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Improving RGB-Thermal Semantic Scene
Understanding With Synthetic Data Augmentation
for Autonomous Driving

Haotian Li

Abstract—Semantic scene understanding is an important
capability for autonomous vehicles. Despite recent advances in
RGB-Thermal (RGB-T) semantic segmentation, existing methods
often rely on parameter-heavy models, which are particularly con-
strained by the lack of precisely-labeled training data. To alleviate
this limitation, we propose a data-driven method, SyntheticSeg,
to enhance RGB-T semantic segmentation. Specifically, we utilize
generative models to generate synthetic RGB-T images from the
semantic layouts in real datasets and construct a large-scale,
high-fidelity synthetic dataset to provide the segmentation models
with sufficient training data. We also introduce a novel metric
that measures both the scarcity and segmentation difficulty of
semantic layouts, guiding sampling from the synthetic dataset to
alleviate class imbalance and improve the overall segmentation
performance. Experimental results on a public dataset demonstrate
our superior performance over the state of the arts.

Index Terms—Semantic scene understanding, RGB-T fusion,
autonomous driving, synthetic image generation.

I. INTRODUCTION

GB-T semantic segmentation [1] enhances scene under-
R standing for autonomous vehicles by combining RGB-T
images to improve performance under challenging illumination
conditions [2], leveraging both convolutional neural network
(CNN) [3], [4] and transformer [5], [6]. It provides essential in-
formation for downstream tasks, such as vehicle localization [ 7],
[8] and autonomous navigation [9]. In supervised RGB-T se-
mantic segmentation, the hand-labeling process is laborious and
costly, resulting in limited datasets. For example, the largest
public dataset, MFNet dataset [2], contains only 1,568 pairs
of RGB-T images (including 784 flipped pairs) for training.
Existing methods [3], [4], [5], [6] focus on designing more
advanced models, but it is challenging to enhance segmentation
performance by upgrading the model when the training set is
limited. This motivates us to explore whether the segmentation
performance could be further improved by generating synthetic
image pairs that mimic real scenes.
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To validate this idea in supervised RGB-T semantic segmenta-
tion, we need to generate high-fidelity synthetic RGB-T images
from semantic layouts, which are pixel-level maps labeling
each pixel into different classes. Recent techniques [10], [11]
introduce new possibilities for image generation. Several layout-
to-image generative models [12], [13] can generate synthetic
RGB images from the semantic layouts. However, these methods
are designed for RGB images and cannot be directly applied
to RGB-T images. To generate high-fidelity synthetic RGB-T
images, we adapt the generative model FreestyleNet [13] to the
widely-used MFNet dataset [2]. Based on this method, we can
generate diverse synthetic images to build a large-scale synthetic
dataset (see Fig. 1).

The generation of a large-scale synthetic dataset offers a
potential solution to the class imbalance problem, which is a
significant factor affecting the accuracy of RGB-T semantic
segmentation. Analysis of experimental results from existing
studies reveals notable disparities in segmentation accuracy
across different classes. In Fig. 2, we show the pixel ratio of
each class (class pixel ratio) in the MFNet training set and
the Intersection-over-Union (IoU) for each class, as evaluated
using two state-of-the-art methods [5], [6]. The results show a
clear correlation between the class pixel ratio and its segmenta-
tion performance: for instance, the Car class, with the highest
pixel ratio, consistently achieves the highest IoU, whereas the
Guardrail class, with the lowest pixel ratio, consistently
records the lowest IoU. However, an anomaly is observed where
the Car Stop class, despite having a higher pixel ratio, yields
a lower IoU compared to the Bump class. This suggests that
segmentation performance is influenced not only by the class
pixel ratio but also by the difficulty of segmenting each class.
Therefore, the class imbalance problem involves not only dispar-
ities in the number of pixels for each class, but also differences
in the segmentation difficulty of each class.

