vertex vw is determined by the shortest
paths from vs to vx and vy . The pointers are updated as follows.

For any vertex vs, if ωsx + ωxw < ωsy + ωyw,

Pre′(vs, vw) = vx

l′sw = lsx + 1, ω′
sw = ωsx + ωxw (4)

otherwise,

Pre′(vs, vw) = vy

l′sw = lsy + 1, ω′
sw = ωsy + ωyw (5)

It is noteworthy that the length of all shortest paths that go
through the path Pxy increases by 1.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMCB-PGO: INCREMENTAL MINIMUM CYCLE BASIS CONSTRUCTION AND APPLICATION TO ONLINE POSE GRAPH OPTIMIZATION 10189

Fig. 4. Illustration of building reduced graph incrementally and performing update of all-pair-shortest paths. Original and reduced graph are both presented in
(a)–(d), where red vertices are active vertices, representing nodes in reduced graph while black nodes only represent ordinary nodes in original graph. (a) Shortest
paths are stored in a matrix whose entry M(x, y) includes Pre(x, y) and ωxy . (b) Trajectory extends from vertex va to vertex vu, which is the additional active
vertex as a potential vertex of degree two due to upcoming loop closure with vw . (c) If vw is an ordinary vertex of original graph, it is activated first and then its
two neighbors vx and vy are determined by searching both forward and backward. (d) Insert new edge and update all-pair-shortest paths. The pair of two blue
nodes selected randomly to illustrate how the path is renewed.

IV. INCREMENTALLY UPDATING THE ISOMETRIC SUPERSET

A. The Superset S
We denote the isometric set in the previous graph G by IG,

and that in the current graph G′ by IG′ . We denote the set of
new isometric cycles in G′ passing through new edge euw by:

Ipass_e
def
= {C|C ∈ IG′ and euw ⊆ C} . (6)

Importantly, we note that after updating the APSP, some iso-
metric cycles in G become non-isometric in G′. We opt to keep
those non-isometric cycles in the superset construction. In G,
we denote such a superset as SG which includes IG, and some
non-isometric cycles derived from previous rounds of APSP
changes. In G′, some isometric cycles in IG (and thus SG)
becomes non-isometric. However, we show that the union of
SG and Ipass_e:

SG′ = SG ∪ Ipass_e (7)

contains the isometric set IG′ , and thus an MCB in G′.
Theorem 2: SG′ contains an MCB of the updated graph G′.
Proof: We prove SG′ contains an MCB by proving the iso-

metric set of G′, is a subset of SG′ , i.e., IG′ ⊆ SG′ .
We partition the cycles in IG′ into two disjoint subsets

IG′ = IG′
1
∪ IG′

2
, (8)

where IG′
1

is the set of all unchanged isometric cycles from G,
i.e., IG′

1
⊆ IG, see Fig. 5. Then we prove IG′

2
= Ipass_e by

proving IG′
2
⊆ Ipass_e and Ipass_e ⊆ IG′

2
.

Assume there exists a cycle Ci ∈ IG′
2

that does not pass
through edge euw, i.e., euw /∈ Ci. In this case, by OWR, any
subpath P ′

xy ⊆ Ci sticks to the old path, which means Pxy =
P ′
xy ⊆ Ci. The above fact in essence asserts that Ci ∈ IG′

1
,

which contradicts Ci ∈ IG′
2
. Thus we have IG′

2
⊆ Ipass_e.

Lastly, since Ipass_e ⊆ IG′ but Ipass_e ∩ IG′
1
= ∅, we know

Ipass_e ⊆ IG′
2
.

Fig. 5. Illustration for set relationship in Theorem 2.

Fig. 6. The vector form storage of G†. A Horton cycle constructed from the
i-th vertex and the j-th edge is mapped to position im+ j in the vector, with m
being the number of edges in G. Each vector slot maintains two pointers ptr1
and ptr2 that provide links to equivalent Horton cycles.

