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OVL-MAP: An Online Visual Language
Map Approach for Vision-and-Language
Navigation in Continuous Environments

Shuhuan Wen , Senior Member, IEEE, Ziyuan Zhang , Yuxiang Sun , and Zhiwen Wang

Abstract—Vision-and-Language Navigation in Continuous En-
vironments (VLN-CE) requires agents to navigate 3D environments
based on visual observations and natural language instructions.
Existing approaches, focused on topological and semantic maps,
often face limitations in accurately understanding and adapting
to complex or previously unseen environments, particularly due
to static and offline map constructions. To address these chal-
lenges, this letter proposes OVL-MAP, an innovative algorithm
comprising three key modules: an online vision-and-language map
construction module, a waypoint prediction module, and an action
decision module. The online map construction module leverages
robust open-vocabulary semantic segmentation to dynamically en-
hance the agent’s scene understanding. The waypoint prediction
module processes natural language instructions to identify task-
relevant regions, predict sub-goal locations, and guide trajectory
planning. The action decision module utilizes the DD-PPO strategy
for effective navigation. Evaluations on the Robo-VLN and R2R-
CE datasets demonstrate that OVL-MAP significantly improves
navigation performance and exhibits stronger generalization in
unknown environments.

Index Terms—Navigation maps, vision-based navigation,
multimodal perception, embodied intelligence.

I. INTRODUCTION

THE integration of visual perception and language com-
prehension is pivotal for intelligent robotic systems, en-

abling robots to autonomously navigate complex environments
based on natural language instructions. the objective of Vision-
and-Language Navigation (VLN) is to guide an agent to au-
tonomously reach a specified target from a starting point by un-
derstanding and executing natural language instructions, making
informed action decisions in complex environments. Traditional
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VLN research has primarily focused on discrete environments,
where agents navigate between predefined graph nodes [1].
Although this simplified setup reduces research complexity, it
presents numerous challenges in real-world applications [2]. To
enhance the adaptability of navigation agents in realistic sce-
narios, recent studies have gradually shifted their focus to con-
tinuous environments. Krantz et al. [3] introduced Vision-and-
Language Navigation in Continuous Environments (VLN-CE),
which abandons the idealized assumptions of discrete graphs
and adopts a more realistic continuous environment setting,
instantiated within the 3D simulator Habitat. Irshad et al. [4]
further improved this model by transforming the action space
into linear and angular velocities, making the navigation process
more akin to the real world.

While the introduction of continuous environments has im-
proved the realism of navigation, the success rate in more
complex environments has significantly decreased. Inspired by
research in discrete environments, some researchers have at-
tempted to construct topological maps in continuous environ-
ments [5], [6]. Although topological maps effectively represent
the structure and connectivity of environments, their primary
drawback lies in their inability to capture detailed environmen-
tal information, such as the precise location of obstacles and
the true complexity of the environment. Recent studies [7],
[8], [9] have employed top-down semantic maps to model the
navigation environment, which can more accurately represent
spatial relationships. However, since semantic maps rely on
predefined labels, their representational capacity is limited. For
instance, they may not cover objects or scenes not included in
the predefined labels, and objects with different attributes may
not be fully represented due to the lack of detailed attributes in
the semantic map.

To address these limitations, we propose an Online Vision-
Language Map (OVL-MAP), a method that combines pre-
trained visual language features with 3D reconstruction tech-
niques. This approach preserves spatial relationships while in-
tegrating more visual detail, thereby assisting the agent in better
understanding the scene and making optimized navigation de-
cisions. This letter makes three main contributions: First, we
propose an online vision-language map construction method for
Robo-VLN and VLN-CE tasks, integrating global spatiotem-
poral relationships with fine-grained details to enhance scene
perception. Second, we introduce an LSTM-based waypoint
prediction module that generates sub-goals from spatiotemporal
data, thereby improving navigation precision. Third, we develop
an action decision module to simulate agent navigation in virtual
environments. Our method, evaluated on the Habitat platform,
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achieves state-of-the-art navigation success rates on both the
Robo-VLN and R2R-CE datasets.

II. RELATED WORK

In this section, we review the progression of VLN and related
studies on vision-based map representations for navigation.
Compared to previous research, we emphasize the distinctive
contributions and features of our study.

