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Abstract—This study presents a system, TripletLoc, for fast and
robust global registration of a single LiDAR scan to a large-scale
reference map. In contrast to conventional methods using place
recognition and point cloud registration, TripletLoc directly gen-
erates correspondences on lightweight semantics, which is close
to how humans perceive the world. Specifically, TripletLoc first
respectively extracts instances from the single query scan and the
large-scale reference map to construct two semantic graphs. Then,
a novel semantic triplet-based histogram descriptor is designed
to achieve instance-level matching between the query scan and
the reference map. Graph-theoretic outlier pruning is leveraged
to obtain inlier correspondences from raw instance-to-instance
correspondences for robust 6-DoF pose estimation. In addition, a
novel Road Surface Normal (RSN) map is proposed to provide
a prior rotation constraint to further enhance pose estimation.
We evaluate TripletLoc extensively on a large-scale public dataset,
HeliPR, which covers diverse and complex scenarios in urban
environments. Experimental results demonstrate that TripletLoc
could achieve fast and robust global localization under diverse and
challenging environments, with high memory efficiency.

Index Terms—Global localization, pose estimation, graph theory,
semantic triplet, autonomous vehicles.

I. INTRODUCTION

G LOBAL localization refers to localizing a robot in a prior
database or map with less or without initial guess. Global

Navigation Satellite System (GNSS) is one of the most popular
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Fig. 1. TripletLoc Framework. Semantic graphs are constructed to represent
both the single query scan and the global reference map. Vertex descriptors are
then extracted from the graphs to build instance-to-instance correspondences.
Graph-theoretic outlier pruning and rotation constraint from the RSN map are
integrated for the 6-DoF pose estimation.

solutions. The performance of GNSS might be degraded because
of signal occlusions and multi-path effects in urban canyons or
undergrounds. Researchers tend to use onboard measurements
to locate the robot within a prior database or map to release the
need for GNSS in such environments. LiDAR-based methods
have demonstrated good robustness and accuracy under diverse
conditions, such as changes in illumination or weather, showing
great potential for global localization [1], [2].

A popular global localization framework is based on a scan-
to-scan loop closure scheme, which achieves global localization
by comparing similarities of descriptors (i.e., place recogni-
tion) and estimating relative poses between the query scan and
reference scans (i.e., scan-wise registration) [3], [4], [5], [6],
[7]. However, some of them might not be efficient in memory
when the scale of the reference map becomes larger, where
thousands of discrete and dense point clouds are involved.
Such map formulation is also hard to maintain in long-term
localization, considering the discrete characteristics of reference
scans.

Recent works [8], [9], [10] use a scan-to-map scheme based
on lightweight semantics in environments. These methods di-
rectly register the single query scan to the large-scale reference
map, where semantic instances are used to reduce memory and
computational complexity of pose estimation. All-to-all [8],
[10] and condition-meeting [9] strategies have been proposed
to build instance-to-instance correspondences. However, they
may still be inefficient at times when addressing the registration
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problem, particularly with a large number of correspondences
in large-scale environments.

To address the above issues, we propose TripletLoc in this
study, which is a fast, efficient, and robust solution for LiDAR-
based global localization. Similarly, TripletLoc also converts
the single query scan and the entire large-scale reference map
to a compact instance-level semantic graph, which has been
used in the current methods [7], [9], [11], [12] to embed envi-
ronment layouts. Instance-to-instance correspondences are then
generated based on a novel semantic triplet-based histogram
descriptor, which embeds semantic, topological, and geometric
cues from the scene. Based on this descriptive descriptor, a
simple yet effective top-k matching strategy is used to guarantee
running speed and computational feasibility of the scan-to-map
based scheme. At the back end, graph-theoretic pruning is used
to improve the pose estimation robustness against outlier corre-
spondences. In addition, a RSN map is proposed to provide a
prior rotation constraint for better pose estimation. The frame-
work of TripletLoc is shown in Fig. 1. Our code is open-sourced.1

Overall, our contributions are summarized as follows:
1) We develop a system that could efficiently and robustly

localize a robot globally in large-scale urban environments
using only one query scan without requiring a sequence
of onboard scans and odometry.