With IG′
1
⊆ IG and by definition of SG′ , we have IG′ ⊆

SG′ �.

B. Details of Constructing Ipass_e

Initialized from the empty set, the superset S is updated
incrementally, by including isometric cycles passing through
the new edge each time. The isometric cycles are obtained by
identifying equivalent Horton cycles using a graph structure,
denoted by G†. Each Horton cycle is a vertex in G†, and two
equivalent Horton cycles C1 and C2 contribute two directed
edges C1 → C2 and C2 → C1 from Lemma 2. Graph G† is
huge, but the connected components in G† are double linked
circuits [4]. Thus, we can store G† compactly in a vector,
where each vertex of G† corresponds to a vector slot which
maintains two pointers to describe edge adjacency, see Fig. 6.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

10190 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

TABLE I
COMPLEXITY OF IMCB AND BATCH-MCB

TABLE II
TOTAL WEIGHTS OF MCBS COMPUTED BY IMCB AND BATCH-MCB ON

CLASSICAL DEBUG GRAPHS

After updating APSP, we recompute the elements of this vector
to accommodate the possible changes of cycle equivalences.

Lemma 6 ([21]): For an isometric cycle C, there is a unique
edge e for each vertex vx ∈ C, such that C = C(vx, e).

Based on Lemma 6, Ipass_e can be obtained by traversing
graph G† via two depth-first searches (DFSs) initialized from
verticesC(vu, e) andC(vw, e), where e = euw is the new added
edge. The amortized complexity of these two DFSs is O(m).

C. Overall Complexity

We extract an MCB from the superset S using the Adap-
tive Isometric Cycles Extraction (AICE) algorithm in Amaldi
et al. [19], which is very fast after sorting all isometric cycles
in O(m logm). Updating shortest paths using the new edge
takes O(n2) time as each pair is checked. In the construction
of superset S , it takes O(mn) time to regenerate graph Ḡ† and
takes O(m) time to update the superset. Overall, the complexity
of our iMCB algorithm is O(n2 +mn), see Table I.

Compared to the batch MCB algorithm in Bai et al. [4] with a
complexityO(nm(logn+ n)) of batch MCB algorithm, the key
progress of iMCB is twofold. First, compared to general Dijkstra
algorithm, we do not need to traverse each edge, and thus we
break mn2 by solely checking if a new path passing through
immediate vertex is shorter between all pairs. Second, by using
OWR, we substantially reduce the usage of the expensive LCR
for comparing two paths.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We evaluate the proposed iMCB and its application in PGO
termed iMCB-PGO for real-time SLAM systems.

A. Test on Classical Graph

We compute the total weight of each computed MCB on
classical debug graphs, that is, Folkman, Heawood, Petersen,
Kneser, Hypercube and Circulant graphs, using iMCB and
batch-MCB algorithms and report the results in Table II. For
each case, the total weight of MCB computed by iMCB is exactly

Fig. 7. iMCB on City10 k. Top: Runtime of iMCB over the number of cycles.
Bottom: The number of changed cycles.

the same as that computed by batch-MCB, which backs the
correctness of our incremental updating strategies.

B. Time Comparison of MCB and iMCB

We evaluate the computational complexity of our iMCB over
the batch-MCB in [4] on standard PGO benchmarks, and report
timing statistics (in seconds) in Table III. For each case, the
weights of the MCBs computed from iMCB and batch MCB are
identical and thus not reported any more. In Table III, we report
the detailed timing statistics of each algorithmic component to
process the very last loop-closure, and the average overall timing
statistics to process each loop-closure.

This result shows that the processing time spent on each loop-
closure is significantly reduced by using iMCB over batch-MCB,
in particular for large and dense graph instances, for example
M3500, Sphere2500 and City10 K. The statistics of the last
loop-closure, with iMCB being several times faster than batch-
MCB, validates the effectiveness of the incremental updating
strategy thanks to its capability to take advantage of existing
computation to process new loop-closures for faster running
time.