In previous studies, the class imbalance problem in RGB-T
semantic segmentation has not been discussed. To balance class
distribution, object detection tasks typically adjust the number
of samples for each class through resampling [14]. However,
increasing the number of samples for uncommon classes may
lead to overfitting, while decreasing the number of samples for
common classes can result in the loss of important information.
In addition, Mixup series methods [15], [16], [17] generate new
training data by interpolating or mixing samples, but these can
produce unrealistic sample combinations, potentially leading
the model to learn incorrect information. Although some loss
functions [18], [19] have been proposed for addressing class
imbalance in semantic segmentation tasks, they often introduce
hyperparameters that can complicate model tuning.
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Fig.2. The pixel ratio of each class in the training set of MFNet dataset [2] and
the IoU for each class of CMX [5] and CRM [6]. We choose CMX using MiT-B2
and MiT-B4 as backbone, and CRM using Swin-S and Swin-B as backbone. This
figure shows the correlation between the class pixel ratio in the training set and
the IoU for that class.

The large-scale synthetic datasets generated in this study
provide new ways to alleviate the class imbalance problem. To
improve segmentation accuracy for rare and difficult-to-segment
classes, we propose a novel metric that measures both the
scarcity and segmentation difficulty of each semantic layout
in the real dataset. This metric guides the sampling from the
pre-generated synthetic dataset, ensuring that classes with fewer
or more challenging examples are adequately sampled. The main
contributions of this work are summarized as follows:

1) We propose a data-driven method, SyntheticSeg, to en-
hance RGB-T semantic segmentation by generating a
large-scale, high-fidelity synthetic dataset. Both the code
and the dataset are open-sourced. '

2) We design a novel metric to measure the scarcity and
segmentation difficulty of each semantic layout, optimiz-
ing sample selection from the synthetic dataset to better
alleviate class imbalance.

3) Our method achieves state-of-the-art performance on the
MFNet dataset [2], demonstrating the effectiveness of our
synthetic dataset and sampling strategy.

This paper is structured as follows. Section II reviews the
related work. Section III describes our proposed method. Sec-
tion IV discusses the experimental results. Conclusions and
future work are drawn in the last section.

'0ur code and dataset: https://github.com/lab-sun/SyntheticSeg
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Synthetic RGB Image Series

Synthetic Thermal Image Series

The synthetic RGB-T dataset. Real RGB images, thermal images, and their corresponding semantic layouts are sampled from the MFNet dataset.

II. RELATED WORK

A. RGB-T Segmentation Methods

Some methods [20], [21], [22] focus on designing novel
multimodal feature fusion modules to enhance the fusion of
RGB-T features. Li et al. [21] proposed IGFNet, which utilizes a
weight mask from an Illumination Estimation Module (IEM) to
selectively integrate RGB-T features. Huang et al. [23] proposed
RoadFormer+ to extracts heterogeneous features from various
modalities and merge the features across different scales and
receptive fields. In addition, Li et al. [24] proposed temporal-
consistent framework to improve the segmentation accuracy and
consistency. Other methods [5], [6] improve RGB-T segmenta-
tion by using larger backbones in feature extraction modules.
Shin et al. [6] introduced a complementary random masking
strategy that boosts segmentation accuracy and robustness by
reducing over-reliance on a single modality. To achieve better
results, there is a trend towards designing models with more
parameters and using larger backbones. These model-driven
methods make them prone to overfitting, especially in tasks like
RGB-T semantic segmentation with limited training data.

B. Generative Models

The introduction of Diffusion series networks [10], [11] has
enabled the generation of high-quality images through a diffu-
sion process that gradually transitions from noises to clear im-
ages. Denoising Diffusion Probabilistic Models (DDPMs) [10]
establish a novel link between denoising score matching and
Langevin dynamics. Dhariwal et al. [11] demonstrated that
diffusion models can surpass Generative Adversarial Networks
(GANSs) in image synthesis. Building on this foundation, a series
of works [12], [13] propose layout-to-image generative models
to generate RGB images based on semantic layouts. Wang
etal. [12] proposed a framework that processes semantic layouts
and noisy images differently, enhancing the quality and diversity
of generated images. Xue et al. [13] explored image generation
with unseen semantics using pre-trained text-to-image diffusion
models.

