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Abstract— Compared with 2D thermal images, visualizing the
temperature of objects with their corresponding 3D surfaces
provides a more intuitive way to perceive the environment.
In this paper, we present an integrated system for large-
scale and real-time 3D thermographic reconstruction through
fusion of visible, infrared and depth images. The system is
composed of an RGB-D and a thermal camera, whose image
measurements are aligned with respect to the same coordinate
frame. A thermal direct method based on infrared features is
proposed and integrated into state-of-art localization algorithms
for generating reliable 3D thermal point clouds. The reported
experimental results demonstrate that our approach can be used
for 3D reconstruction of small and large scale environments
based on dual spectrum 3D information.

I. INTRODUCTION

In recent years, thermal imaging has been widely used in a

broad range of applications, such as non-contact temperature

measurement for medical diagnosis, energy inspection in

civil engineering [1], and recently for thermal servoing (a

new temperature control problem recently introduced in the

robotics community [2], [3]). However, most existing appli-

cations of thermography are limited to 2D imaging analysis

of a scene, e.g., using infrared images for pattern recognition

[4]. However, the performance of these systems can be

improved by combining thermal images with 3D spatial

information, which enables to make quantitative temperature

analysis of 3D surfaces of interest [5].

There are various works that follow this depth-thermal

fusion approach (either for analysis or simply visualiza-

tion). However, the majority of current 3D thermal imaging

systems are not movable and require considerable post-

processing to generate 3D thermograms [6], [7]; Many of

these state-of-the-art systems can only use limited frames

to generate 3D thermal models [8]. The majority of recent

works [9], [8], [6] are based on the KinectFusion algorithm

[10], which is one of the most common methods for 3D

dense reconstruction. However, one of the shortcomings of

this algorithm is that it is only suitable for small-scale

reconstruction applications, as it lacks loop closing and

global optimization functions; As a consequence, the error of

camera pose tracking accumulates as the number of frames

increases. Another disadvantage is that the KinectFusion
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algorithm requires the vision system to move slowly and

smoothly around the target; This method utilizes geometric

information only, which is obtained by consensus frames,

thus, large displacements typically lead to non-optimal so-

lutions [11]. This feature limits the algorithm’s applicability

in fast moving environments.

In this paper, we present a large-scale robust method for

handheld and real-time 3D dual spectrum reconstruction to

overcome the limitation mentioned above. Our method is

inspired by ORB-SLAM2 [12], which is one popular open

source localization algorithms with many available datasets,

such [13] and [14]; The comprehensive loop closing capabil-

ities of ORB-SLAM2 makes feasible to conduct large-scale

localization tasks. However, ORB-SLAM2 is based on RGB

images, which means that the localization result is strongly

influenced by illumination conditions [15]. One advantage of

the use of thermography is that thermal information in natural

environments is largely constant. This consistency feature of

thermal imaging fits Grayscale Invariance Assumption (GIA)

[16] [17] very well. In this work, we propose a thermal direct

method that utilizes thermography and depth information for

robust localization results, and integrate this method into the

framework of ORB-SLAM2.

The main contribution of this paper are listed as as follows:

• Develop an approach to fuse images from different

cameras with different fields of view and different light

spectrum sensitivity;

• Propose a new localization method based thermography,

and prove the feasibility of the proposed method;

• Combine ORB-SLAM2 with our proposed thermal di-

rect method by using histogram of RGB images, make

the above two methods compensate for each other based

on texture richness of RGB images.

• Add dual a spectrum mapping node to directly visualize

the geometric, color, and thermal information.

The rest of the paper is organized as follows: In Section 2,

we reviewed the state-of-art in vision-based location mapping

methods, recent research on thermographic technology, and

our previous work on the alignment of different spectrum

cameras. In Section 3, we present the development of whole

system including hardware and software. In Section 4, some

results are presented, including the comparison of our pro-

posed thermal direct method and ORB-SLAM2, small-scale

and large-scale 3D environment reconstruction with color

and thermal information. Finally, we conclude the paper and

give future work in Section 5.
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Fig. 1. Visual System: RGB-D camera and Thermal camera attached on
3D printed plate. RGB camera and Thermal camera have the same vertical
axis.