2) We extend and improve the semantic triplet-based his-
togram descriptor [7] to obtain robust and efficient
instance-to-instance correspondences.

3) We propose a novel RSN map to provide a prior rotation
constraint for pose estimation to further enhance registra-
tion performance.

II. RELATED WORK

LiDAR-based global localization can be generally catego-
rized into two branches: one-shot-based and sequence-based
methods [1]. Sequence-based methods can be further divided
into retrieval and filtering methods, where relative poses between
consecutive frames are needed. By accumulating consecutive
frames as a submap, retrieval methods achieve global localiza-
tion by identifying whether the current submap has been visited
in a prior submap-based database. Filtering methods usually
locate a robot by iteratively estimating the pose of the robot,
commonly known as Monte Carlo Localization [13]. Differ-
ently, one-shot global localization only uses one single frame
without requiring relative poses. This paper focuses on one-shot
methods. We review existing related works in two streams:
place recognition (PR)-based methods and registration-based
methods.

A. Place Recognition-Based Methods

PR-based methods usually first achieve coarse localization
by identifying whether the current query frame has been visited
in a prior database. The relative metric pose is then obtained
by registering the query frame to the retrieved frame using raw
point clouds or local point features [1]. Global descriptors are
usually used for the retrieval process in PR-based methods,
including handcrafted feature-based and data-driven-based de-
scriptors. In early works, handcrafted local features are usually
aggregated into global descriptors for PR [14]. Instead of using

1[Online]. Available: https://github.com/Weixin-Ma/TripletLoc

local features, global descriptors extracted directly from LiDAR
points have become another popular solution for PR in recent
years [1]. Scan Context [3] embeds geometric information from
a 3D point cloud as a 2D matrix global descriptor using bird-
eye-view (BEV) projection. Similarly, SSC [5], Intensity Scan
Context [4], RING++ [15], and LiDAR-Iris [6] all use BEV
projection to extract their global descriptors. More recently,
graph structure has been used in many methods to embed en-
vironment layouts [7], [11], [12], [16]. Most of them rely on
the clustered semantic instances to build semantic graphs [7],
[11], [12]. Similarities between semantic graphs are then used
for place recognition. Differently, key points are first extracted
from the point cloud and then be used to construct triangle-based
graphs [16]. A voting strategy is proposed to select matched
frames from a prior database for the query frame. In stead
of using handcrafted descriptors, data-driven-based methods
extract global descriptors from point clouds using deep neural
networks [17], [18], [19].

B. Registration-Based Methods

Unlike PR-based methods, which use key-frame-based re-
trieval, registration-based methods directly register the query
scan to the reference map. However, in global localization, the
scale of the reference map is much larger than that for a single
point-cloud scan, which usually covers thousands of square me-
ters. It is computationally intractable to register a query LiDAR
scan directly to a reference map using 3D point-level correspon-
dences. Alternatively, several researchers extract instances from
environments to build correspondences [8], [9], [10]. All-to-all
strategy is used to build correspondences in [10], that is, all the
possible pairs of an instance in the query scan and an instance
in the reference map. Similarly, all-to-all correspondences are
used in [8]. However, an instance from the query scan and an
instance from the reference map will be paired only when their
classes are the same. In [9], correspondences are generated when
triangle descriptors for query scan and global map satisfy some
designed conditions (i.e., same hash key, semantic classes, and
similar variance matrices). Based on the built correspondences,
all the methods mentioned above use the graph-theoretic outlier
pruning to select inlier correspondences for pose estimation.
These methods might build a large number of correspondences
in large-scale environments, making it slow or even computa-
tionally intractable for outlier pruning.