Vision and Language Navigation: The task of Vision-and-
Language Navigation (VLN) was first introduced by Anderson
et al. [1]. and it has since gained significant academic attention
with the rapid advancements in embodied intelligence. Early
research primarily focused on methods such as data augmen-
tation, search strategies, and pre-training techniques to address
challenges in VLN tasks within discrete environments [10], [11],
[12], [13]. However, these methods relied on perfect topological
localization at each navigation point, which did not effectively
tackle the complexities of real-world navigation scenarios, re-
vealing a significant gap between current methods and true
embodied intelligence applications.

In recent years, considerable efforts have been made to bridge
the gap between discrete and continuous environments. For
instance, Krantz et al.’s Sim-2-Sim framework [14] reduced do-
main gaps during transitions, thus improving VLN performance.
Furthermore, Hong [15] proposed a transfer learning frame-
work for continuous environments, addressing the challenges
of training agents with natural language instructions through
reinforcement learning and multimodal alignment. Meanwhile,
innovations such as Wang’s structured memory mechanism [16]
and Liu’s integration of bird’s-eye view (BEV) representations
with scene graphs [17] have contributed to enhanced semantic
understanding and spatial navigation in complex environments.
Despite these advancements, several challenges remain. One
significant issue is that, while the environment may be con-
tinuous, the action space often remains discretized, limiting the
complexity and realism of these tasks. To address this limitation,
Irshad et al. [4] expanded the VLN-CE framework by introduc-
ing Robo-VLN, which incorporates a continuous action space,
thereby making the task setup more representative of real-world
scenarios.

Recently, the Energy-based Navigation Policy (ENP) frame-
work [18] has explicitly modeled joint state-action distributions
and shown promising performance, offering new insights for
VLN development. In continuous environments, BEVBert [19]
leveraged BEV representations and vision-language pretrain-
ing to improve multimodal fusion. However, challenges per-
sist in handling complex environments and aligning features
effectively. Similarly, goal-directed semantic exploration [20]
has made notable contributions to object recognition and path
planning, particularly in dynamic and unknown environments,
showing robust adaptability.

While significant progress has been made in VLN within
continuous environments, several key challenges remain, par-
ticularly in the integration of continuous action spaces and the
refinement of multimodal fusion techniques. This letter proposes
a framework that integrates continuous action spaces, refines
multimodal fusion methods, and enhances semantic understand-
ing, with the goal of improving agent performance in complex
environments.

Map for Navigation: Navigation maps play a central role in an
agent’s environmental understanding and path decision-making,

particularly in vision-based navigation tasks. In such tasks,
agents typically rely on initial global or local environmental
information, such as maps and object features [21]. Methods
such as CM2 [8] and WS-MGMAP [9] improved spatial re-
lationship modeling by constructing top-down semantic maps,
thereby enhancing the granularity of environmental representa-
tion and, to some extent, increasing the success rate of Vision-
and-Language Navigation (VLN) tasks. However, these meth-
ods were constrained by their reliance on predefined semantic
labels, which leads to ineffective representation of unannotated
objects and scenes, limiting their applicability. To mitigate
this, GridMM [22] introduced Grid Memory Maps, which en-
hanced task performance by constructing global spatiotemporal
relationships and aggregating instruction relevance, although
challenges in managing multi-layered environments remain.
ETPNav [5] proposed an online mapping approach based on
waypoint self-organization, enabling robust long-range planning
without prior environmental knowledge, thus improving navi-
gation success. Despite these advancements, existing methods
still face challenges, particularly their reliance on predefined
semantic labels and limited generalization to unknown environ-
ments. To tackle these issues, we propose the OVLMap system,
a novel approach for online vision-language map construction.
OVLMap integrates spatial occupancy information and seman-
tic prior visual features via the LSeg model, enabling online
map updates and dynamic adaptation to environmental changes,
thereby significantly enhancing the system’s adaptability and
generalization.