II. RELATED WORKS

A. The application of thermal image

The work in [18] presents a new semantic segmentation

network to detect objects in low illumination conditions,

that combines RGB images with thermal images in urban

scenes; This method is intended to increase the safety of

ADAS (Advanced Driver Assistance Systems). The works

[19] and [20] show how thermal-color image fusion can be

used for semantic segmentation to classify objects. The use

of thermography with LiDAR in a SLAM application has

been proposed in [21].

B. Alignment of RGB-D and Thermal cameras

The function of alignment is to get the thermal information

of each pixel on an RGB image. Some researchers have ad-

dressed this issue with methods based on extrinsic calibration

on thermal cameras and RGB-D cameras. The mathematical

principle behind the calibration of thermal images is virtually

the same as in RGB cameras, the only difference is that

they typically utilize calibration devices with aluminum foil

to reflect long-wave infrared (LWIR) and form high-contrast

corners. The main drawback is that it is hard to build a stable

heat source for reflection.

Our research team has proposed a new calibration tool

that can cross-calibrate multiple vision sensors with different

spectral sensibility, including ultraviolet, visible and infrared

cameras [22]. The fabrication of this calibration tool if simple

and provides comparable accuracy as with traditional visible

spectrum calibration devices. In this paper, we continue to

use this method to cross-calibrate the intrinsic and extrinsic

parameters of a thermal camera and an RGB-D camera.

III. METHODOLOGY

A. Multimodal Vision System

The visual system with RGB, depth and thermal infor-

mation in this paper consists of a FLIR Boson320 thermal

camera and a RealSense D455 depth camera. Parameter

details of camera are summarized at Table I. This thermal

camera is radiometrically calibrated and the sensitivity is less

than 60 mK. The thermal and depth cameras are both rigidly

TABLE I

SPECIFICATIONS OF CAMERA

Sensor Model FoV Resolution Frame rate Wavelength

FLIR Boson320 52deg. 320× 256 60 FPS 8 14 μm
Realsense D455 87deg. 640× 480 30 FPS 380 800 nm

Power SourceHeater Stripe

Aluminum Plate

(a) Back of Calibration Tool (b) Raw and Labeled RGB Image/ Thermal Image

Fig. 2. Calibration tool and image of RGB camera and thermal camera
when doing the calibration. (a) Shows the back of the calibration tool and
the main component. (b) Feature point is detected by making high contrast
of both RGB and thermal images. The feature point is at the center of the
black circle

fixed on a 3D printed frame to ensure a stable setup for both

sensors, see Fig.1.

The parameters of the thermal camera and RGB-D camera

are different, both for field of view and resolution, as shown

in Fig.3. To know the temperature of each pixel in the RGB

image, we take the following steps to perform alignment:

1) Resize thermal images, from 320× 256 to 640× 480
(same as the RGB image) by using bilinear interpola-

tion.

2) Capture the same numbers of resized thermal and RGB

images using the calibration tool; Detect feature points

and register the pixel position of each feature points in

the images.

3) Calculate the intrinsic parameters of the thermal and

RGB-D cameras by applying the calibration algorithm

from [23]; Compute the extrinsic parameters of the

thermal camera relative to the RGB-D camera by using

the OpenCV function ’stereoCalibration()’.
The implemented algorithm is based on the method pre-

sented in [22]. The calibration tool is made of aluminum

sheet with regular holes and covered with white paper (see

Fig. 2); A heater strip is placed on the backside, which is

used for heating the sheet and produce high contrast thermal

image feature. Feature detections with RGB images is simply

done using standard high contrast visible spectrum features,

e.g., with black and white chessboard patterns. Feature points

are located at the center of circles/holes, which can be easily

matched with both cameras; The above mentioned Step 3 is

then performed.