C. Differences From Previous Studies

Our previous work, Triplet-Graph [7], is a typical scan-to-scan
based approach. Each scan includes its surrounding instances,
which might redundantly save some instances multiple times
across different keyframes. To improve memory efficiency,
TripletLoc employs a scan-to-map framework, where each in-
stance is saved only once in the prior map. Unlike the RANSAC-
based pose estimation in Triplet-Graph, TripletLoc enhances
robustness to outliers using graph-theoretic pruning and Trun-
cated Least Squares (TLS) based registration. Compared to
other registration methods, TripletLoc ensures computational
feasibility for robust pose estimation, regardless of the reference
map’s scale. To achieve this, we design an informative vertex
descriptor that integrates semantic, topological, and geometric
information, rather than relying solely on clustered instances.
Additionally, we propose a novel RSN map to provide a prior
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Fig. 2. The construction pipeline of the instance-level map. Semantic segmentation is first performed on each LiDAR scan, followed by instance clustering. The
clustered instances of all scans are then concatenated and fused.

Fig. 3. The construction pipeline of the RSN map. Road grid segmentation is first performed on road points, followed by road surface normal estimation. The
road-grid-based surface normal of all scans are then concatenated and fused.

rotation constraint to improve registration robustness. Using
RSN overcomes the limitation of previous methods that discard
road information, showing significant potential for urban global
localization.

III. THE PROPOSED METHOD

Our proposed one-shot global localization method, Triplet-
Loc, is generally divided into three parts: instance-level map
and RSN map construction, vertex descriptor extraction and
matching, and robust 6-DoF pose estimation, as shown in Fig. 1.

A. Instance-Level Map and RSN Map

Due to the large scale of reference maps, directly localizing
the vehicle using 3D point-level correspondences is computa-
tionally impractical. Therefore, lightweight and compact maps
are essential. As shown in Fig. 3, we represent the scene at
the instance level for better efficiency. To enhance localization
robustness, we also propose a novel RSN map for prior rotation
constraints in 6-DoF pose estimation.

1) Instance-Level Map: Given a sequence of LiDAR scans
and their relative poses, we first perform semantic segmenta-
tion on each scan using the pre-trained SPVNAS [20] without
fine-tuning. Instead of using all object classes, we only use
trunk, pole, and traffic sign, because they are more stable in
long-term localization. 3D points with the same class label
are then clustered into different object groups for each scan
using the Euclidean Cluster algorithm from the Point Cloud
Library [21]. Each clustered group has its own ID, class la-
bel, geometric centroid (i.e., xyz-coordinate), and corresponding
point number. All the clustered instances from different scans
are then transformed and concatenated into the same coordinate
system based on relative poses between different scans. Here,
we directly use the ground truth of robot poses provided by
the datasets. Since some instances might be observed across
different scans, it would lead to redundancy and duplication

of instances in the map. So, we further fuse instances whose
distances are less than 0.5 m between each other into a new
single instance. The geometric centroid for the new instance is
the average of the geometric centroids of the fused instances. The
class label for the new instance is set the same as the instance of
which the corresponding point number is the largest across the
fused instances.

2) RSN Map: Based on the semantic segmentation results
from SPVNAS, we divide 3D road points into discrete road
grids (10 m× 10m). Within each grid, if the number of 3D
points exceeds a pre-defined threshold (1000in our case), we
apply RANSAC to segment the road plane from these points.
We then use the normal of this segmented road plane to approxi-
mate the road surface normal. This approximation is reasonable
because roads are typically flat in local area in modern urban
environments. The center of each road grid serves as the starting
point for this normal. Similar to the instance-level map, we
concatenate the road-grid-based surface normals from different
scans. We then fuse normals with starting points less than
a threshold distance (3.5m in the experiments) into a single
normal. To achieve the normal fusion, we calculate the average
of the normal vectors element-wise and normalize the result,
noted as n−→ ∈ R

3. The starting point of the new normal is
the average of the starting points of the fused normals. We
also compute the relative angle between each fused normal
and the new normal. These angles (differences) are used to
determine the standard deviation,σn−→ ∈ R, which reflects the un-
certainty of the road surface normal estimation ( n−→) of the local
area.

B. Vertex Descriptor Extraction and Matching

Reliable correspondences between the query scan and the
reference map are fundamental to accurate pose estimation
but become increasingly challenging as larger maps introduce
repeated elements and sub-structures. In the work, we extend the
vertex descriptor proposed in our previous work [7] to establish
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Fig. 4. Semantic graphs of a query scan and the reference map with varying
τedge. Only part of the map is displayed. The blue circle refers to the corre-
sponding area in the map at the same location as the query scan.

more robust correspondences between the query scan and the
instance-level map.