In recent years, with the continuous advancement of em-
bodied visual-language intelligence, researchers have enhanced
the adaptability of agents in complex environments by integrat-
ing visual features with linguistic instructions. Several vision-
language mapping methods, including ConceptFusion [23],
OpenScenes [24], NLMap-SayCan [25], CLIPFields [26] and
VLMaps [27], primarily focus on constructing offline maps
for scene perception or short-term goal navigation. In contrast,
this study combines vision-language mapping with VLN tasks,
proposing the OVLMap system, which transforms traditional
offline map construction into an online updating framework,
enabling dynamic map updates during navigation and avoiding
reliance on static pre-built maps. Compared to existing methods,
OVLMap offers the following advantages: First, it introduces
task-driven viewpoint and semantic fusion, incorporating se-
mantic instruction information into map updates to better meet
navigation task requirements. Second, OVLMap processes and
updates online streaming data, dynamically adjusting the map
according to environmental changes and task needs. Finally,
OVLMap integrates waypoint prediction and action decision-
making modules, significantly improving the stability and accu-
racy of long-trajectory navigation, while enhancing cross-modal
consistency and overall navigation performance.

III. METHOD

This method aims to enhance the performance of visual lan-
guage navigation tasks by dividing the process into three main
modules: online visual language map construction, waypoint
prdiction, and action decision-making. This modular approach
facilitates more effective management of the complexities asso-
ciated with environmental perception, task instruction parsing,
and decision generation. The overall framework of the method
is illustrated in the Fig. 1.
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Fig. 1. Method Overview. We utilize the LSeg model to process the RGB im-
ages observed by the robot at each time step, extracting dense pixel-level visual
language features. These features are then combined with depth information to
construct a visual language map in online. Using a Cross-modal Transformer,
attention is computed between the map features and natural language instructions
to determine the next waypoint. Finally, the agent makes appropriate action
decisions based on the waypoint and the RGBD information.

A. Problem Formulation

Following the Robo-VLN approach [4], our goal is to achieve
visual language navigation in real-world environments. The
agent, equipped with RGB and depth cameras, learns a policy
at = π(Vt, I, θ) to navigate to a target using visual inputs Vt

and instructions I , where θ represents the policy’s learnable
parameters.

In terms of action space, the Robo-VLN approach includes
continuous linear and angular velocities, as well as a stop action.
In contrast, the VLN-CE approach features discrete actions such
as turning 15◦, moving forward 0.25 meters, and stopping. The
task is considered successful if the distance to the target is within
3 meters, the stop action is triggered, or the angular velocity
drops below a threshold.

B. Construction of Online Visual Language Maps

The Online Visual Language Maps framework integrates
features from a pre-trained visual language model (LSeg) with
3D reconstruction data of the environment, thereby enhancing
scene understanding. The detailed implementation process is as
follows.

Visual Language Feature Extraction: We leverage the pre-
trained LSeg encoder to perform semantic segmentation on
RGB images captured by the robot at each time step. This
process generates semantic information (q = f(i, j) ∈ RCs) for
each pixel (i, j). LSeg is a large-scale visual language model
designed for high-precision semantic segmentation driven by
language labels. It introduces language-driven semantic priors
without requiring manual annotations, thereby demonstrating
superior generalization capability. The extracted semantic in-
formation from the RGB images is subsequently fused with the
environment’s geometric information by associating LSeg pixel
embeddings with their corresponding 3D map locations, thereby
achieving an integration of semantic and geometric data.

Map Construction: Online Visual Language Maps are struc-
tured as grid maps, represented by M ∈ RH×W×D, where H
and W refer to the map’s height and width, and D denotes the
dimensionality of the visual language features stored in each
grid cell. At each time step, the robot receives new depth images

and updates its relative pose. The depth information from each
pixel is back-projected into 3D points in the camera’s coordinate
frame using the intrinsic matrix K and extrinsic matrix T , and
then converted into the world coordinate frame. Specifically, all
depth pixels d(i, j) are back-projected to generate a local depth
point cloud, which is then transformed into the world coordinate
system.

P = K−1d(i, j)[i, j, 1]T (1)

Pworld = TP (2)

Here, K represents the depth camera’s intrinsic matrix, d(i, j)
is the depth value of pixel (i, j), P is the 3D point in the K-th
frame, and Pworld refers to the 3D point in the world coordinate
system. Then, Pworld is projected onto the ground plane to
determine the position of pixel (i, j) on the grid map. Next,
the visual language features of each pixel (i, j) are stored in the
corresponding grid cell, achieving the fusion of semantic and
geometric information.