C. Class Imbalance Problem

To address the class imbalance in object detection, Saez
et al. [15] enhanced SMOTE with an ensemble-based noise
filter, addressing noisy and borderline examples in imbalanced
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of segmentation models using both synthetic and real RGB-T datasets.

datasets. Choi et al. [16] introduced a token-level data augmen-
tation method for transformers that is efficient and guided by
attention. Venkataramanan et al. [17] presented a data augmen-
tation technique that interpolates aligned features, combining the
geometry of one image with the texture of another to enhance
representation learning. In addition, specific loss functions [25],
[26] shift focus away from simple samples and emphasize the
classification of more challenging ones. Some of them [18],
[19] have been proposed to address the class imbalance in
semantic segmentation. Tian et al. [18] introduced Recall Loss,
a new loss function to balance precision and recall in semantic
segmentation. Qiu et al. [19] proposed Subclassified Loss, which
addresses class imbalance by focusing on subclasses.

D. Differences From Existing Methods

Our method differs from the above methods in two aspects:
1) Corresponding to the model-driven method, we propose to
improve RGB-T segmentation through a data-driven method
by creating a large-scale synthetic RGB-T dataset to expand
the training data; 2) We use the high-fidelity synthetic data
to alleviate the class imbalance problem in RGB-T semantic
segmentation.

III. THE PROPOSED METHOD

A. The Overall Framework

The MFNet dataset [2] contains only 2,353 fully annotated
pairs (including 784 flipped pairs) of RGB-T images, with just
1,568 pairs in the training set. As networks used for RGB-T
semantic segmentation grow more powerful, the limited scale
of the dataset has become a critical factor affecting segmen-
tation performance. With the advent of generative models like
Diffusion [11], it is now feasible to expand the training data by
creating high-fidelity synthetic images.

We adapt the layout-to-image FreestyleNet [13] as our gener-
ative model, and the framework of our SyntheticSeg is illustrated
in Fig. 3. FreestyleNet is trained and validated on COCO-
Stuff [27] and ADE20K [28] to generate RGB images from
semantic layouts. To apply it to the RGB-T image generation
task on the MFNet dataset [2], we separately feed the RGB
and thermal images from the MFNet dataset into FreestyleNet.

(b) Segmentation model trained with synthetic and real RGB-T datasets

The overall framework of our SyntheticSeg. (a) illustrates the training process of RGB-T generative model; (b) illustrates the pipeline for joint training

The thermal images are first normalized and then converted into
3-channel images to match the input dimensions expected by
FreestyleNet. Then, we modify the class indices of the dataset
to define the number of output classes of the generative model.

As illustrated in Fig. 3(b), we can feed the semantic layout
from the real training set into the trained RGB-T generative
model to obtain the corresponding RGB-T images. The semantic
layout fed into the model and the generated RGB-T images
form a pair of synthetic data suitable for training. In principle,
for one semantic layout, we can generate an infinite number
of corresponding RGB-T images by varying the random seed.
So, if the real dataset contains Ny pairs of training data, we
can generate [Ng x Nj pairs of synthetic data, where Ny is
the number of selected seeds. This method can significantly
expand the scale of fully annotated data available for training.
To alleviate the class imbalance problem, we propose a metric to
assess the scarcity and segmentation challenge of each semantic
layout in the real dataset. Based on this metric, we determine N,
the number of synthetic data to be sampled for each real semantic
layout. In this way, we have one pair of real RGB-T image and
Ny pairs of synthetic RGB-T images for each semantic layout.

Then, we feed RGB-T images from both the real and sampled
synthetic datasets into the existing segmentation model, perform
feature extraction and fusion on the RGB and thermal images,
and decode them to obtain the segmentation results.

B. Sampling Mechanism

As shown in Fig. 2, the segmentation performance of different
classes in RGB-T semantic segmentation is related to their
respective pixel ratio and segmentation difficulty. To improve
the segmentation performance of classes with low pixel ratio
and high segmentation difficulty, we design a metric to evaluate
the scarcity and segmentation difficulty of each semantic layout
in the training set. This metric determines the number of corre-
sponding synthetic RGB-T images sampled from the generated
synthetic dataset for that semantic layout. This sampling mech-
anism can improve the number and diversity of uncommon and
challenging samples.