Fig. 7 shows the results on City10 k, a high cycle-ratio and
large-scale pose graph. We report the time used to process each
loop-closure edge by iMCB and batch-MCB respectively, see
Fig. 7(a). Asymptotically, iMCB scales much better than batch-
MCB with respect to growing graphs, because iMCB reuses
existing computation (most importantly in APSP) to process a
newly added loop-closure edge rather than computes everything
from scratch. Such a property is critical to handle incrementally
constructed PGO instances online. Fig. 7(b) illustrates that the
cycles requiring replacement exhibit a nearly constant number
throughout the graph’s growth.

C. iMCB-PGO and Classical Vertex-Based PGO

We compare iMCB-PGO with the classical vertex-based PGO
(VB-PGO). To show the point, we simulate a sparse sphere by
deleting loop closure edges randomly from g2o_sphere, and
report in Table IV the average error and runtime. It is clear
that iMCB-PGO can converge to the final accuracy mostly
in one iteration with less time consumption than that of VB-
PGO. In addition, the time used for updating MCB is lower

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: IMCB-PGO: INCREMENTAL MINIMUM CYCLE BASIS CONSTRUCTION AND APPLICATION TO ONLINE POSE GRAPH OPTIMIZATION 10191

TABLE III
COMPUTATIONAL TIME (IN SECONDS) BY IMCB AND BATCH MCB

TABLE IV
COMPARISON FOR A SPARSE SPHERE2500 (3291 EDGES, 2500 VERTICES AND 792 CYCLES)

Fig. 8. iMCB-PGO on the KITTI dataset (stereo sequence 00) with one
iteration allowed. The final costs of iMCB-PGO and VB-PGO are 2.17 and
2.67, respectively.

than Cholesky factorization (i.e., solving linear systems in
optimization).

Being faster to converge and faster to compute than VB-PGO,
the iMCB-PGO pushes the research of CB-PGO [4] further in
the case of real-time SLAM applications.

D. Application to SLAM System

We integrate iMCB-based PGO solver into proSLAM, a
stereo/RGB-D visual SLAM system [15].

It is expected with sufficient convergence, both iMCB-PGO
and VB-PGO yield similar results. However, we observe that
iMCB-PGO converges faster. An example2 is shown in Fig. 8,
where only one iteration is allowed for all optimizers. Our
iMCB-PGO achieves significantly better accuracy owing to its
faster convergence. Lastly, we evaluate iMCB-PGO on the RGB-
D dataset Orazio shown in Fig. 9. Since Orazio does not provide
ground-truth poses, we report the cost after PGO optimization.
It is worth noting that in real SLAM systems, the pose estimates
can in turn impact tracking and loop-closure routines, resulting
in different pose graphs. In fact, by setting maximum iterations to
1 and 3, VB-PGO would lead to different pose graphs for the lack

2Figs. 8 and 9 are generated by rerun.io.

Fig. 9. iMCB-PGO on the Orazio dataset (RGB-D) with one iteration allowed.
The final costs of iMCB-PGO and VB-PGO are 2915 and 3352, respectively.

of sufficient convergence with one iteration, while iMCB-PGO
gives the same pose graphs owing to its faster convergence.

VI. CONCLUSION

We proposed iMCB, an exact algorithm for incremental MCB
computation. Our core contribution comprises a set of update
rules for consistent shortest paths, which significantly reduces
the complexity compared to batch-MCB [4]. We give proofs
for the updates of both the consistent shortest paths and the
isometric set, grounding our approach as an exact method. We
show how iMCB can benefit real-time SLAM applications by
proposing iMCB-PGO and demonstrating its potential using the
proSLAM system. While we show results using PGO, we expect
many other graph applications can benefit from our results in the
future.

