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Temporal Consistency for RGB-Thermal
Data-Based Semantic Scene Understanding

Haotian Li"?, Henry K. Chu

Abstract—Semantic scene understanding is a fundamental capa-
bility for autonomous vehicles. Under challenging lighting condi-
tions, such as nighttime and on-coming headlights, the semantic
scene understanding performance using only RGB images are
usually degraded. Thermal images can provide complementary
information to RGB images, so many recent semantic segmenta-
tion networks have been proposed using RGB-Thermal (RGB-T)
images. However, most existing networks focus only on improving
segmentation accuracy for single image frames, omitting the in-
formation consistency between consecutive frames. To provide a
solution to this issue, we propose a temporal-consistent framework
for RGB-T semantic segmentation, which introduces a virtual
view image generation module to synthesize a virtual image for
the next moment, and a consistency loss function to ensure the
segmentation consistency. We also propose an evaluation metric to
measure both the accuracy and consistency for semantic segmenta-
tion. Experimental results show that our framework outperforms
state-of-the-art methods.

Index Terms—Autonomous vehicles, multi-modal fusion, RGB-
Thermal, semantic segmentation, temporal consistency.

I. INTRODUCTION

EMANTIC scene understanding based on semantic image
S segmentation is an essential capability for autonomous ve-
hicles. It provides fundamental perceptual information for down-
stream tasks, such as localization [1], [2], [3] and autonomous
navigation [4], [5], [6]. Most existing semantic segmentation
networks are designed with RGB images from visible cameras.
Due to the intrinsic limitations of visible cameras, the perfor-
mance of these networks may be degraded under challenging
lighting conditions, such as nighttime, glares, and on-coming
headlights. Recently, semantic segmentation based on RGB-
Thermal (RGB-T) images has been proposed to address this
issue [7], since thermal imaging cameras do not use visible lights
for imaging and thermal images can provide complementary
information to RGB images. Research progress has been made
using convolutional neural network (CNN) [8], [9], [10], [11]
and Transformer [12], [13], [14].
However, most RGB-T semantic segmentation networks pri-
marily focus on enhancing segmentation accuracy solely for
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Fig.1. Inconsistent segmentation results across consecutive frames. The RGB-
T images in the first row are sampled from the MFNet [8] dataset. The RGB-T
images in the second row are the synthesized images at the next moment. The
thermal images are visualized with the jer color map. We use the recent network
CMX [13] to obtain the segmentation results. The blue and purple colors in the
segmentation maps represent bike and car, respectively.

single image frames, overlooking the segmentation consistency
between consecutive frames [8], [9], [13], [14]. Fig. 1 shows the
segmentation results by a recent network CMX [13] for a sample
RGB-T image from the MFNet dataset [8], and a synthesized
RGB-T image at the next moment generated by our virtual view
image generation (VVIG) module. We can observe the degraded
segmentation performance across consecutive frames. For ex-
ample, the segmentation result for the synthesized RGB-T image
wrongly classifies the car as a bike, resulting in inconsistent
segmentation across consecutive frames (highlighted by the red
ellipses). The inconsistent segmentation results are not expected
by most downstream tasks. To improve the segmentation con-
sistency across consecutive frames, some works on semantic
segmentation have tried to use optical flow [15], [16]. But in
real-world applications, especially under challenging lighting
conditions, it is difficult to compute accurate optical flow.

To provide a solution to this issue, we propose a temporal-
consistent framework to improve the segmentation consistency
for RGB-T semantic segmentation. We design a loss function
in this framework to ensure consistency for the segmentation
results across different frames. We also introduce a new eval-
uation metric to measure both consistency and accuracy for
semantic segmentation. The main contributions of this letter are
summarized as follows:

e We design a novel temporal-consistent framework for
RGB-T semantic segmentation, including a new method
to synthesize images at the next moment. Our code is
open-sourced.!

Uhttps://github.com/lab-sun/Temporal-Consistent-RGBT-Segmentation
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® We design a novel loss function to ensure segmentation
consistency across different frames.

® We design a new evaluation metric to measure both accu-
racy and consistency for semantic segmentation.

II. RELATED WORK

A. RGB-T Semantic Segmentation

RTFNet [9] uses the two-encoders-one-decoder fusion struc-
ture to fuse RGB and thermal images. CACFNet [17] utilizes
cross-modal attention and cascaded fusion to enhance RGB-T
feature complementarity. MMSMCNet [ 18] uses modal memory
fusion and morphological multi-scale assistance to enhance
cross-modal features. Liang et al. [19] proposed the Explicit
Attention-Enhanced Fusion (EAEF), which adapts to different
cases of RGB-T data availability. Lv et al. [20] introduced
CAlNet, which leverages auxiliary tasks and global context to
enhance the complementary reasoning and detailed aggregation
of multi-modal features. Dong et al. [21] proposed EGFNet
that uses prior edge maps and multi-modal fusion modules
to enhance the feature maps. Inspired by Vision Transformer
(ViT) [22] and Segmentation Transformer (SETR) [23], several
transformer-based methods [13], [14], [24] have been applied
to RGB-T semantic segmentation. Zhang et al. [13] introduced
CMX, an extension of Segformer [12] to multi-modal tasks.