Due to the large difference in field of view (FoV) be-

tween the RGB and thermal images, as well missing depth

information, some of the pixels in the RGB image cannot be

matched with temperature data, e.g., the edge of RGB image.

To solve this problem, we discard any RGB pixel without

temperature information and cut the edge symmetrically and
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Raw Thermal image

Raw RGB image

Resized Thermal image

Depth image

Invalid depth

Alignment

Cut Edge

Resize

320×256

640×480

368×276

Aligned thermal image
Cut aligned thermal image

Cut depthl image

Invalid thermal
data (Edge)

Fig. 3. Flowchart of the aligned thermal image to RGB image. The output
is aligned with thermal-depth (T-D) information

(a) Before alignment (b) After alignment

Fig. 4. Point cloud shows the alignment of thermal information and RGB
image. (a) Before alignment, RGB and thermal information cannot be well
aligned. (b) After alignment, thermal information can correctly match with
the RGB image. The result is clear in the red circle in the zoom-in image.

proportionally along the vertical axis. After the procedure

above, the resolution of the RGB image becomes 368× 276
and with relevant thermal data. Depth information is aligned

using the default utilities provided by the RealSense camera.

The detailed process is shown in Fig. 3

To test the cross-registration between different sensors,

a comparison of the aligned thermal and RGB images is

needed. This is to assess the result of alignment, and visu-

alize the thermal information on the RGB image. However,

one complication is to find a method that allows to present

four channel information (viz., red, green, blue, and thermal)

into the three color channels (red, green, blue). In paper [8],

the authors utilize intensity-hue mapping to incorporate RGB

images into thermal data. We follow a similar approach but

covert the thermal images from gray scale (one channel) into

JET color space (with three channels). The result of each

pixel in the mapping image is shown in (1):

rrgb = crgb + ω(trgb − crgb), 0 ≤ ω ≤ 1, (1)

where rrgb presents the result to each pixel, crgb and trgb are

the pixel values in the RGB image and thermal image (JET

color space), respectively; ω represents a weight interpolation

between thermal and RGB images.

To visualize the accuracy of alignment, we simply generate

point clouds of a kettle containing hot water using Open3D

[24] without alignment and with alignment by setting ω =
0.5, as shown in Fig. 4. Note that the thermal information at

the edge of the kettle lid has a clear offset compared with the

RGB image before alignment, while their overlap improves

after alignment. This result proves that the algorithm we

provide in [22] can align thermal information with the RGB

image and depth information.

RGB-D frames

Image
Resizing

Image
Alignment Cut Edge

ALIGNMENT

Front end of 
ORB-SLAM2

Thermal Direct Method

FRONT END

Pose
Fusion

Back end of 
ORB-SLAM2

Dense
Mapping

Point Cloud
Post-processing

VISUALIZATION

RGB/T
pointcloud

Thermal frames

: Images : Pose : Point Cloud

Aligned thermal-
depth frames

BACK END
Pose of
System

Fig. 5. The whole system contains three parts: thermal-depth information
alignment, multi-spectrum pose estimation and visualization part. Note that
the input of ORB-SLAM2 and the original RGB-D information becomes
the original image that has a wider FoV containing more information.

B. Thermal-Assisted Pose Estimation

In this paper, we propose a “Thermal Direct Method”

that uses the aligned thermal and depth information to

enhance the accuracy of estimating the pose of a moving

vision system. The basic idea behind our method is to use

thermal information to deal with changes in illumination and

shading, which is more robust than solely relying on RBG

images [25]. Most commercial thermal cameras capture long

wave infrared radiation emitted from objects, which provides

a reliable method to capture objects and features under

unstable illumination conditions. The overview flow chart

of the whole system is shown in Fig. 5 and has three main

functions: 1) Align RGB-D and thermal data and outputs an

aligned thermal-color-depth image; 2) Estimating the pose by

fusing the pose from ORB-SLAM2 and the Thermal Direct

method; 3) Making dense point clouds and visualization. The

input of the complete algorithm is the original RGB-D image

and the aligned thermal image; The point cloud structure

contains color, thermal and position information; Color and

thermal modes can be switched on and off after generating

the point cloud.