To evaluate the scarcity and segmentation challenge of each
semantic layout, we first assess the pixel ratio and segmentation
difficulty of the different classes. In the MFNet dataset, for each
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classc(c € {1,2,...,C}, where C is the total number of classes
excluding the background class 0), the pixel ratio of the class P,
can be defined as:

_ S
DIIND Drg (VN

where M is the total number of images in the training set and
Q. is the set of pixels belonging to class ¢ in the layout. So,
the numerator represents the sum of pixels for class c across all
images, while the denominator represents the sum of pixels for
all classes except the background across all images.

Then, we define p. as the class-wise mean loss for class c,
representing the corresponding segmentation challenge. The .
can be defined as:
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C

M
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where L;; is the loss for pixel j in image 4, calculated by a
pre-trained RGB-T semantic segmentation model. € is a small
constant to ensure numerical stability. So, the numerator repre-
sents the sum of losses for class c across all images, while the
denominator represents the sum of pixels for class ¢ across all
images.

For each semantic layouti (i € {1,2,..., M}, where M is the
total number of layouts in the training set), we can calculate the
score for scarcity and segmentation challenge of the semantic
layout based on the above obtained P. and p.. The scarcer the
semantic layout and the more difficult the segmentation, the
higher the score. We can obtain the score 3; for layout i by:

C ..
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where 1% is the class-wise mean loss for class ¢ for pixel j
in image ¢. C' is the total number of classes excluding the
background class 0. C; denotes the set of classes present in
semantic layout ¢, meaning the number of classes in C} is less
than or equal to C. So, we can use this formula as a metric to
measure the scarcity and segmentation challenge of the semantic
layout. This metric helps determine the number of synthetic
images to sample from the high-fidelity synthetic dataset. By
sorting all semantic layouts in the training set from small to
large using this metric, the number of samples S; corresponding
to semantic layout ¢ can be defined as:

51w (14| €0

X Rmax—‘ aRnlax> ? (4)

where | -| indicates rounding to the nearest integer, M is the total
number of layouts in the training set, and R, is the maximum
sampling number for a single semantic layout in the synthetic
dataset. By leveraging this mechanism, we sample more syn-
thetic images for semantic layouts that are both uncommon in
the training set and present high segmentation challenges.

C. Data Distribution of Synthetic Dataset

Based on the sampling mechanism described above, we can
create different scales of sampled synthetic datasets by setting
different maximum sampling numbers R, . in Equ. (4) for the
original large-scale synthetic dataset. We set Ry ax to values of
1,2,3,4,and 5, whichresulted in 1,568, 2,744, 3,660, 4,509, and
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Fig. 4. The normalized pixel ratio of each class in the synthetic dataset with
different Ry ax.

5,333 sampled synthetic images, respectively. When R, = 1,
the pixel ratio of each class in the sampled synthetic dataset is the
same as that in the real dataset. In principle, increasing R, ax can
raise the pixel ratios in the uncommon and difficult-to-segment
classes. To more clearly illustrate the variation in pixel ratios
as R,..x increases, we normalize these ratios across different
Ruax. The normalized ratios are presented in Fig. 4. Take the
Guardrail class as an example: prior to normalization, the
pixel ratios for Ry, valuesof 1,2, 3,4, and 5 are 1.86%, 2.22%,
2.29%, 2.36%, and 2.39%, respectively. These ratios show a
slight upward trend, but the change is subtle when viewed as
absolute values. However, after normalization, the pixel ratios
for R, valuesof 1,2, 3,4, and 5 become 0%, 67.92%, 81.13%,
94.34%, and 100%, respectively. This normalization makes the
incremental changes clearer and highlights the trend. Fig. 4
shows that as R, .x increases, the pixel ratio of the car class,
which is the most common and easiest to segment, decreases.
Meanwhile, the pixel ratios of other classes for R, > 1 are
higher than those for R,.x = 1 (i.e., the pixel ratios in the real
dataset).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Implementation Details

We use the MFNet dataset [2] as the real dataset for our
experiments. The dataset consists of 2,353 pairs (including
784 flipped pairs) of RGB-T images and it includes 9 classes:
Background, Car, Person, Bike, Curve, Car Stop,
Guardrail, Color Cone, and Bump. We follow the same
split scheme as that in [2]: 1,568 pairs for training, 392 for
validation, and 393 for testing. To construct a synthetic dataset,
we feed 1,568 semantic layouts from the real training set into
the trained layout-to-image generation model. We set the class
indices of FreestyleNet [13] to 9 to adjust the number of output
classes, aligning it with the MFNet dataset. Using an NVIDIA
RTX 3090 graphics card, the generation speed for synthetic RGB
and thermal images is 7.1 seconds per image. By setting 20
different random seeds, we obtain a large-scale synthetic dataset
with 31,360 pairs of RGB-T synthetic images and corresponding
semantic layouts. We set R,,.x = 2 in Equ. (4) to create the
sampled synthetic training set, which includes 2,744 pairs of
synthetic RGB-T images.