APPENDIX

Proof of Theorem 1: The loop-closure edge euw induces two
potential shorter paths between arbitrary vertices s and d, in or-
der of vs − vu − vw − vd and vs − vw − vu − vd, respectively.
Let ω1 = ωsu + ω′

uw + ωwd and ω2 = ωsw + ω′
uw + ωud be

the total weights of these two paths. The LCR ensures con-
sistency of P ′

sd under ω1 = ω2 [4]. Then we prove that P ′
sd is

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

rerun.io

10192 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 11, NOVEMBER 2024

Fig. 10. We consider the impact of edge euw on the shortest path between vs
and vd. The new shortest path may pass through euw , i.e., case 2, and may not,
i.e., case 1.

consistent when ω1 �= ω2 following the OWR. Without loss of
generality, we assume ω1 < ω2. For P ′

sd in G′, we consider two
cases: ω1 ≥ ωsd and ω1 < ωsd.

Case 1: ω1 ≥ ωsd, as shown in Fig. 10(a). By the OWR, we
have P ′

sd = Psd. For any pair of vertices vp, vq (in order of vs −
vp − vq − vd) on P ′

sd, we have Ppq ⊆ Psd in G. Then, we prove
P ′
pq = Ppq by justifying (9) and (10).

ωpu + ω′
uw + ωwq ≥ ωpq (9)

ωpw + ω′
uw + ωuq ≥ ωpq (10)

Assume (9) doesn’t hold. Along path P̃sd = Psp ∪ Ppu ∪ euw ∪
Pwq ∪ Pqd, we observe

ω1 = ωsu + ω′
uw + ωwd

≤ ωsp + ωpu + ω′
uw + ωwq + ωqd

< ωsp + ωpq + ωqd = ωsd (11)

which contradictsω1 ≥ ωsd. We can prove (10) in a similar way.
From (9) and (10), the new p− q paths in G′ are always longer
or equal than the old p− q shortest path in G. Thus P ′

pq = Ppq

by the OWR.
Case 2: ω1 < ωsd, as shown in Fig. 10(b). In this case, a

strictly shorter vs − vd path is found, and updated in G′ as
P ′
sd = Psu ∪ euw ∪ Pwd. We prove that for any pair of vertices

vp, vq (in order of vs − vp − vq − vd) with vp on Psu and vq on
Pwd (which is the only nontrivial configuration), the following
inequality holds:

ωpu + ω′
uw + ωwq < ωpq (12)

We only need to inspect the path Ppq = Ppu ∪ euw ∪ Pwq in-
stead of Ppq = Ppw ∪ euw ∪ Puq due to the fact

ωpw + ω′
uw + ωuq > ωpu + ω′

uw + ωwq, (13)

which can be easily proved by contradiction.
Assume (12) doesn’t hold, i.e., ωpu + ω′

uw + ωwq ≥ ωpq .
Along the path Psp ∪ Ppq ∪ Pqd, we observe

ωsd ≤ ωsp + ωpq + ωqd

≤ ωsp + ωpu + ω′
uw + ωwq + ωqd

= ωsu + ω′
uw + ωwd = ω1 (14)

which contradicts ω1 < ωsd.
According to (12), P ′

pq = Ppu ∪ euw ∪ Pwq is the shortest
path from vp to vq in G′. As mentioned before, given P ′

sd =

Psu ∪ euw ∪ Pwd and the fact that vertex vp is on the path Psu

and vertex vq is on the path Pwd, we have

P ′
sd = Psp ∪ Ppu ∪ euw ∪ Pwq ∪ Pqd = Psp ∪ P ′

pq ∪ Pqd.

Thus P ′
pq ⊆ P ′

sd holds for any p and q, confirming the consis-
tency of P ′

sd in G′.

REFERENCES

[1] C. Cadena et al., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309–1332, Dec. 2016.

[2] F. Bai, S. Huang, T. Vidal-Calleja, and Q. Zhang, “Incremental SQP
method for constrained optimization formulation in SLAM,” in 2016 14th
Int. Conf. Control, Automat. Robot. Vis., 2016, pp. 1–6.

[3] F. Bai, T. Vidal-Calleja, and S. Huang, “Robust incremental SLAM under
constrained optimization formulation,” IEEE Robot. Automat. Lett., vol. 3,
no. 2, pp. 1207–1214, Apr. 2018.