1) Thermal Direct Method: Assuming that objects have

a constant temperature in consecutive thermal frames is

reasonable because the temperature cannot change rapidly.

Our approach is to obtain the translation of the pose of

two consecutive thermal frames when the system is moving.

Given the previous (denoted as i − 1) and new (denote das

i) aligned thermal frames, we first extract M (M = 200
in our program) good features to track (GFTT) [26] points

from the thermal frame i− 1. As Fig 6 shows, pi−1,1 is one

of the GFTT feature points in frame i− 1, from the aligned

thermal-RGB-D image. Because the movement of the system

is not fast and the temperature is constant between frames,

there must be a thermal pixel pi,1 that has nearly the same

temperature in frame i−1. Thus, we can build a function that

minimizes the difference of temperature Ei,i−1 as follows:

minEi,i−1 = min

M∑
n=1

‖I(pi−1,n)− I(pi,n)‖2 (2)
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P = [X, Y, Z]T

Ti,i−1

pi−1,1
pi,1

ft(i−1)

fd(i−1)
fd(i)

ft(i)

Ti−1

Ti

pi−1,1

Fig. 6. The schematic diagram of the Thermal Direct method. the red arrow
shows the shift of feature points between frames. The feature point pi−1,1

can be translate to frame i utilizing translation matrix Ti,i−1, which is pi,1.
pi−1,1 and pi,1 share the same point position in 3D point P expressed
as [X,Y, Z] under camera coordinate at frame i − 1. So the estimation
of system pose change Ti,i−1 can be obtained by minimizing the gap of
temperature between pi−1,1 and pi,1.

where I presents the temperature values shown in thermal

frames.

Based on the camera model and aligned depth frames, we

can project feature points P into 3D for both frames

pi−1,n =
1

Zi−1,n
κP (3)

pi,n =
1

Zi,n
κTP (4)

T = exp((ξ)∧) (5)

The T ∈ R
4×4 is a perspective projection matrix constructed

with a rotation and translation R, t, and which can be convert

to a Lie algebra se(3) (represented as ξ ∈ R
6) by using the

exponential mapping, for ξ∧ as an anti-symmetric matrix.

The term κ denotes the intrinsic parameters matrix of the

thermal camera. Note that thermal frames have been aligned

with RGB frames, so we use the intrinsic parameters of the

RGB frames with edge cut, which means κ is exactly known.

With (3) and (4) known, the difference term Ei,i−1 becomes:

minEi,i−1 = min

M∑
n=1

‖I( 1

Zi−1,n
κP )− I(

1

Zi,n
κTP )‖2

(6)

Note that the above equation is a least-squares error that

can be minimized by the Gauss-Newton method, with an

updating function computed as:

T t = T t−1 +ΔT (7)

By denoting the pixel value in frame i at feature point n
when iteration time is t as It

i,n, then Ei,i−1 becomes:

Ei,i−1 =

M∑
n=1

‖It
i−1,n − It−1

i,n − ∂It−1
i,n

∂ΔT
ΔT ‖2

=

M∑
n=1

‖dn + JnΔT ‖2 (8)

where dn is the difference temperature value at point n
between iterations, and Jn is the Jacobian matrix of dn.