B. Segmentation Consistency

To ensure temporal consistency for semantic segmentation,
Cheng et al. [15] proposed a bi-directional framework to obtain
the foreground segmentation and optical flow at the same time.
The optical flow is used as the complementary information for
the segmentation task. Nilsson et al. [16] applied optical flow for
video segmentation. They enhanced segmentation accuracy and
consistency by utilizing the unlabeled RGB images in the dataset
and propagating labels through optical flow. Zhang et al. [25]
proposed AuxAdapt to improve the temporal consistency of
RGB segmentation networks without using optical flow, by
learning from the own decisions of the network and a small
auxiliary network.

C. Evaluation Metric for Consistency

The widely used intersection-over-union (IoU) is the stan-
dard evaluation metric for measuring segmentation accuracy. To
evaluate segmentation consistency, Liu et al. [26] used optical
flow to warp the segmentation map of the current frame to align
with the previous frame, and computed IoU between the warped
segmentation map and the original segmentation map of the
previous frame. They define this as the temporal consistency
(TC) score. Zhang et al. [25] extended the TC metric to eval-
uate the segmentation consistency. Park et al. [27] proposed a
perceptual-consistency-based metric, which calculates the tem-
poral consistency by comparing the average cosine similarity of
the feature maps of consecutive frames.

D. Difference From Existing Work

The existing works on RGB-T semantic segmentation focus
on improving segmentation accuracy for single image frames.
We use the information of consecutive frames to enhance the
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segmentation consistency and further improve the segmentation
accuracy.

The existing consistency evaluation metrics only measure
the consistency of segmentation results, regardless of the seg-
mentation correctness. So, these metrics may fail to evaluate
the performance when the segmentation results of consecutive
frames produce the same errors for the same object. We introduce
a novel metric that takes into account the ground truth of the
segmentation result. The metric evaluates both the accuracy and
the consistency of a segmentation network.

III. THE PROPOSED METHOD

A. The Framework Overview

To study segmentation consistency, we need datasets with
temporal-sequential images. But the existing RGB-T dataset,
such as the MFNet dataset [8], includes only discrete image
frames. So, we propose the virtual view image generation
(VVIG) module to synthesize the sequential frames based on
the existing dataset. The overview of our proposed temporal-
consistent framework is shown in Fig. 2. Img, , which represents
the current frame, is the real image sampled from the MFNet [8].
We use the VVIG module to synthesize Img,, which is the frame
at the next moment. We choose CMX [13] as the segmentation
network. It utilizes a unified fusion approach with a Cross-Modal
Feature Rectification Module (CM-FRM) to calibrate bi-modal
features. Additionally, a Feature Fusion Module (FFM) for
long-range context exchange, achieving state-of-the-art perfor-
mance across various RGB-X modalities [13]. In this work, the
encoders and decoders for the two frames are the same. They
share the same weights. The CMX network can be replaced with
other RGB-T semantic segmentation networks.

B. Virtual View Image Generation Module

As aforementioned, we propose the VVIG module to synthe-
size the image at the next moment. Fig. 3 shows the pipeline.
To mimic the camera’s viewpoint at the next moment, we need
to simulate both its rotation and translation. For rotation, we
randomly generate the Euler angles «, 7y, and 3 about the 7, Y,
and X axes in the image coordinate system. The ranges of the
angles are: « € [—5°,5°],v € [-10°,10°], 8 € [—10°, 10°]. We
use the Euler angles and the camera intrinsic matrix to calculate
the virtual view transformation (VVT) matrix, which is then
used to transform the original image. Myyr is found by:

Myyr = KR, (@) Ry(8)Ru(7) K, (1)

where K represents the camera intrinsic matrix. The VVT matrix
becomes equivalent to a homography matrix when the camera
motion involves only rotations, without any translations. De-
tailed derivation and descriptions are presented in the Appendix.

After simulating rotation with the VVT matrix and obtaining
the distorted image, we discard the parts that appear beyond
the field-of-view of the image, indicated by the white areas
in the blue dashed box. The remaining area within the blue
dashed box is then cropped using the red dashed box to its
largest inner rectangle, defining the effective pixel area of the
virtual image. Finally, the cropped image is resized to match
the original image’s resolution by using interpolation to pro-
duce the virtual image. These cropping and resizing operations
effectively simulate the forward movement of the camera. To
maximize the protection of edge information in objects, we
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Fig. 2.