[4] F. Bai, T. Vidal-Calleja, and G. Grisetti, “Sparse pose graph optimizati in
cycle space,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1381–1400, Oct. 2021.

[5] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs
with poor initial estimates,” in Proc. IEEE Int. Conf. Robot. Autom., 2006,
pp. 2262–2269.

[6] G. Grisetti et al., “A tree parameterization for efficiently computing
maximum likelihood maps using gradient descent,” Robot. Sci. Syst., vol. 3,
2007, pp. 65–72.

[7] S. Huang, Y. Lai, U. Frese, and G. Dissanayake, “How far is slam from a
linear least squares problem?,” in 2010 IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2010, pp. 3011–3016.

[8] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G 2

o: A general framework for graph optimization,” in 2011 IEEE Int. Conf.
Robot. Automat., 2011, pp. 3607–3613.

[9] F. Dellaert et al., “Factor graphs for robot perception,” Foundations Trends
Robot., vol. 6, no. 1-2, pp. 1–139, 2017.

[10] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM++-A highly efficient
and temporally scalable incremental SLAM framework,” Int. J. Robot.
Res., vol. 36, no. 2, pp. 210–230, 2017.

[11] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres solver,” Oct. 2023.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[12] C. Estrada, J. Neira, and J. D. Tardós, “Finding good cycle constraints for
large scale multi-robot slam,” in 2009 IEEE Int. Conf. Robot. Automat.,
2009, pp. 395–402.

[13] F. Bai, “Two novel techniques for graph optimization–cycle based formu-
lation and change of optimal values,” Ph.D. dissertation, Fac. Eng. Inf.
Technol., 2020.

[14] B. Forsgren, K. Brink, P. Ganesh, and T. W. McLain, “Incremental cycle
bases for cycle-based pose graph optimization,” IEEE Robot. Automat.
Lett., vol. 8, no. 2, pp. 1021–1028, Feb. 2023.

[15] D. Schlegel, M. Colosi, and G. Grisetti, “ProSLAM: Graph SLAM from
a programmer’s perspective,” in 2018 IEEE Int. Conf. Robot. Automat.,
2018, pp. 3833–3840.

[16] T. Kavitha et al., “Cycle bases in graphs characterization, algorithms, com-
plexity, and applications,” Comput. Sci. Rev., vol. 3, no. 4, pp. 199–243,
2009.

[17] J. D. Horton, “A polynomial-time algorithm to find the shortest cycle basis
of a graph,” SIAM J. Comput., vol. 16, no. 2, pp. 358–366, 1987.

[18] J. dePina, “Applications of shortest path methods,” Ph.D. dissertation,
Univ. Amsterdam, 1995.

[19] E. Amaldi, C. Iuliano, and R. Rizzi, “Efficient deterministic algorithms
for finding a minimum cycle basis in undirected graphs,” in Proc. Integer
Program. Combinatorial Optim. 14th Int. Conf., Lausanne, Switzerland,
Jun. 9-11, 2010, vol. 14, pp. 397–410.

[20] K. Mehlhorn and D. Michail, “Implementing minimum cycle basis algo-
rithms,” J. Exp. Algorithmics, vol. 11, pp. 2–5, 2007.

[21] E. Amaldi, C. Iuliano, T. Jurkiewicz, K. Mehlhorn, and R. Rizzi, “Breaking
the O (m2n) barrier for minimum cycle bases,” in Proc. Algorithms-ESA
17th Annu. Eur. Symp., Copenhagen, Denmark, Sep. 7–9, 2009, vol. 17,
pp. 301–312.

[22] D. Hartvigsen and R. Mardon, “The all-pairs min cut problem and the
minimum cycle basis problem on planar graphs,” SIAM J. Discrete Math.,
vol. 7, no. 3, pp. 403–418, 1994.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 15,2024 at 06:50:10 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ceres-solver/ceres-solver

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