Map Update: The map features are updated according to the
following rule:

Mt[x, y] =

{
M̂ [x, y], if Mt−1[x, y] = None,
α·M̂ [x,y]+Mt−1[x,y]

n+1 , otherwise.
(3)

where n denotes the number of features accumulated in the
current grid cell, and [x, y] represents the coordinates of the grid
cell. The variableMt[x, y] refers to the global feature at position
[x, y],while M̂ [x, y] represents the feature vector observed at
the same position during time step t, Both Mt[x, y] and M̂ [x, y]
encode semantic and spatial information. The weight factor α
quantifies the relevance of M̂ [x, y] to the navigation instruction
feature I and is computed as the cosine similarity between them:

α = max

(
0,

M̂ [x, y] · I
‖M̂ [x, y]‖‖I‖

)
(4)

This update mechanism prioritizes regions relevant to the navi-
gation task. Semantic instruction information is integrated with
observations from new viewpoints to enhance task alignment. By
averaging features within each grid cell, the system effectively
incorporates multi-perspective observations of the same object
while maintaining focus on task-relevant regions.

C. Waypoint Prediction Module

The map constructed in the previous section is updated step
by step over time, while the instruction contains the complete
navigation trajectory. To capture the navigation progress, we
designed an instruction localization module that combines the
visual information of the current time step to predict waypoints.

Text Encoder: For a natural language instruction consisting
of K words, we utilize the BERT model to extract text features,
represented as:

I = {l1t , l2t , l3t , . . ...lkt } (5)

where lit denotes the encoded feature of the i-th word.
Visual Encoder: The observed RGB-D information (rt ∈

Rh0×W0×3, dt ∈ Rh0×w0) is encoded using a pre-trained Con-
vNet, resulting in RGB features fr ∈ Rhs×ws×cs and depth
features fd ∈ Rhs×ws×cs .
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Cross-Modal Inference: The Waypoint Prediction Module
employs a cross-modal encoder to align and fuse features from
multiple modalities, enabling the agent to perceive and locate it-
self within the environment. Given the complexity of the naviga-
tion environment, many features in the constructed grid map may
not be relevant for navigation. The agent requires information
that is highly pertinent to the current instruction to understand the
environment. Hence, we propose an instruction-based attention
mechanism using a Transformer to aggregate key features from
the grid, outputting a subgoal yat .

To achieve this, we use the textual features I from the text
encoder as the key matrix K and value matrix V , while the grid
map features M serve as the query matrix Q. The Transformer
attention mechanism then computes the most relevant map fea-
tures M̃ with respect to the current instruction. The map features
M̃ are still represented as a matrix of shape H ×W ×D,
capturing the spatial and semantic context relevant to the task.

After obtaining the map features M̃ , we apply a region-based
pooling mechanism to reduce the dimensionality of M̃ by
focusing on the areas most relevant to the current task. The
pooling operation converts the map feature matrix M̃ from a
H ×W ×D matrix into a pooled feature vector M̃pool of di-
mensionality D́. The pooled map features are then concatenated
with the visual features fr,depth features fd and the previous
LSTM hidden state hh

t−1 to form the input feature vector for
the LSTM. This concatenated feature vector is passed into the
LSTM network, which processes the sequential information
over time. The LSTM output hh

t is then passed through a fully
connected layer to predict the next waypoint yat :

hh
t = LSTM([M̃pool, fr, fd, h

h
t−1]) (6)

yat = Wah
h
t + ba (7)

Here, Wa is the weight matrix and ba is the bias term for the
fully connected layer that maps the LSTM output to the predicted
waypoint yat .

D. Action Decision Module

This study introduces a dual-action module to address the dis-
tinct requirements of two Visual-Language Navigation (VLN)
tasks: the VLN-CE task and the Robo-VLN task. The method
combines reinforcement learning (RL) strategies and deep learn-
ing techniques to handle high-level decision-making and low-
level control for robot navigation. The module is divided into
two sub-modules: for the VLN-CE task, it outputs four discrete
actions; for the Robo-VLN task, it generates continuous control
signals, such as linear velocity v and angular velocity ω.