We train the existing RGB-T semantic segmentation model
using both the sampled synthetic training set and the original
real training set. Since the scale of the sampled synthetic training
set is larger than that of the original real training set, and the
quality of the synthetic images is lower than that of the real
images, we oversample the real training set to match the scale
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TABLE I
THE RESULTS (%) OF THE ABLATION STUDY ON THE TRAINING DATA

Training Data

mAcc mloU
Real Synthetic
1x 67.3 58.2
1x 65.6 52.8
1x 1x 72.2 59.9
2% 68.5 57.5

1x and 2x indicate using the real or synthetic training data once or twice for training,
respectively. The best results are highlighted in bold.

of the sampled synthetic training set. Specifically, if two pairs
of synthetic RGB-T images are sampled for a semantic layout
during training, the corresponding real RGB-T images are also
sampled twice to ensure same sizes of the real and synthetic
training data. This prevents the low-quality synthetic images
from dominating the training process.

B. Ablation Study

To balance performance and model complexity, we use
CMX [5] with a MiT-B2 backbone as the RGB-T semantic
segmentation model for ablation experiments.

1) Ablation on Training Data: To examine the effects of var-
ious training sets on the RGB-T semantic segmentation model,
we first conduct an ablation study presented in Table I. The
first row of Table I shows the segmentation results obtained
by training with 1,568 pairs of real RGB-T images from the
original MFNet dataset. The second row shows the results
from training with 1,568 RGB-T images generated from 1,568
semantic layouts. Comparing the results, we observe that the
mloU of training with synthetic data is 5.4% lower than that of
training with real data. This indicates that although the generated
synthetic RGB-T images are visually similar to real images,
there remains a quality gap between them and real images. The
third row of Table I shows the segmentation results obtained
by training with 1,568 pairs of real RGB-T images and the
corresponding 1,568 pairs of synthetic RGB-T images. Training
with a combination of real and synthetic images results in a
higher mloU compared to training with only real images. This
indicates that despite synthetic images not being as high-quality
as real images, joint training enhances the diversity of the
training set. This allows the model to learn from a wider variety
of samples, thereby improving its performance. To demonstrate
that the mIoU improvement in the third row is not solely due
to increased amount of training data, we conduct the fourth
experiment using twice the original real training set, ensuring
the same amount of training data as in the third experiment.
The mloU from the fourth experiment is decreased by 2.4%
compared to the third and is even lower than the mIoU obtained
with just the original real training set. This indicates that merely
increasing the training data without enhancing its diversity does
not effectively improve the segmentation performance.

2) Ablation on Sampling Mechanism: We set 20 different
random seeds and generate a synthetic dataset 20 times the scale
of the original dataset. Our goal is to enhance the segmentation
performance of uncommon and challenging classes through the
sampling mechanism, thereby improving overall performance.
We design an ablation experiment, shown in Table II, to analyze
the impact of the maximum number of samples R, .x on the
results. Ry.x = 1,2, 3,4, 5 means that for each semantic layout
in the original training set, a maximum of 1, 2, 3, 4, or 5

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 5, MAY 2025

pairs of synthetic RGB-T images are sampled, respectively. The
higher the R,,.x, the larger the sampled synthetic training set.
Table II indicates that the overall segmentation performance
of the model improves when R ,x > 1 compared to Ry.x =
1. The accuracy (Acc) and IoU for the Car Stop and
Guardrail classes, which have the worst segmentation re-
sults, are significantly improved when R, > 1. The model
achieves the highest mAcc and mloU when R,,,.x = 2, but seg-
mentation performance gradually deteriorates as I?,,, increases
further. This indicates that while training with both synthetic and
real images can enhance segmentation performance, an exces-
sive number of synthetic images can lead to low quality issues
and overfitting, thus degrading model performance. Specifically,
although synthetic data increases the diversity of the training
set, the quality of synthetic images is generally inferior to that
of real images. As the number of synthetic data increases, the
model may learn more noises and inaccurate features.