1) Semantic Graph Construction: Given a set of clustered
instances {Ii}, we represent them as an undirected graph G =
〈V ,E〉. V = {vi} is the set of vertices, in which vi refers to
an individual instance Ii. E = {eij} is the set of edges that
connect two different vertices, in which eij = 〈vi, vj〉 is the
edge connecting vertices vi and vj . Two instances are connected
when their distance is less than a pre-defined threshold τedge.
Intuitively, only partial instances in the reference map can be
observed by the query scan. When τedge is larger, edges that
connect instances distributed along the margin of the query scan,
are more different from edges that connect the same instances
in the reference map (see Fig. 4). Therefore, we use a smaller
threshold (i.e., 20m) to reduce such differences.

2) Vertex Descriptor Extraction: In our previous work,
Triplet-Graph [7], a triplet-based semantic histogram descriptor
is proposed to describe vertices in a semantic graph. Specifically,
given a vertex vj , Triplet-Graph embeds topological (i.e., seman-
tic combination) and geometric (i.e., relative angle) information
of {Δ}vj

from the graph. All the information is encoded as
a histogram descriptor, as shown in the blue box in Fig. 5. The
histogram can be easily converted as aN1 ×N2 matrix, denoted
as Desαvj

. We recommend reading our previous study [7] for the
notations and the details of extraction process.

Only relative angles between instances are embedded in the
second-level bin ofDesαvj

. When two triplets have the same class
combination and close relative angle, they belong to the same
bin of Desαvj

. However, in practical situations, these two triplets
might be very different in the length of the edges. Therefore, to
better document these difference, we extendDesαvj

by explicitly
embedding lengths of edges from triplets at the same time.
Specifically, given a triplet Δijk (as shown in the blue dotted
ellipse at the top of Fig. 5, we first calculate distance dij /djk
between vertex vi/vj and vj /vk in xy-plane (i.e., only x and y
coordinates are used). Then we calculate the average edge length
of Δijk, denoted as d = (dij + djk)/2. Since two vertices are
connected only when their distance is less than τedge, we have
d ≤ τedge. Similar to Desαvj

, a histogram based on two-level

Fig. 5. Vertex descriptor extraction. A semantic graph is first constructed to
represent the input LiDAR point cloud. The blue dotted ellipse shows a sample
triplet. The triplet semantic histogram-based descriptor is then employed to
represent the vertices in the graph.

bins is used to embed the edge length information (i.e., d) from
all the triplets that use vertex vj as the middle vertex in the
graph. An example of the histogram descriptor can be found in
the purple box in Fig. 5. The N1 first-level bins are exactly the
same as those for Desαvj

. For each first-level bin C ∈ {C}lm
(please refer to [7] for more details about C and {C}lm ), we
further divide it into N3 second-level bins. Each second-level
bin has the same combination as C, but with a different range
of average edge length. As shown in the blue dotted box in the
right sub-figure of Fig. 5, we have N3 = τedge/τ , in which τ
(τ = 0.5 m) is the interval of the range of average edge length.
Note that τ should be divisible by τedge. The histogram can be
also easily converted to a N1 ×N3 matrix, denoted as Desdvj

.
The final vertex descriptor for vertex vj is the combination

of Desαvj
and Desdvj

. To simplify the notation, we concatenate

Desαvj
and Desdvj

into a single N1 × (N2 +N3) matrix by

appending Desdvj
on the right of Desαvj

, denoted as Desvj
.