The overview of our temporal-consistent framework for RGB-T semantic segmentation. Img; is sampled from MFNet. Img, is generated using our

virtual view image generation (VVIG) module. The encoders and decoders are borrowed from CMX [13]. The warped prediction ¢12 and ground truth yo are also
generated by the VVIG module. The jet color map is used here to visualize the thermal images.

Random Euler Original Image Virtual Image

Angles: [a,B,y]T
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Fig. 3. The pipeline of our VVIG module. «, 7, 3 are respectively the

randomly generated Euler angles about the Z,Y, X axes. The VVT matrix
(i.e., Myyr) is generated from the Euler angles and the intrinsic matrix. The
blue dashed box on the transformed image represents the shape of the original
image after the Myvyr transformation. The red dashed box on the cropped image
shows the largest inner rectangle within the valid range for cropping. The virtual
image is obtained from the cropped image by interpolation.

utilize bilinear interpolation for RGB and thermal images, and
nearest-neighbor difference for ground truth during warping and
resizing operations. As shown in Fig. 2, we feed an RGB image,
a thermal image, a ground-truth image, and the prediction of
Img; into the VVIG module. The module then generates the
corresponding Img,.

C. The Loss Functions

Asshownin Fig. 2, the framework conducts semantic segmen-
tation on Img; and Img, separately. We adopt the cross-entropy
loss (i.e., Lseq1 and L. 42) for the semantic segmentation task.
In addition, we apply the Dice loss [28] (i.e., Lgjice) to further
improve the segmentation accuracy.

We propose two consistency loss functions (i.e., L., and
L con—ace) to improve the segmentation consistency across con-
secutive frames. Specifically, L., transforms the segmentation
map of Img; to Img, through Myvr, leading to 12, which is then
compared with the segmentation map of Img,, 7>. The greater
the similarity between g2 and ¢s, the better the segmentation
consistency.

First, we have to transform the segmentation map of the
current frame to the position of next frame by ¢12 = Myvr¥y1,
where Mvyvr is used as the true value. Then, L., is calculated

to measure the inconsistency between the consecutive frames:

Lo 1 EC: 2 Z}Il—lxl‘/‘:ﬂ 1Y 1;h ) yéahﬂu) ?)

con C HxW (c,h,w) A(chw) )
=1 2hetw= (G2 + Y +0)

where h, w and ¢ denote the row, column and class indices of
predictions, respectively. H x W denotes the number of pixels
and C denotes the number of classes. o is a very small positive
number that prevents the denominator from being zero. In this
paper, wesetc = 1 x 1077,

Considering that L.,, only constrains the consistency be-
tween the segmentation maps of consecutive frames, if the
segmentation maps make the same incorrect prediction for the
same pixel, the loss function cannot constrain them effectively.
So, we propose L on—ace based on L.,,. This loss function
incorporates the ground truth of the segmentation map of Img,,
12, and measures the consistency among %12, 92, and ys:

Leon—ace =1
C HxW ~(c,h,w ~(c,h,w c,h,w
L& gt e e
HxW c,h,w c,h,w c,h,w ’
i) Sy 1(9%2 )‘i‘y( )‘HJ( )+0)
3

where y5 is used as a mask to improve the segmentation accuracy.

D. The Evaluation Metric

Intersection-over-Union (IoU) is a widely-used metric that
evaluates segmentation accuracy for a single frame. Temporal
consistency (TC) [26] is proposed to evaluate the consistency
of RGB segmentation across consecutive frames. While TC can
capture the segmentation consistency for consecutive frames, it
fails to account for scenarios where consecutive frames make
the same incorrect prediction for the same target.

To address this issue, we propose consistent accuracy (CA),
which evaluates segmentation results in terms of both consis-
tency and accuracy. Fig. 4 shows the schematic diagrams of IoU,
TC and CA. According to the definition of IoU, it is calculated
as IoU = 47575 B o X 100%, indicating the similarity between
the prediction and the ground truth. Liu et al. [26] proposed TC
to measure the segmentation consistency of RGB images. As
shown in Fig. 4(b), TC is defined as TC = ﬁ x 100%,
which measures the similarity between the current frame, ¢, and
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Fig. 4. (a) Intersection over union (IoU): yo = A + B, represents the ground
truth of Imgy; y2 = B + C, represents the prediction of Img,. (b) Temporal
consistency (TC): §12 = A + B, represents the prediction of Img; mapped to
Img, by MyvyT; y2 = B + C, represents the prediction of Img,. (c) Consistent
accuracy (CA): 12 = A+ B+ D + E, represents the prediction of Imgy
mapped to Imgy by Myyt; g2 = B+ C + E + F, represents the prediction
of Imgy; yo = D 4+ E 4 F + G, represents the ground truth of Img,.