As shown in Table III, we conduct the experiments to analyze
the effect of different sampling mechanisms for synthetic and
real data on model performance. We set Ry,.x = 2 and sampled
2,744 synthetic RGB-T images for joint training. In Table III,
the first row shows the segmentation results when the sampling
mechanism for synthetic data considers only the pixel ratio of
each class. The second row shows the results when it consid-
ers only the segmentation difficulty of each class. Both rows
oversample the real training set, resulting in 2,744 pairs of real
RGB-T images used for joint training, to ensure the training size
of synthetic and real data are the same. The results in the first
two rows are better than those obtained by training only with
real datasets (first row of Table I). This demonstrates that using
either the pixel ratio or segmentation difficulty for synthetic data
improves the ability of the model. However, their segmentation
performance is inferior to the fourth row, which considers both
pixel ratio and segmentation difficulty in the synthetic data
sampling mechanism. This proves that considering both factors
can simultaneously maximize the segmentation ability of the
model.

Compared to the fourth row, which achieves the best seg-
mentation performance, the third row does not oversample the
real data. It retains 1,568 pairs of real RGB-T images for
joint training and, as a result, obtains worse mloU, particularly
for the Car Stop and Guardrail classes. These classes
have scarce samples and are more difficult to segment. Sam-
ple scarcity means fewer training samples for the generative
model, and harder segmentation indicates greater difficulty in
extracting semantic features. Consequently, such classes yield
poorer quality synthetic data from the generative model. When
the scale of synthetic data outweighs that of real data in joint
training, these classes further suppress segmentation accuracy
compared to other classes. The Car Stop and Guardrail
classes unexpectedly achieved the highest Acc while obtaining
the lowest IoU. This suggests that false positives dominated
their segmentation results, incorrectly judging negative cases
as positive. This further validates the effect of lower-quality
synthetic data on the segmentation results. The above results
demonstrate the effectiveness of oversampling real data to match
the scale of synthetic data.

C. Comparative Study

Based on the ablation experiments described above, we con-
struct the synthetic dataset used in the comparative experiments
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TABLE II
THE RESULTS (%) OF THE ABLATION STUDY ON THE MAXIMUM SAMPLING NUMBER R ax
R, Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAce  mloU
Acc ToU Acc IoU Acc IToU Acc IoU Acc IoU Acc IToU Acc IoU Acc IoU
1 93.0 883 830 735 742 650 66.1 512 41.1 314 36.1 82 568 529 692 577 68.8 58.5
2 929 883 842 749 734 652 646 513 435 363 636 142 579 528 741 621 72.6 60.4
3 93.0 884 833 740 727 640 658 51.7 447 361 682 143 564 526 683 574 72.4 59.7
4 93.7 889 827 735 738 650 628 516 506 386 536 123 542 517 693 546 71.1 59.4
5 928 88.0 837 744 740 649 634 510 463 345 591 123 553 50.8 70.7 56.6 71.6 59.0
The best results are highlighted in bold.
TABLE III
THE RESULTS (%) OF THE ABLATION STUDY ON THE SAMPLING MECHANISM
Sampling Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAce  mloU
P, pu. OverSamp Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
v 4 93.1 883 831 739 733 648 648 505 482 375 549 140 547 499 715 553 714 59.2
4 v 927 879 826 737 712 633 629 510 440 364 651 160 564 517 649 571 71.0 59.5
v o/ 923 879 831 740 748 647 67.0 51.1 494 340 534 120 559 519 709 592 718 59.2
v o/ v 929 883 842 749 734 652 646 513 435 363 636 142 579 528 741 621 726 60.4

P, is the pixel ratio of each class. y. is the mean loss of each class. A v under P, or u. indicates whether P, or u. is included in the sampling mechanism for synthetic data. ‘OverSamp’ indicates
whether the real training set is oversampled to ensure the training size of synthetic and real data are the same. The best results are highlighted in bold.