3) Vertex Matching: Given semantic graph Gque of a query
LiDAR scan and Gref of the reference map, we use cosine
similarity to measure the similarity between vertices [7]. Only
vertices with the same class label are compared, for example,
trunks in Gque are only compared with trunks in Gref . The
cosine similarity can be calculated as:

Sim
(
vquej , vreft

)
=

∑
Desvque

j
·Desvref

t∥∥∥Desvque
j

∥∥∥
F
×
∥∥∥Desvref

t

∥∥∥
F

, (1)

in which Sim is short for similarity, the dot · is the element-wise
multiplication on two matrices, ‖ · ‖F is the Frobenious norm
of a matrix,

∑
is the summation of all elements of a matrix,

vquej and vreft are respectively arbitrary vertices in Gque and
Gref with the same class label. For a vertex vquej in Gque, we
chose the top-k (25 in our implementation) vertices in Gref

that have highest similarities between vquej as the matching
result for vquej . We then repeat the top-k matching for every
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vertex inGque to get a raw set of instance-wise correspondences
Araw. K-D tree is created to accelerate the matching process.
Specifically, given two normalized vectors a and b, their co-
sine similarity cos(a,b) and euclidean distance dis(a,b) fol-
lows: cos(a,b) = 1− 0.5dis(a,b)2. Therefore, for normalized
Desvque

j
and Desvref

t
, the top-k matches with highest cosine

similarities are the same as the top-k matches with smallest
euclidean distance.

C. Pose Estimation

In scan-to-map-based global localization with large maps,
achieving outlier-free correspondences is nearly unattainable,
which poses significant challenges for accurate pose estimation.
In this work, we employ graph-theoretic outlier pruning to
minimize outliers and introduce a novel prior rotation constraint
to enhance the robustness of pose estimation.

1) Graph-Theoretic Outliers Pruning: Theoretically, every
vertex in Gque has at most one corresponding vertex in Gref .
However, redundant correspondences can usually involve more
inliers for better 6-DoF pose estimation, so we set k larger than
1. As a result, there are many outliers in Araw, especially when
k comes larger. These outliers greatly increase the complexity
of the 6-DoF pose estimation. To solve this problem, we prune
outliers in Araw by searching the Maximum Clique (MCQ) of
the consistency graph constructed fromAraw [22], and the PMC
library [23] is used to solve the searching problem. The filtered
correspondence set is denoted as A. Noted that different types
of semantics instances are treated uniformly during the MCQ
searching.

2) Point-to-Point Registration: After the outliers pruning, we
estimate the unknown transformation between the query LiDAR
scan and the instance-level map. Let T = [R, t] be the ground
truth of the unknown transformation, in which R ∈ SO(3) and
t ∈ R

3. Based on A, we can easily get a set of vertex pairs B,
{(vquej , vreft )}. Each correct pair can be associated by vreft =

Rvquej + t+ εjt. εjt models the measurement noise, vreft and

vquej are coordinates for vertex vreft and vquej , respectively.
Although we have conducted outliers pruning already, there

are inevitably still some potential outliers left in A. To further
improve the robustness to outliers, we follow [24] to calculate
the estimation of T , T̂ = [R̂, t̂], as a TSL registration problem:

R̂, t̂ = argmin
R∈SO(3),t∈R3

∑
j,t∈B

min
(∥∥∥vreft −Rvquej − t

∥∥∥
2
, cjt

)
,

(2)

where cjt is the truncation parameter [22].
3) Rotation Constraint Using RSN Map: Equation (2) gener-

ally provides stable 6-DoF pose estimation, but its performance
could be degraded when point-to-point associations fail to pro-
vide effective rotation constraints. For example, if vertices in B
are distributed along a straight line, potentially due to only one
side of a road being visible, the accuracy of rotational estimation
may suffer. To address this issue, we propose a prior rotation
constraint from the RSN map when solving (2). This constraint
is based on two assumptions: 1) road surface normals in urban
environments remain consistent in a local area over time; and 2)
yaw rotation is the dominant component in the relative rotation
motion of ground robots and vehicles [25]. Therefore, the z-axis
of the vehicle is approximately parallel to the local road surface

normal, providing an additional constraint for rotation to im-
prove registration performance. Specifically, we first calculate
the average of geometric centroids of all vreft ∈ B, noted as
anchor pa. The n−→ in the RSN map, with its starting point closest
to pa, is used to constrain the z-axis of the vehicle. This normal
is denoted as n̂−→ ∈ R