the warped previous frame, 72, by optical flow. As aforemen-
tioned, it is challenging to calculate optical flow under unsatis-
factory lighting conditions. So, we warp the current frame using
Myvyt and utilize the ground truth y» as a supervision signal to
enhance the segmentation accuracy. As shown in Fig. 4(c), CA is
defined as CA = 4= C+5+E+F+G x 100%. C A =100%
only if the predictions of consecutive frames are consistent and
match the ground-truth labels. Otherwise, CA is decreased by
both inconsistency and inaccuracy.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets

We used the MFNet dataset [8] for our experiments. The
dataset consists of 2,390 pairs of RGB-T images. It has 9 classes
(i.e., unlabelled background, car, person, bike, curve, car stop,
guardrail, color cone, and bump). We used the same split scheme
as [8] to train our network, that is, 1568 pairs for training, 392
pairs for validation, and 393 pairs for testing.

B. Training Details

We implement our proposed method in PyTorch and train the
networks with an NVIDIA RTX 3090 (24GB RAM) graphics
card. We employ the CMX [13] network, utilizing the same
dual-stream encoder to extract features from RGB and thermal
modalities, and a decoder that integrates these features. Specifi-
cally, we adopt the four-stage Mix Transformer (MiT) encoder,
pre-trained on ImageNet [29]. This hierarchically structured
Transformer encoder can avoid interpolation of positional codes
and hence obtain multi-scale features. We choose MiT-B2 as
the backbone to trade-off the performance and computational
expenses. The decoder is a multi-layer perceptron (MLP) with
an embedding dimension of 512, as proposed in SegFormer [12].
We train the network with the AdamW optimizer, using a weight
decay rate of 1 x 1073. The initial learning rate is 6 x 107>,
and we use the poly learning rate schedule [30]. We use mean
precision (mPre), mean accuracy (mAcc), mean F1 (mF1), mean
intersection over union (mloU), TC and CA for the quantitative
evaluations.

C. Ablation Study

1) Ablation on the VVIG Module: To demonstrate the ef-
fectiveness of the VVIG module, we use CMX [13] based on
MiT-B2 as the baseline, denoted as variant (A) in Table I. Variant
(A) only uses the cross-entropy loss, which is the same as [13].
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TABLE I
RESULTS (%) OF THE ABLATION STUDY ON THE VVIG MODULE WITH
DIFFERENT LOSSES. IMG1 AND IMGg INDICATE THE LOSSES APPLIED TO THE
CURRENT FRAME AND NEXT FRAME, RESPECTIVELY. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD FONT. WE USE THE AVERAGE RESULTS GENERATED
FROM THE SAME 3 SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS
OF TC (%) AND CA (%)

Losses

No. mPre mAcc mFl mloU TC CA
Img, Img,
(A) Liegl — 7593 67.32 69.85 58.19 34.58 22.29
B) Lieer Lieer 75.41 70.37 70.06 58.76 34.52 22.34
©) Lieel LipertLyicer 7491 73.86 71.21 59.47 34.69 22.74
D) Lol LoertLe,, 7466 70.07 70.57 58.84 35.86 22.89
(E) Lo LoegrtLeon-gee 7403 69.74 70.15 59.02 34.58 22.61
F) Lyg1+Lgicer Lieer 72.90 74.53 7247 60.33 34.30 22.70
Q) LygitLyicet  LiegrtLaicer 7693 71.04 7299 60.78 32.35 22.65
H) Lyg1+Lajicer LiegrtLey, 7401 7417 7146 59.90 36.40 23.29
M Lygi+Licer LoegrtLeon—agee 1449 7226 7175 60.01 34.41 22.77

As shown in Table I, variants (B) to (I) all employ the VVIG
module to generate the virtual view images to improve the seg-
mentation consistency. To improve the segmentation accuracy,
we use the Dice loss L g;c. and two cross-entropy losses, Lseq1
and L. 49 for the segmentation of Img; and Img,, respectively.
According to the definitions given in (2) and (3), we use L.op
and L .,,_qcc to represent our proposed consistency losses for
the segmentation of Img,.

From Table I, despite achieving around 60% mloU, all of the
variants have a low TC consistency less than 40%. Our proposed
consistency evaluation metric CA is even lower than 25%. This
shows that existing methods, despite having good accuracy for
single frames, suffer from poor consistency. From the results of
variants (B) to (I), we find that the VVIG module can enhance
the segmentation accuracy and consistency, resulting in higher
mF1, mloU, TC and CA than those of variant (A). The results
of variants (C) and (F) show that the Dice loss can greatly
enhance the segmentation accuracy, achieving much higher mF1
and mloU. However, despite the significant improvement in
mloU for variant (F) over variant (A), the TC decreases. The
reason may be that TC only measures segmentation consistency
between consecutive frames without considering segmentation
accuracy. On the other hand, our proposed CA follows the same
trend as mloU, since it incorporates the ground truth of the
segmentation map as a supervision signal, and the CA reaches
100% only when the segmentation results of consecutive frames
are perfectly accurate and consistent.