(a) Thermal image pyramid

(b) Single layer thermal (c) Multi-layer thermal

(d) Result comparison of single layer and Multi-layer

direct method direct method

Layer 1

Top

Layer 2

Layer 3

Bottom

Scale=0.25

Scale=0.5

Scale=1

Previous frame

Layer 1

Current frame

Layer 2

Original Single layer Multi-layer

Fig. 7. Multi-layer thermal direct method. The thermal image is of a
laptop on the table. (a) Thermal image pyramid of the laptop, the zoom-
in scale increasing from top to bottom. (b) Result of single layer thermal
direct method on two continuous thermal frames. Green dots and green line
with dots shows the feature point and their shifting in previous and current
frames respectively. (c) Shows thermal direct method result on multi-layer
and presents the result of each layer. (d) comparison of single layer and
multi-layer. Obviously, that result of multi-layer is better.

The Gauss-Newton function of the thermal direct method

is shown in (9), where ΔT is optimizing direction:

JT
n JnΔT = −JT

n dn (9)

To obtain ΔT , we need to specify the Jacobian matrix. To

this end, consider a pair of pixels in two consecutive frames

and compute the difference value e. To obtain the minimum

difference, the following derivative of e with respect to T is

computed:

e(T ) = I(pi−1)−I(pi) = I(
1

Zi−1
κP )−I(

1

Zi
κTP ) (10)

∂e

∂T
= −∂I(pi)

∂pi

∂pi
∂δξ

δξ = −Jδξ (11)

where

∂pi
∂δξ

=[
fx
Z 0 − fxX

Z2 − fxXY
Z2 fx + fxX

2

Z2 − fxY
Z

0
fy
Z − fyY

Z2 −fy − fyY
2

Z2

fyXY
Z2

fyX
Z

]

(12)

for fx and fy as the focal length parameters, which are

known after calibration, [X,Y, Z]T denotes the position of

P , and the Jacobian matrix J can be computed as (11) which

can be obtained by known parameters, then ΔT in equation

9 can be solved.

In our experiment, when two consecutive thermal frames

have obvious differences, Ei,i−1 will be trapped in local

minimum because of the typical non-convexity of thermal

images. Thermal images lack of texture, when compared with

RGB images [15], make them easier reach local minima.

To solve this problem, we build an intuitive image pyramid

scheme that create a multi-layer thermal direct method; The
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key idea is zooming out the image with different scales

from the smallest (top, scale = 0.25 in program) to the

original scale (bottom, scale = 1 in program), and then

using the thermal direct method for each layer from top to

bottom. Fig 7(a) shows a laptop on the table, where the initial

estimation translation value of the layer is the result of the

upper layer, which means having a better initial value than

the single layer. More layers of the image pyramid lead to

more accurate results but increase the computation cost; We

set the layer number Ln = 3 and the side length is twice

than the upper until it is the same size as the original frame.

In our study, we find that three layers are usually faster than

a single layer because the former one iterate around nine

times in total (around three times per layer) while the single

layer case iterates around thirteen times.
Fig. 7(a)–(b) show the result of the single-layer thermal

direct method and multi-layer thermal direct method; Fig

7(d) shows the enlarged image of a red rectangular area

showing the comparison of the two methods above. We

first convert to gray scale the thermal image to have better

visualization of the result. The green dots in the preview

frames are extracted using GFTT features. In the current

frames, the green line shows the translation path and the

green dots show the result of the translation of feature points.

The Multi-layer leads to better results compared with the

single layer, which is marked in red circles.
2) Pose Fusion: The front-end of ORB-SLAM2 and the

thermal direct method work separately and estimate the pose

independently in the front-end part; Hence, pose fusion is

needed. The pose estimation of the ORB-SLAM2 part is

directly influenced by the extracted ORB feature points.