3, with a standard deviation of σ n̂−→. Let

R = [r1−→ r2−→ r3−→], where r1−→, r2−→, and r3−→ ∈ R
3 is a vector that

represents the direction of x, y, and z axes of R, respectively.
We then have the following equation:

n̂−→ · r3−→ = 1 + εn. (3)

where · denotes the dot product, and εn represents the measure-
ment noise. To account for road surface normal variance due
to the position difference between the anchor pa and the actual
position t, we add an additional perturbation δ (rad) of 5◦, i.e.,
εn = σn−→ + δ. Equation (3) is then used as a prior constraint for

R̂.
4) Solving Using Graduated Non-Convexity: The non-

convex optimization problem (2) with the prior rotation
constraint (3) are solved using Graduated Non-Convexity
(GNC) [24] implemented in GTSAM [26]. Specifically, we use
PriorFactor from GTSAM to implement the prior rotation
constraints in (3).

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Dataset and Experimental Setup

1) Baselines: We compare the proposed TripletLoc with sev-
eral state-of-the-art PR-based and registration-based methods.
PR-based baselines include Scan Context (SC) [3], STD [16],
GOSMatch [11], and Triplet-Graph [7]. We use GLO-
SOM [8] and Outram [9] as the registration-based baselines,
which both follow one-shot based scan-to-map mechanism. All
the mentioned methods are implemented in C++ and evaluated
on a PC with an Intel i7-12700F CPU and 64 GB RAM.

2) Dataset and Setup: We evaluate TripletLoc and all the
other baselines using the HeLiPR Dataset [27], which covers
long-term data collections in diverse scenarios, from urban
cityscapes to high-dynamic freeways. For each scenario in He-
LiPR, different sequences are collected on different dates along
a similar route, allowing the long-term performance of different
localization methods to be assessed. The sequence collected
earliest is selected as the reference, while the others serve
as query sequences. LiDAR scans from the Spinning Ouster
LiDAR are used for evaluation. Following the evaluation setup
for PR methods in [27], we sample query scans at 10 m intervals
and reference scans at 5 m intervals. It should be noted that
STD originally uses accumulated sub-map of 10 consecutive
scans [16]. So, here we provide two versions ofSTD, i.e., a single
frame version (STD-1) and a sub-map version (STD-10) which
accumulates 10 consecutive frames for each sampled scan. As
forTriplet-Graph, we first use the global descriptor without
the selection operation to obtain candidates, and then use the
global descriptor with the selection operation to obtain the final
loop closure result from candidates [7]. For registration-based
methods, since GLOSOM and Outram are not open-sourced for
their instance-level map generation, we use the same instance
clustering method and the generated map for all the registration-
based methods. In addition, we follow the setup for the KITTI
dataset in [8], only parking and traffic signs are used inGLOSOM.
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TABLE I
THE DETAILS ABOUT THE EVALUATED SEQUENCES FROM THE HELIPR

DATASET

We use default parameters for Outram [9] for scenarios KAIST
and Town. For the other scenarios, we fine-tune the parameters
to limit association numbers to avoid memory exhaustion when
searching MCQ. The details about the evaluated sequences are
displayed in Table I.

3) Evaluation Metrics: We use Relative Translation Error
(RTE) and Relative Rotation Error (RRE) [7], [9] to evaluate
the translation and rotation accuracy for global localization,
respectively. RTE is calculated asRTE = ‖t̂− t‖2. RRE is cal-

culated as RRE = cos−1(Tr(R
−1R̂)−1
2 ). Rotation estimations

between query scans and retrieved scans are all available in
SC (1-DoF, i.e., yaw), STD (3-DoF), GOSMatch (3-DoF), and
Triplet-Graph (3-DoF). So, successful place recognition
is defined by identifying a candidate with RTE < 7.5 m and
RRE < 10◦, termed a true positive [27]. Similarly, we consider
a localization result with RTE < 7.5 m and RRE < 10◦ as a
successful case for all registration-based methods. Success rate
P = ns/n is used to evaluate the overall performance across a
query sequence.ns is the number of successful place recognition
or localization cases. n is the number of query scans. We also
report the average runtime tave for a single query frame, exclud-
ing the time to load point clouds from binary files. Only the time
for descriptor extraction and localization (i.e., retrieval for PR
methods or vertex matching and pose estimation for registration
methods) is considered.