Action Module for VLN-CE Task: We adopt DD-PPO as
the local strategy, which takes the goal point yat as input and
generates a probability distribution over four discrete actions.
Action selection is achieved via a policy network, optimized
through reinforcement learning to maximize expected rewards.
The action probabilities pha are computed as follows:

pha = softmax(Wah
h
t + ba) (8)

where Wa and ba are learnable parameters. The Softmax func-
tion normalizes the LSTM output to produce a valid probability

distribution. Actions are sampled or selected from the distribu-
tion pha as:

aht ∼ π(a | hh
t ) (9)

Action Module for Robo-VLN Task: In contrast to the VLN-CE
task, the Robo-VLN task requires continuous control signals. We
use an LSTM network to predict low-level actions, combining
visual features fr, depth information fd, and high-level action
commands aht from previous decisions to generate the current
control signals. The LSTM is defined as:

hl
t = LSTM([fr, fd, a

h
t , h

l
t−1]) (10)

The LSTM output is passed through a fully connected layer ga
and an activation function σ to produce the predicted low-level
action probabilities pla (linear and angular velocity) and the stop
probability psa:

pla, p
s
a = σ(ga([h

l
t, a

l
t−1])) (11)

Loss Function Design and Training: To optimize the localization
and decision-making modules, we employ three distinct loss
functions:

Multiclass Cross-Entropy Loss: Measures the difference be-
tween the true high-level navigable action yat and the predicted
action probability pha :

La = −
∑
i

yai
t log(pha) (12)

Mean Squared Error Loss: Compares the true velocity com-
mands yv,ωt with the predicted low-level action probabilities pla:

Lv = ‖yv,ωt − pla‖2 (13)

Binary Cross-Entropy Loss: Evaluates the difference between
the true stop action yst and the predicted stop probability psa:

Ls = − (yst log(p
s
a) + (1− yst ) log(1− psa)) (14)

The total loss function is a weighted sum of these individual
losses, allowing for simultaneous optimization of both high-
level navigation decisions and low-level control actions.

IV. EXPERIMENT

This section presents an overview of the experimental setup,
including datasets, training configurations, and evaluation met-
rics. We then compare our method with state-of-the-art ap-
proaches in both continuous and discrete action spaces, high-
lighting its effectiveness. Finally, ablation studies demonstrate
the contribution of our method.

A. Experiment Setup

Datasets: Experiments are conducted in the Habitat simulator
using the Robo-VLN and R2R-CE datasets. Robo-VLN uses
a continuous action space with linear and angular velocities
(average trajectory length: 326 steps), while R2R-CE uses a
discrete action space with actions like moving forward 0.25 me-
ters, turning 15◦ left/right, and stop (average trajectory length:
55.8 steps).

Evaluation Metrics: We evaluate the agent’s performance
using standard visual navigation metrics, including Success Rate
(SR), Success weighted by Path Length (SPL), Normalized Dy-
namic Time Warping (NDTW), Trajectory Length (TL), Oracle
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TABLE I
COMPARISON OF OUR MODEL WITH EXISTING MODELS (ROBO-VLN DATASET)

Fig. 2. Visualization of a successful navigation episode in a complex task. The first row presents a bird’s-eye view with red boxes marking the predicted sub-goals.
The second row displays the RGB images observed by the agent, with yellow arrows indicating the movement direction and path. The third row shows the 2D plane
view of the visually evolving language map constructed online during navigation.The highlighted areas represent the regions of the map most relevant to the current
view and task instructions. Specifically, they correspond sequentially to the objects in the bird’s-eye view, including “couches,” “arch,” “stairs,” and “couches.”
This illustrates how the map updates incrementally throughout the navigation process, reflecting online changes and progress toward the task objectives.

Success Rate (OSR), and Navigation Error (NE). SPL and SR
serve as the primary indicators of navigation performance. For
detailed descriptions of these metrics, please refer to [31], [32],
[33].

B. Performance Comparison

Comparison of Robo-VLN Baselines: Table I compares our
method to the Robo-VLN baseline on the Robo-VLN dataset,
showing that our approach significantly outperforms the base-
line across several metrics. Notably, we achieve a 10% im-
provement in SPL for seen environments and a 12% increase

for unseen environments. This enhancement is largely due to
our method’s visual language map, which boosts the agent’s
generalization in novel settings. Fig. 2 illustrates the agent’s
performance in a navigation episode, where it dynamically
constructs a visual language map from online RGB-D data.
The localization module uses this map to identify areas rel-
evant to the given natural language instructions, determining
sub-goal points such as “couches,” “arch,” and “stairs.” The
agent navigates accurately to these points and reaches the fi-
nal destination, demonstrating the method’s effectiveness in
spatial understanding and executing instructions in complex
environments.
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TABLE II
COMPARISON OF OUR MODEL WITH EXISTING MODELS (R2R-CE DATASET)