In our experiments, we found that the brightness of the

environment significantly influences the quality of the ORB

features while it affects little the thermal direct method. The

method to obtain the estimated pose is based on dynamically

adjusting the confidence of the pose estimation for each

thread by the color richness of the RGB image.
Our methodology of pose fusion is as follows. First,

capture an RGB frame and generate its histogram. Next, get

the median value of the gray-scaled frame as m. Then, set a

threshold tsh and find the pixels in the range (m± tsh), as

follows:

ni,j =

{
1, if Ii,j ∈ (m± tsh)

0, else
(13)

Next, obtain the proportion p in that range by:

p =

u∑
i=1

v∑
j=1

ni,j

u× v
(14)

for u and v as the height and width of the raw RGB images.

Finally, the result of pose transformation presented as Lie

algebra ξ can be obtained with:

ξ =

{
(1− p)ξrgb + pξthermal, p > 0.3

ξrgb, p ≤ 0.3
(15)

In our experiments, we noticed that thermal images have

fewer textures than RGB images and the thermal direct

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) and (d): the raw image of good tracking and lost tracking state
respectively. (b) and (e): Colored circles are the position of the ORB feature
point with direction. (c) and (e): The image histogram of (a) and (d). The
red point on X axis is the median m of the pixel value and the red bar
show the position. The colored shade denote threshold of m± tsh.

method will lead to relatively lower pose estimation results

compared with ORB feature points using RGB images. Thus,

we consider that when p is smaller than 0.3, which means

rich texture in RGB images and the feature point matching

is good, we only utilize the RGB frames. When the tracking

state of ORB-SLAM2 is LOST, the pose estimation is based

on the thermal direct method.

We extract the ORB feature in two images and set tsh =
15, one for a good tracking state and one for tracking losses

to extract the feature points and generate a histogram, as

shown in Fig. 8. The center of the circles in (b) and (e)

is the position of the feature points. Fig. (c) and (f) are

the histograms of images (a) and (d), which also show

the median m (the red point at the x axis) and threshold

range (colored shade). In Fig. 8 (a), m = 129 and only

has 16.17% pixels above the threshold, whereas for Fig. 8

(b), m = 159 and 89.06% pixels above the threshold. This

shows that the images with more evenly distributed grayscale

values generate more reliable feature points and lead to better

tracking results.

IV. EXPERIMENTS

In this section, we first verify the feasibility of the ther-

mal direct method by using our dataset containing aligned

thermal and depth images. Then, we use our system to

reconstruct 3D objects with both thermal and RGB in-

formation. Finally, we test our system and algorithm in

different environments for large-scale dense mapping. In our

experiments, the processor is a laptop with Intel Core i7-

10870H CPU, 16G of RAM and Nvidia GeForce RTX 2060

GPU for real-time image processing.

A. Verification of the Thermal Direct Method

To assess the performance of the proposed approach, we

investigate the relationship between thermal texture richness

and the result of only using the thermal direct method. As

(to the best of our knowledge) there is no publicly available

dataset containing RGB, depth and thermal images with

ground truth trajectories, we first perform an experiment of
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(a) Trajectories in expriment 2.

: Thermal direct

: ORB-SLAM2

(b) Frames in experiment 2.

: Thermal direct

: ORB-SLAM2

Fig. 9. Experiment 1: Results of Compare thermal direct method with
ORB-SLAM2 of an indoor corridor. (a) shows the trajectories of a different
method. (b) are some result frames of the thermal direct method.

comparing ORB-SLAM2 with the proposed thermal direct

method, i.e., we take the result from ORB-SLAM2 as

ground truth. We acquired two data sequences from different

environments, then, calculate each of their trajectories; The

description of datasets are as follows:

1) A corridor with various lamps on generating heat.

2) A laboratory room with various computer servers.

(a) Trajectory (b) Lack of image texture (c) Rich image texture

: ORB-SLAM2

: Thermal direct

Fig. 10. Experiment 2: Demonstration of lack of texture in thermal images.
(a) shows the trajectory of two methods. (b) and (c) is the tracking results
of a lack of textures and rich texture.