B. Global Localization Performance

1) Success Rate: As shown in Table II, TripletLoc achieves
a higher overall success rate. Especially in the DCC scenario,
TripletLoc can successfully locate the vehicle for more than 93%
of the query scans. As expected, significant degradation can be
observed in the sequences Bridge02 and Bridge03. Basically,
there are about 1/3 of LiDAR scans are collected on a bridge,
making these scans highly similar and repetitive in appear-
ances and geometric structures. Meanwhile, there are multiple
lane-level changes in translation between scans from sequence
Bridge01 and sequence Bridge02/Bridge03. We guess these
factors are the main reasons for the performance degradation.
Compared to all the other methods, TripletLoc can still achieve
a higher P at about 30%. In the sequences Twon02 and Town03,
both SC and Triplet-Graph outperform TripletLoc. We
suspect this is due to the lack of enough clustered instances in
the query scans. The average number of clustered instances per

Fig. 6. Examples of success rate under different thresholds of RTE and RRE.
Black, white, and red dots represent success rates for thresholds of (7.5 m, 10◦),
(5m, 5◦), and (2.5m, 2.5◦) for RTE and RRE, respectively.

scan in Town02/03 (32/34) and Bridge02/03 (27/29) is much
lower than that in the other scenarios (e.g., 93 in DCC06 and
69 in Riverside06). When few clustered instances are present,
TripletLoc’s performance degrades. While instance numbers
also affect Triplet-Graph [7], the impact is smaller due
to its scan-to-scan mechanism. Notably, the Roundabout01, 02,
and 03 sequences feature many moving vehicles and pedestrians,
making semantic segmentation and instance clustering more
challenging. Despite this, TripletLoc achieves the best results,
with a success rate over 70%, demonstrating good robustness in
highly dynamic scenarios.Outram achieves the highest success
rate in the KAIST06 and Riverside06 sequences, while Triplet-
Loc also performs reasonably well. Examples of the success
rate of TripletLoc under different RTE and RRE thresholds are
shown in Fig. 6. The results indicate that TripletLoc maintains a
reasonable success rate even under more strict threshold settings.

2) Localization Accuracy: Only successfully localized scans
(i.e., RTE < 7.5 m and RRE < 10◦) are used to evaluate the
localization accuracy. As shown in Table II, registration-based
methods outperform PR-based methods. GLOSOM shows the
best RTE performance, with values under 1m in all query se-
quences except Riverside05 and 06. In most sequences, Triplet-
Loc’s RTE is very close to GLOSOM. Regarding RRE, Triplet-
Loc has the best overall performance, with values under 2◦ in
most of the sequences. Indeed, TripletLoc achieves a higher
overall success rate. So, more scans are considered to calculate
RTE and RRE, which might make values of RTE and RRE
larger by encountering some difficult cases (i.e., successfully
located scans with high RTE and RRE). In general, TripletLoc
shows competitive performance in localization accuracy, with
RTE < 1m and RRE < 2◦ in most cases.

3) Runtime Cost: Compared to registration-based methods,
PR-based methods generally achieve global localization more
efficiently using a retrieval strategy, often accelerated by K-
Dimensional trees and hash functions. As shown in Table II, PR-
based methods generally have better efficiency. Especially, only
around 2 ms is needed to extract global descriptor and conduct
retrieval for SC. In contrast, registration-based methods involve
instance-to-instance matching and optimization-based pose es-
timation, which could be slowed down as the number of cor-
respondences and outliers increases. GLOSOM uses an all-to-all
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TABLE II
THE GLOBAL LOCALIZATION PERFORMANCE

Fig. 7. Time cost breakdown for sequence DCC06. Tested on Intel i7-12700F
CPU and 64 GB RAM.