TABLE IV
THE PER-CLASS RESULTS (%) OF MODELS USING DIFFERENT METHOD TO ALLEVIATE CLASS IMBALANCE

Methods Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAce  mloU

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
CMXMIT-B2) [5] 922 894 813 748 734 647 635 473 388 301 363 81 533 524 677 594 673 58.2
Focal Loss [25] 939 881 848 736 745 639 688 49.1 426 317 516 94 556 510 706 595 713 58.3
Resampling 934 877 848 741 735 641 63.1 477 450 270 66.1 11.0 583 524 683 547 724 57.4
SyntheticSeg (Ours) 929 883 842 749 734 652 646 513 435 363 636 142 579 528 741 621 72.6 60.4

The best results are highlighted in bold.

by setting Rinax = 2 and sampling from the generated large-
scale synthetic dataset. We also oversample the real dataset to
match the size of the synthetic dataset.

1) The Quantitative Results: In Table IV, we compare our
SyntheticSeg with focal loss [25] and resampling. All the three
methods use CMX [5] with MiT-B2 as the baseline. Focal
loss is implemented with v = 2, emphasizing hard-to-classify
examples. The resampling method oversamples rare samples
during training to emphasize classes with fewer instances. While
focal loss achieves a higher IoU than the baseline for Curve,
Car Stop, Guardrail and Bump, it performs poorly on
other classes. Resampling only outperforms the baseline in
Curve and Guardrail, resulting in a lower mloU than the
baseline. Our method, however, not only significantly improves
segmentation accuracy for objects with few samples and high
segmentation difficulty but also performs well across other
classes.

In Table V, we select three RGB-T semantic segmentation
models and compare them by training only with real data versus
training with both synthetic data from our proposed method
and real data. We train each model with multiple backbones
to analyze the impact of different training data on various
architectures and backbone models. The first row for each
model and backbone uses only the real training set, while the
second row uses both the real and synthetic training sets. After
incorporating synthetic training data, the segmentation ability

of RTFNet has been significantly improved. Specifically, the
IoU of the Bump class in RTFNet with ResNet-152 is the
only one that decreases, while other segmentation results show
improvement. For the three models with different backbones, the
mloU has consistently been improved after training with both
synthetic and real data. More importantly, these models (except
for CRM with Swin-B) notably enhanced the segmentation loU
of the Car Stop and Guardrail classes, which have few
samples and are challenging to segment. This aligns with the
intended outcomes of our proposed sampling mechanism. The
results show that our method consistently improves the overall
segmentation performance.

2) The Qualitative Demonstrations: To better demonstrate
the effectiveness of our SyntheticSeg, we select 4 samples taken
at night and 4 samples taken during the day, which are displayed
in Fig. 5. After training with synthetic and real data, the ability
to segment uncommon and difficult-to-segment classes of the
existing models has significantly been improved. For example,
the models trained with synthetic and real data in the second
cases can better segment the Guardrail class, which has
the lowest pixel ratio. This result aligns with the conclusions
from the quantitative experiments above. We also find that
training with synthetic and real data improved the resistance
to false detection of the models. For example, CMX trained
with only real data in the sixth, seventh, and eighth cases detect
the background as the Curve class. This issue is significantly
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TABLE V
THE PER-CLASS RESULTS (%) OF MODELS USING DIFFERENT TRAINING SETS
Model Backbone Training Data foU mloU A
Real  Synthetic Car Person Bike Curve Car Stop Guardrail Color Cone  Bump
ResNet-50 v 86.3 67.8 58.2 43.7 24.3 3.6 26.0 57.2 51.7 144
RTFNet [4] v v 86.5 69.9 60.8 49.5 27.8 8.7 46.0 58.0 56.1
i v 87.4 70.3 62.7 453 29.8 0.0 29.1 55.7 53.2
ResNet-152 % 886 711 633 502 305 8.0 50.2 517 569 137
. v 89.4 74.8 64.7 47.3 30.1 8.1 52.4 59.4 58.2
MiT-B2 122
CMX [5] v v 88.3 74.9 65.2 51.3 36.3 14.2 52.8 62.1 60.4
. v 90.1 75.2 64.5 50.2 353 8.5 54.2 60.6 59.7
MIT-B4 v 894 749 650 546 387 136 53.1 608 609 12
Swin-T v 90.0 73.1 63.7 47.9 40.7 9.9 54.4 54.2 59.1 108
v v 90.3 75.0 64.1 494 48.6 11.1 50.6 52.1 59.9 ’
CRM [6] Swin-S v 90.6 75.5 67.2 48.3 434 11.8 56.8 59.3 61.2 108
Wi v v 90.7 75.5 65.2 52.0 50.4 154 54.8 55.2 62.0 ’
Swin-B v 90.0 75.1 67.0 45.2 49.7 18.4 54.2 54.4 61.4 107
win- v v 91.2 74.4 65.2 50.9 46.4 15.8 54.2 62.0 62.1 ’