By comparing the results of variants (C), (D) and (E), we find
that £g4;.. greatly enhances the segmentation accuracy, L oy,
greatly enhances the segmentation consistency, and L .on—qce
achieves a balance between segmentation accuracy and con-
sistency. From variant (F), we use Lgice, Leon and Leon—ace
on Img,, resulting in variants (G), (H) and (I), respectively.
Although variant (G) has the highest mloU, its TC and CA are the
lowest. Notably, TC of variant (G) is even lower than that of vari-
ant (A), indicating that L 4;.. reduces segmentation consistency
despite its improvement in segmentation accuracy. While the
mloU of variant (H) is slightly lower than that of variant (G), it
shows a significant improvement over that of the baseline variant
(A). Importantly, variant (H) achieves the highest TC and CA,
demonstrating that £ .,,,, can substantially enhance segmentation
consistency while improving segmentation accuracy. Compared
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TABLE I
RESULTS (%) OF THE ABLATION STUDY ON THE COMPONENTS OF THE VVIG
MODULE. ROT. AND TRA. INDICATE THE ROTATION AND TRANSLATION OF THE
VVIG MODULE, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN
BOLD FONT. WE USE THE AVERAGE RESULTS GENERATED FROM THE SAME 3
SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS OF TC (%) AND CA

(%)
No. & mPre mAcc mF1 mloU TC CA
Rot. Tra.
(A) 7593  67.32 69.85 58.19 3458 2229
(B) v 73.47 7487 71.55  59.75 3458 2261
©) v 70.93 7450  70.74  58.89 3547 2271
(D) v v 74.01 7417 7146 5990 3640 23.29

to variant (H), variant (I) achieves higher segmentation accuracy
but lower segmentation consistency. Variant (I) represents a
compromise between variants (G) and (H), as it incorporates the
ground truth of the segmentation map as a constraintin L .o, — qcc-
Our experimental results and analyses indicate that, in seman-
tic segmentation task, there is an inherent trade-off between
segmentation accuracy and consistency. The above experiments
demonstrate, emphasizing more on the segmentation accuracy
would hinder consistency to some degree. Segmentation consis-
tency is essential in practical applications. So, in this work, we
adopt segmentation consistency as an overall evaluation metric,
by which variant (H) is the best method.

To better analyze the impact of simulating rotation and trans-
lation in the VVIG module, an ablation study is conducted, the
results of which are displayed in Table II. Variant (A) represents
the results without the VVIG module, variant (B) represents the
results with the VVIG module simulating only rotation, variant
(C) represents the results with the VVIG module simulating
only translation, and variant (D) represents the results using the
VVIG module that simulates both rotation and translation. The
results indicate that simulating rotation significantly enhances
mloU, thereby improving segmentation accuracy. Meanwhile,
simulating translation notably improves TC and CA, thereby en-
hancing segmentation consistency. Simultaneously simulating
both rotation and translation leads to great improvements in both
segmentation accuracy and consistency, thereby demonstrating
the importance of simulating both rotation and translation in the
VVIG module.

2) Ablation on Evaluation Metric: To further analyze the
segmentation consistency performance of our proposed variants
(G), (H), and (I), we conduct a comparative analysis in terms
of the TC and CA across various classes within the MFNet
dataset [8], as depicted in Fig. 5. TC measures the temporal
consistency of the semantic segmentation results between con-
secutive frames. As shown in Fig. 5, variant (H) achieves the
highest TC for most classes, except for person, where variant
() performs better. It is noteworthy that variant (H) shows a
significant improvement in TC for the car stop and guardrail
compared to other variants, indicating that it has a greater effect
on the segmentation consistency of challenging objects.

Contrary to the TC metric, the CA metric employs the ground
truth of segmentation map as the supervision signal. This ap-
proach ensures that, in scenarios where segmentation results
across consecutive frames are consistent but inaccurate, CA
does not yield relatively high values as observed with TC. This
distinction is exemplified in the results for the car stop and
guardrail depicted in Fig. 5. Despite the equal ranking of the
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Fig. 5. The ablation study results (%) of temporal consistency (TC) and

consistent accuracy (CA). The horizontal axis shows each class in the MFNet
dataset [8]. Variants (G), (H) and (I) are the three variants of our method.
The figure illustrates the superiority of variant (H) in terms of segmentation
consistency. The figure is best viewed in color. .