TABLE III
ABLATION EXPERIMENTS OF OVL-MAP ON THE R2R-CE VAL-UNSEEN

DATASET

Comparison of VLN-CE baselines: To further validate the
effectiveness of our proposed OVL-MAP method, we compared
it with state-of-the-art approaches on the R2R-CE dataset,as
shown in Table II. Our model outperforms existing baselines
in most evaluation metrics, particularly in success rate(SR)
and success weighted path length(SPL). Compared to methods
relying on fixed semantic labels, such as CM2 and WS-MGMap,
our model surpasses them and shows approximately 10% im-
provement in SR and SPL over GridMM. Its performance is
on par with ETPNav and Safe-VLN. In the Validation Unseen
set, our method achieved 60% SR, matching Safe-VLN, but
improved SPL by 3%, from 47% to 50%, indicating better path
optimization. Moreover, the path length (TL) was reduced by 2.8
compared to Safe-VLN, demonstrating the ability to complete
the task with shorter paths. In the Test Unseen set, our method
achieved 48% SPL, comparable to ETPNav, with a 2% improve-
ment in SR, from 55% to 57%. This improvement is attributed
to the semantic priors and the online construction of vision-
language maps. By combining BERT and LSTM networks for
information processing, our method enhanced performance in
unseen environments. It is worth noting that the performance
of the ENP-ETPNav model was similar across metrics when
compared to our model, highlighting the importance of energy-
based navigation strategies (ENP) in vision-language navigation
tasks. This suggests that incorporating ENP into our model could
further enhance performance. Overall, our method demonstrates
superior generalization, especially in unseen environments, em-
phasizing the importance of semantic priors and vision-language
fusion for improved navigation capabilities.

C. Ablation Study.

The Impact of OVLMap and Waypoint Prediction Modules on
Navigation Performance: An ablation study was conducted on
the unseen validation split of the R2R-CE dataset to evaluate the
contributions of the OVLMap and waypoint prediction modules
to navigation performance. The results, shown in Table III, reveal
that, when only RGB-D data (fr, fd) is input into the LSTM
network (first row), navigation performance is inferior to when

Fig. 3. Qualitative Analysis of the Impact of OVLMap and Waypoint predic-
tion Modules on Navigation Performance.This figure compares the navigation
performance of our proposed method with and without the map and waypoint
prediction modules. Panel (a) illustrates the complete framework with both
modules, where the agent successfully identifies and navigates towards key
targets like “bed” and “door”, reaching the goal via the shortest path. Panel
(b) shows a framework lacking these modules, where the agent, relying solely
on RGB-D and instruction input, fails to correctly associate visual cues with
instructions, leading to errors and eventually getting trapped in a loop, resulting
in navigation failure.

map features (M ) are included without attention-based instruc-
tion processing (second row). This comparison highlights the
superiority of using an online visual language map constructed
from RGB-D data. However, not all map features are essential for
successful navigation, as demonstrated by the improved results
when attention mechanisms are applied in the waypoint pre-
diction module (third row), which enhances navigation success
rates by focusing on the most relevant map features.

A qualitative analysis further supports these findings, as
shown in Fig. 3. Fig. 3(a) illustrates the full framework, where
both the OVLMap and waypoint prediction modules enable the
agent to successfully identify targets like “bed” and “door”
and reach the goal efficiently. In contrast, Fig. 3(b) depicts
the framework without these modules, where the agent, relying
solely on RGB-D data and instructions, begins to make errors at
step 30. The agent fails to link the “door” in its view to the target,
leading to a looping behavior and eventual navigation failure, as
highlighted by the overhead view in Fig. 3(b).

Despite its advantages, the OVL-MAP method has some lim-
itations. As shown in Fig. 4, navigation failure occurs when the
agent, due to a restricted field of view, cannot properly identify
kitchen-related objects. The red box in the figure highlights that
the agent perceives only part of the sink related to the “kitchen”,
limiting its ability to fully perceive the environment. As a
result, the agent moves along an incorrect trajectory, resulting
in navigation failure. Future work could address this limita-
tion through panoramic views or forward-looking exploration
strategies to broaden the agent’s field of view. Additionally,
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Fig. 4. Navigation failure caused by restricted field of view, Leading to
incomplete object recognition and incorrect trajectory.