We used RTFNet [4], CMX [5], and CRM [6] with different backbones as the RGB-T segmentation models. A represents the mloU improvement when training with both synthetic and real data

compared to using only real data. The best results of each backbone are highlighted in bold.

. Person

Fig. 5.

. Car Stop . Guardrail ‘

Qualitative comparison for semantic segmentation of RGB-T images on MFNet [2] dataset. The rows from top to bottom are RGB images, thermal images,

ground truth of semantic layouts, results obtained by training CMX [5] with MiT-B2 using real data, and results obtained by training CMX [5] with MiT-B2 using
real and sampled synthetic data. The first four columns and the last four columns are the samples of nighttime and daytime, respectively.

reduced after adding synthetic data to the training process. This
improvement is due to the increased number and diversity of
training samples from the synthetic dataset.

3) Suboptimal Case Analysis: Although the above quanti-
tative and qualitative analyses have proved the effectiveness
of our method, there are still cases where the segmentation
performance is not satisfactory, as shown in Fig. 6. Specif-
ically, Fig. 6(f) illustrates that the prediction results are not
accurate for both the Person class with a large sample size
and the Car Stop class with a small sample size. The first
reason is that the image quality of distant objects in real RGB
images is poor. As seen in Fig. 6(a), the model struggles to

extract rich semantic information and accurate contours of dis-
tant persons in dark environments. Besides, for classes with
a small sample size, the quality of synthetic images gener-
ated by the model is suboptimal. The generated Car Stop
and Color Cone classes in Fig. 6(d) and (e) and their cor-
responding semantic layouts in Fig. 6(e) lack spatial con-
sistency, which means that if the synthetic images dominate
the training, the segmentation accuracy will be suppressed.
In addition, since the synthetic RGB and thermal images are
obtained separately through the generative model, their back-
ground parts cannot guarantee spatial consistency. Despite our
method has been proven to effectively improve the segmentation
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(a) Real RGB Image (b) Real Thermal Image (c) Semantic Layout

(d) Synthetic RGB Image (e) Synthetic Thermal Image (f) Semantic Output

Fig. 6. Visualization of the segmentation suboptimal case. (a) and (b) are real
RGB-T images from MFNet dataset; (c) is the corresponding semantic layout;
(d) and (e) are synthetic RGB-T images generated from (c); (f) is the prediction
of segmentation model.

performance, this spatial inconsistency may limit the further
improvement.

V. CONCLUSIONS AND FUTURE WORK

We proposed here a data-driven method, SyntheticSeg, to
enhance RGB-T segmentation by using synthetic data augmen-
tation. We created high-quality synthetic RGB-T images and
built a large-scale dataset to diversify training samples. The new
metric we introduced effectively guides sampling from synthetic
datasets by considering the scarcity of semantic layouts and the
difficulty of segmentation. This method not only alleviates the
class imbalance problem but also improves the overall segmen-
tation accuracy. The experimental results show that our method
achieves state-of-the-art performance on the MFNet dataset.

However, our method has some limitations. First, the quality
of synthetic images is still inferior to real images, particularly for
scarce classes, leading to suppressed segmentation performance
when synthetic images dominate the training. Second, the syn-
thetic RGB and thermal images cannot be accurately aligned,
especially in the background, and their physical consistency
is uncertain. Our future work would focus on developing a
generative model that generates synthetic RGB-T image pairs
with improved physical and spatial consistency, potentially en-
hancing the segmentation performance.
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