TABLE III
RESULTS (%) OF THE ABLATION STUDY ON THE COEFFICIENTS OF THE LOSS
FUNCTIONS. ov AND /3 INDICATE THE IMPORTANCE OF DICE LOSS AND
CONSISTENCY LOSS, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN
BoLD FONT. WE USE THE AVERAGE RESULTS GENERATED FROM THE SAME 3
SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS OF TC (%) AND CA

(%)

No. 7Caoefﬁc1e;ts mPre mAcc mF1 mloU TC CA

(A) 05 0.5 73770 73.07 7127 59.56  35.02 22.87
B) 05 1.0 7320 7126  70.09  58.63 3494  22.53
© 05 2.0 71.26 74.81 71.47 59.12 3636  23.06
(D) 1.0 0.5 7137 7753 7178  59.89 3522 2276
(E) 1.0 1.0 74.01 7417 7146 5990 3640  23.29
F) 1.0 2.0 7144 7451 70.76  58.74  36.31 23.10
G) 20 0.5 7299 7254 7047  58.85 3475  22.49
(H) 2.0 1.0 73.58 73.64  71.48 59.85 3570 23.01
@ 2.0 2.0 70.23 73.00 6990 5820 36.16 22.84

three variants in TC and CA for both car stop and guardrail,
the gap between the three in TC is significantly larger than that
in CA. This implies that evaluating solely the consistency of
segmentation results introduces considerable uncertainty, par-
ticularly when the segmentation results of consecutive frames
exhibit the same error for a specific object. So, by leveraging
the truth value of segmentation map, CA can more accurately
reflect the segmentation performance. Variant (H) achieves the
highest CA in almost all classes, indicating that its segmentation
results are both accurate and consistent.

3) Ablation on Coefficients of Loss Functions: From the
results in Table I, we select variant (H) as the best method. It uses
the cross-entropy loss and Dice loss on Img;, and cross-entropy
loss and our proposed consistency loss on Img,. Among them,
the Dice loss focuses on improving the segmentation accuracy
of the current frame, while the consistency loss focuses on
improving segmentation consistency. The total loss is calculated
as:

Etotal = Esegl + aﬁdice + EsegQ + Bﬁcony (4)

where « and 3 denote the importance of Dice loss and consis-
tency loss, respectively. We set « and 3 to 0.5, 1.0, and 2.0 in
turn, to investigate their influences on the segmentation results.
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TABLE IV
THE COMPARATIVE PER-CLASS RESULTS ON THE MFNET DATASET. WE USE AcC (%) AND 10U (%) FOR EACH CLASS AND THE MACC (%) AND MIOU (%) FOR
ALL THE CLASSES. THE RESULTS DEMONSTRATE THE SUPERIORITY OF OUR METHOD, WITH THE TOP TWO RESULTS IN EACH COLUMN HIGHLIGHTED IN BOLD
AND UNDERLINE. THE PUBLICATION VENUE IS FOLLOWED BY THE PUBLICATION YEAR. SINCE CMX WITH MIT-B4 BACKBONE HAS NOT RELEASED THE ACC
RESULTS BASED ON ITS PRE-TRAINED WEIGHTS, WE USE “-” TO INDICATE THE DATA ABSENCE

Car Person Bike

Curve Car Stop Guardrail Color Cone Bump

Method Backbone Venue mAcc  mloU
Acc  ToU Acc IoU Acc IToU Ace IoU Acc IoU Acc IoU Acc IoU Acc IoU
RTENet [9] ResNet-152 RAL'19 93.0 874 793 703 768 627 60.7 453 385 298 0.0 00 455 291 747 557  63.1 532
ABMDRNet [10] ResNet-50 CVPR’21 943 848 900 69.6 757 603 640 451 441 331 310 51 617 474 662 500 695 54.8
CENet [31] ResNet RAL23 920 858 789 700 749 614 648 468 398 293 657 87 541 478 771 569 718 56.1
CACFNet [17] ConvNeXt-B TIV’23 959 892 936 695 820 633 740 466 490 324 458 79 698 549 821 583 767 57.8
MMSMCNet [18] MiT-B3 TCSVT23 962 892 932 69.1 834 635 744 464 566 419 269 88 702 488 775 576 752 58.1
EAEFNet [19] ResNet-152 RAL23 954 876 852 726 799 638 706 486 479 350 628 142 627 524 719 583 751 58.9
CMX [13] MiT-B2 TITS 23 922 894 813 748 734 647 635 473 388 301 363 81 533 524 677 594 673 58.2
CMX [13] MiT-B4 TITS 23 - 90.1 - 152 - 64.5 - 50.2 - 353 - 8.5 - 54.2 - 60.6 - 59.7
CMNeXt [24] MiT-B4 CVPR’23 944 902 839 742 773 638 557 454 475 381 321 134 558 51.8 638 586 678 59.3
CAINet [20] MobileNet-V2 TMM’'24 930 885 746 663 852 687 659 554 347 315 656 9.0 556 489 850 607 732 58.6
EGFNet [21] ConvNeXt TITS 24 96.5 898 921 716 848 639 761 467 446 313 387 67 711 520 781 574 756 57.5
Ours-dice MiT-B2 93.1 888 892 745 764 645 693 478 520 366 256 220 647 537 700 609 710 60.8
Ours-con MiT-B2 937 89.1 885 747 794 656 706 463 442 376 622 111 627 545 671 620 742 59.9
Ours-con-acc MiT-B2 940 889 867 754 766 634 670 470 467 390 493 126 613 557 69.6 599 723 60.0