TABLE IV
COMPARISON AMONG DIFFERENT MAPS ON THE R2R-CE VAL-UNSEEN

DATASET

the current method struggles with multi-level environments,
warranting further investigation.

Comparison with Semantic Map Approaches: We conducted a
systematic comparison between the proposed OVLMap method
and existing explicit semantic map approaches, as summarized
in Table IV. The results demonstrate that OVLMap outperforms
baseline methods across most key metrics. The baseline methods
include the CM2-based approach [8], which generates self-
centered top-down semantic maps using convolutional layers,
and the WS-MGMap method [9], which integrates color and
other detailed information into CM2 maps. However, both meth-
ods rely heavily on predefined semantic labels, significantly lim-
iting their adaptability to unseen categories. OVLMap exhibits
several notable advantages. By integrating the LSeg model with
depth information and camera pose data, it provides stronger
semantic priors compared to the UNet-based feature extraction
employed in CM2 and WS-MGMap, enabling superior spa-
tial representation in complex environments. In contrast, CM2
and WS-MGMap are constrained by fixed-category semantic
features, reducing their capability to handle novel categories.
Additionally, OVLMap supports dynamic online map updates
based on task instructions, enhancing task-specific adaptabil-
ity and operational flexibility. In comparison, CM2 and WS-
MGMap perform waypoint predictions on static maps of fixed
size, lacking the ability to adjust dynamically. Furthermore,
OVLMap integrates waypoint prediction and action decision-
making modules and leverages LSTM networks to effectively
handle long-term dependencies, outperforming the GRU net-
works used in WS-MGMap in modeling capacity. The results
in Table IV further validate OVLMap’s superior performance in
vision-language navigation tasks, highlighting its accuracy and
adaptability to complex environments.

Impact of Map Scale on Navigation Performance: The results
(Table V) show that increasing the map scale improves naviga-
tion performance, though it also increases computational cost,
with diminishing returns in performance gain. Therefore, a map
scale of 20× 20 is selected as the optimal configuration.

Additionally, higher grid resolutions (eg.3 cm) significantly
enhance sub-goal prediction accuracy, while lower resolutions

TABLE V
THE EFFECT OF DIFFERENT OVL-MAP SCALE ON THE R2R-CE VAL-UNSEEN

DATASET

Fig. 5. Visualization of OVLMap’s local maps at different resolutions. From
left to right, the grids correspond to resolutions of 3 cm, 5 cm, and 10 cm. The
second row illustrates the impact on waypoint prediction, showing that lower
resolutions lead to less accurate predictions.

Fig. 6. The impact of sub-goal errors on navigation performance. The x-axis
represents the error magnitude, with α taking values of 0%, 5%, and 10%.

(eg.10 cm) result in blurred predictions, impacting navigation
precision(Fig. 5).

Impact of Waypoint Prediction Errors: We further analyzed
the impact of waypoint prediction errors and action executors
on navigation performance. Specifically, we introduced different
levels of noise error to the first LSTM output yat by modifying
it as yat = yat + α ·N(0, σ2). The results show that increasing
prediction errors significantly degrades performance (see Fig 6).
In terms of action executors, both our method and the method
in [15] use a point navigation strategy, which outperforms the
FMM method in [14], but slightly trails behind the RF method
in [5]. This demonstrates the effectiveness of point navigation
strategies, as previously studied in [5].

V. CONCLUSION

In this letter, we focused on the navigation capabilities of
agents in continuous environments and proposed an online
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method for constructing vision-and-language navigation maps,
OVL-MAP. First, we introduced robust semantic priors to con-
struct visual language maps, thereby enhancing the agent’s
environmental perception. Secondly, we designed an attention-
based waypoint prediction module that outputs sub-goals, and
finally, we used an action decision-making module to guide
the agent’s navigation. In the future, we will consider how to
mitigate the impact of limited visibility and explore how to apply
the proposed OVL-MAP method to multi-story buildings, and
subsequently deploy it in real robotic systems to evaluate its
navigation performance.
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