matching strategy, leading to a large number of correspondences.
Outram employs a triangle-based descriptor for substructure to
build correspondences, while the condition-meeting mechanism
can still result in many correspondences sometimes. As a re-
sult, graph-theoretic outlier pruning may reduce computational
efficiency when the number of correspondences is too large in
large-scale environments. The average runtime cost forGLOSOM
and Outram is larger than that for the other methods. GLOSOM
operates in real-time only when the number of instances in the
reference map is relatively small (e.g., 536 for KAIST04 and
551 for Riverside04, versus 2011 for Bridge01 and 1719 for
Roundabout01, considering parking and traffic signs). Differ-
ently, TripletLoc uses simple yet efficient top-k matches to limit
correspondences, allowing it to run much faster in real-time.
Fig. 7 shows the cost time breakdown per frame for TripletLoc
on the DCC06 query sequence (the slowest query sequence).
Vertex matching and MCQ searching (including consistency
graph construction) dominate, with average times of 45.50 ms
and 45.44 ms, respectively. The descriptor extraction is fast,
averaging 3.75 ms per scan, while instance clustering and GNC
solving take 9.85 ms and 11.03 ms on average, respectively.

C. Ablation Study

1) Effectiveness of Desdvj
: To demonstrate the effectiveness

of integrating Desdvj
, we perform global localization using only

Desαvj
for vertex matching. The results, shown in Table II as

TripletLoc(Desαvj
), indicate that the complete version of

TripletLoc achieves higher success rates across all query se-
quences compared to using only Desαvj

. Localization accuracy
shows a slight decline in RTE and RRE when using only Desαvj

.
As expected, when using Desvj

, it takes more time for vertex
descriptor extraction and matching, leading to a larger tave.
However, such an increase is acceptable, and the system can still
achieve a good real-time performance. In conclusion, explicitly
embedding both relative angle and edge length from triplets
can enhance the descriptive capability of vertex descriptors,
improving the overall performance for global localization.

2) Effectiveness of RSN-Based Rotation Constraint: To
demonstrate the effectiveness of the RSN-based rotation con-
straint, we present results for TripletLoc without this constraint,
labeled as TripletLoc (no RSN) in Table II. A decline
in success rates is observed across all sequences except DCC05
when the RSN-based rotation constraint is omitted from pose es-
timation. This decline is most pronounced in the Bridge scenario,
where instances are primarily linearly located along both sides
of the road, and point-to-point associations may not provide
sufficient rotation constraint when limited instances are visible.
As for localization accuracy, RTE remains largely unchanged,
indicating limited impact of rotation constraint on translation.
A slight decline in RRE can be also observed without rotation
constraint. These results confirm that the RSN-based rotation
constraint can enhance global localization.
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TABLE III
THE MEMORY CONSUMPTION FOR PRIOR REFERENCE MAP

D. Memory Consumption for Reference Map

To show the memory efficiency of TripletLoc, we measure
the total memory consumption for storing prior reference maps
on sequence Roudnabout01. For PR-based methods, vectorized
descriptors for each reference frame are stored. For GLOSOM,
only instance information is needed (i.e., instance label and
geometric centroids). In Outram, the covariance matrix for
clustered point cloud is also needed. To allow map updates,
we also record the point number for each instance. The road
surface normal, its starting point, and the standard devia-
tion need to be stored for the RSN map (28.75 KB). As
shown in Table III, the memory cost for GLOSOM is the low-
est. TripletLoc also shows competitive efficiency in memory
consumption.

V. CONCLUSIONS AND FUTURE WORK

In this study, we present TripletLoc, a fast and robust one-shot
LiDAR-based global localization method. Semantic graphs are
used to compactly represent both the query scans and the en-
tire reference map. A novel semantic triplet-based histogram
descriptor is proposed to embed semantic, geometric, and topo-
logical information from the semantic graphs for each vertex.
Based on the proposed vertex descriptor, instance-to-instance
correspondences are generated. Graph-theoretic outlier pruning
is used to select inlier correspondences for robust 6-DoF pose
estimation. A novel RSN map is proposed to provide a prior
rotation constraint to further enhance pose estimation. Exten-
sive experiments in diverse and large-scale urban environments
demonstrate that our TripletLoc is highly competitive to state-
of-the-art methods. Quantitative and qualitative results show the
robustness, accuracy, as well as memory and real-time efficiency
of TripletLoc. However, our RSN map is currently only appli-
cable for ground robots in outdoor environments with flat road
surface. In the future, we plan to introduce more information of
instances (e.g., size and orientation) to TripletLoc and extend it
to indoor environments.
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