As shown in Table III, variant (E) obtains the highest mIoU,
TC, and CA, indicating that the method achieves the best seg-
mentation accuracy and consistency when o = 1.0and 5 = 1.0.
Comparing variants (G) and (I), we find that variant (I) has
much higher TC and CA but much lower mloU than variant (G).
This means that variant (I) achieves better consistency but worse
accuracy, indicating that a higher 5 can enhance segmentation
consistency while suppressing accuracy. Meanwhile, variant
(G) achieves higher accuracy but at the cost of consistency,
indicating that overemphasizing segmentation accuracy may
hinder consistency, which is consistent with the conclusion from
the previous results. The comparison between variants (A) and
(C), and variants (D) and (F) leads to the same conclusion.
This also demonstrates that balancing segmentation accuracy
with consistency is a challenging problem and worth further
investigating. In summary, when o« = 1 and 8 = 1, our method
achieves the highest mloU, TC, and CA at the same time,
which indicates that our method and our loss function effectively
balance segmentation accuracy and consistency.

D. Comparative Experiments

We adopt CMX with MiT-B2 as the segmentation network
for our framework. Based on different loss function strategies,
we select variants (G), (H) and (I) in Table I for comparison,
naming them Ours-dice, Ours-conand Ours-con-acc.
They all use MiT-B2 as the backbone. We compare our method
with RTFNet [9], ABMDRNet [10], CENet [31], CACFNet[17],
MMSMCNet [18], EAEFNet [19], CMX [13], CMNeXt [24],
CAINet [20], and EGFNet [21]. CMX utilizes both MiT-B2
and MiT-B4 as backbones, while CMNeXt uses MiT-B4 as its
backbone. Since CMX with MiT-B2 has not reported its per-class
Acc, and CMNeXt with MiT-B4 has not reported its per-class
Acc and IoU, we get the missing results by testing the networks
with their pre-trained weights. However, CMX with MiT-B4 does
not provide any pre-trained weights, so we could not compare
its Acc with the other methods.

As shown in Table IV, our proposed methods achieve the
highest mIoU among the state-of-the-art methods. Specifically,
compared with CMX using the same MiT-B2 backbone, our
methods achieve a 1.7% to 2.6% higher mloU. Compared with
CMNeXt that uses the larger backbone MiT-B4, our methods

also increase mloU by 0.2% to 1.1%. Moreover, the mAcc of
Ours-con with MiT-B2 is 6.9% higher than that of CMX with
MiT-B2. Despite achieving the highest mAcc, CACFNet [17]
suffers from a low mloU, which implies a high rate of false
positives. Therefore, we can conclude that our method not only
improves the segmentation consistency but also achieve the best
overall accuracy compared to other methods.

To demonstrate the scalability of our method to other RGB-T
semantic segmentation networks, we choose the well-known
CNN-based RTFNet [9] as our segmentation network and keep
the parameter quantities unchanged. Table V compares the
segmentation results of the original RTFNet and Ours-con
based on different backbones. With ResNet-50 as the backbone,
Ours-con outperforms RTFNet in segmentation accuracy
(Acc and IoU) for all classes except car stop and bump, and
increases mAcc and mloU by 5.1% and 1.6%, respectively.
With ResNet-152 as the backbone, Ours-con significantly
increases the Acc of guardrail from 0.0% to 14.1%, and the
IoU of color cone from 29.1% to 41.2%, indicating that our
method can significantly enhance the segmentation accuracy for
challenging objects. Our s-con with ResNet-152 also achieves
better segmentation accuracy that increases mAcc and mloU by
2.7% and 0.9%, respectively.

E. Qualitative Demonstrations

Fig. 6 qualitatively demonstrates sample segmentation results.
In each set of images, the left column is the original current
frame from the MFNet [8] dataset, and the right column is the
synthesized frame generated by our method. The segmentation
consistency can be seen by comparing the consecutive frames.
We can see that our three methods generally outperform CMX
with MiT-B2 in terms of segmentation accuracy, especially for
small objects such as car stops (refer to the 3rd and 4th columns).
We can also find that Ours-con achieves the most consistent
results. Moreover, the results of all three of our methods are more
consistent than those of CMX. Specifically, the segmentation
results of CMX show significant inconsistencies for all sets of
images. Similarly, the segmentation results of Ours-dice for
1st, 2nd, and 3rd sets are also inconsistent. The same is observed
for Ours-con-acc in the 2nd, 3rd, and 4th sets. Although
Ours-con presents the lowest mloU among our methods, it
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TABLE V
THE COMPARATIVE PER-CLASS RESULTS BASED ON RTENET [9]. WE USE AccC (%) AND 10U (%) FOR EACH CLASS AND THE MACC (%) AND MIOU (%) FOR ALL
THE CLASSES. WE USE RESNET-50 AND RESNET-152 AS BACKBONE TO COMPARE RTEFNET AND OUR METHOD. THE RESULTS DEMONSTRATE THE SCALABILITY
OF OUR METHOD, WITH THE BEST RESULTS OF EACH BACKBONE ARE HIGHLIGHTED IN BOLD

Method Backbone Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAce  mloU
Acc ToU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

RTFNet [9] ResNet-50 91.3 863 782 678 715 582 59.8 437 321 243 134 36 404 260 735 572 622 51.7

Ours-con 91.3 875 858 711 739 60.6 617 438 350 225 433 38 454 384 700 545 673 53.3

RTFNet [9] ResNet-152 93.0 874 793 703 768 627 60.7 453 385 298 0.0 00 455 29.1 747 557 63.1 53.2

Ours-con 915 865 833 713 745 617 675 470 434 284 141 24 457 412 732 505 658 54.1

A

Fig. 6.

. Car Stop . Guardrail

Qualitative demonstration for RGB-T semantic segmentation on the MFNet [8] dataset. The rows from top to bottom are RGB images, thermal images,

ground truth, CMX results, Ours-dice results, Ours-con results, and Ours-con-acc results. All of the variants use MiT-B2 as backbones. The 1st and 2nd
columns are the 1st set of images, the 3rd and 4th columns are the 2nd set of images, the Sth and 6th columns are the 3rd set of images, and the 7th and 8th columns
are the 4th set of images. Among them, the first two sets and the last two sets are the images of nighttime and daytime, respectively.

shows much better consistency than the other methods. This re-
sultis consistent with the findings from the ablation experiments
presented in Table 1.

Ours-con, which uses the proposed consistency loss,
achieves the best segmentation accuracy and has much better
consistency than the other methods. So, in real applications,
Ours-con could be preferable to Ours-dice, which sacri-
fices consistency for accuracy.

V. CONCLUSIONS AND FUTURE WORK

This letter presents the viewpoint that consistency should be
valued in RGB-T semantic segmentation in addition to accuracy.

To this end, we proposed a temporal-consistent framework for
consistent and accurate RGB-T semantic segmentation. The pro-
posed framework includes a VVIG module, which can synthe-
size a virtual frame at the next moment. Moreover, the proposed
consistency loss improves segmentation consistency without
compromising accuracy. The proposed metric is able to evaluate
segmentation results in terms of both accuracy and consistency.
The experimental results show that our method outperforms the
state-of-the-art networks. In future work, we will investigate ad-
vanced techniques to better leverage the spatial consistency and
temporal continuity of RGB-T information across consecutive
frames. Moreover, we will extend our methods to other scenarios
that require temporal consistency.
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APPENDIX

Assume that a 3-D object point P is captured in two con-
secutive frames (Img; and Img,), and the pixels for P on the
two images are p; and po. From the pinhole camera model,
we have: p; ~ KP,ps ~ K(RP +t), where K is the camera
intrinsic matrix, R and ¢ are respectively the rotation matrix and
translation vector between the consecutive frames, ~ denotes
equivalence up to a scale.

Assume that the camera motion includes only rotations (i.e.,
t = 0), we have p, ~ K RP. Since P ~ K ~'p;, we have p; ~
KRK 'p;. Since R= R.(a)Ry(B)R.(7), we have py ~
KR.(a)Ry(B)R,(v)K *p1, where a, v, 3 are respectively the

Euler angles about the A s }Af X axes. Since p2 =~ Myvytp1, we
have Myyt = KRZ(Q)Ry(ﬁ)Rx(’y)K71

Comparing Myvyr to the homography matrix H = K(R —
% YK 1, where n” and d are respectively the normal vector and
the distance to the plane from the origin point, we can find that
Myvyt = H if there is no translational movement (i.e., ¢ = 0).
So, we use the homography matrix as the VVT matrix in this
work.
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