For environment 1, we test the thermal direct method. The

characteristic of this environment is that it has a regular

heat source coming from the fluorescent lamp on the roof

and electric control box next to an office). As Fig. 9(b)

shows, as the temperature measurements are consistent, these

heat sources provide stable feature points that are easy to

tracking (red dots are the feature points and red lines show

the transform between neighboring thermal frames). The

trajectories of the thermal direct method and ORB-SLAM2,

as shown in Fig. 9(a), indicate that our approach is reliable

even with not very feature-rich thermal environments. For

these tests, we also found that the mean frame distance

with the proposed method is only 0.0714 meters, which is

acceptable for most engineering applications.

For environment 2, we assess the tracking performance

of the thermal direct method under the uneven distribution

of thermal textures. We test the proposed approach in an

underground laboratory room (infamously referred by the

authors as “the dungeon”) where thermal frames lack texture.

As the Fig. 10(a) shows, the calculated trajectories are clearly

different. One of the reasons for this result is that some of the

thermal frames have poor image texture as the temperature

of the background is almost uniform (shown in Fig. 10(b));

The tracking result is good when there are distinctive thermal

features (shown in Fig. 10(c)). These problems can be

potentially solved by fusing/combining the result of ORB-

SLAM2 with that of the thermal direct method.

B. 3D Reconstruction with Dual Spectrum Vision

We generate a point cloud of a target object to demonstrate

the result of our dual spectrum system and our proposed

algorithm; The localization method fuses the ORB-SLAM2

with the thermal direct method. The whole system runs on

ROS (Robot Operation System) and has four main nodes to

perform the following:

1) Receive data from RGB-D and thermal cameras.

2) Process the received frames by aligning and trimming

the edges.

3) Simultaneous localization, including ORB-SLAM2,

thermal direct method and pose fusion.

4) Environment mapping, and generation of dense ther-

mal and RGB point clouds.

In the mapping node, we only add a new point cloud when

a new keyframe is received in the ORB-SLAM2 thread, or

after every five seconds. After processing by pose fusion,

the location of the system is improved. To show the quantify

of our method, we generate a point cloud for both visible-

spectrum (RGB) and thermal images of different objects,

as shown in Fig. 11. By visualizing objects as a point

cloud in a dual spectrum manner (i.e., with both visible and

thermal), we can easily sense the object’s shape and thermal

information, such as the forehead temperature at 36.7◦C or

the handle of a kettle at 20◦C.

C. Mapping under Large Scale Environments

To further test the mapping result of our dual spectrum

system, we conducted experiments for some large environ-

ments, including indoor and outdoor environments. The data

was captured by hand-holding the system and walking along

the environment. Fig. 12(a) shows the point cloud of a

corridor from the top-down view. The upper image is for

the visible spectrum and the lower shows the thermal point

cloud. By visualizing the corridor using two spectrum point

clouds, we can easily identify which place is warmer or

colder. Fig. 12(b) depicts the point cloud of a side-view air
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Fig. 11. Point clouds from different perspectives, including color and
thermal information. (a)Front and side view of a person with the cloth. (b)
front, top and side view of a kettle containing hot water.

conditioner outdoor unit. As the figure shows, our system

not only can present the color and shape/geometry of objects

but also the temperature information. The ability to combine

3D reconstruction with temperature measurements is very

useful in industrial applications. For example, the abnormal

temperature can be sensed and located in an industrial plant,

and all data can be recorded dynamically for later analysis.

V. CONCLUSIONS

In this paper, a dual spectrum real-time 3-dimensional

reconstruction method is proposed by combining the thermal

direct method and ORB-SLAM2 to reconstruct the environ-

ment with both visible and thermal information. We first use

a special calibration board to obtain the extrinsic parameters

of the thermal and RGB-D cameras. To perform this task

with different fields of view from the cameras, we cut the

edges of a larger FoV image and then apply the image

fusion algorithm presented in [22]. After this image process-

ing stage, we input the aligned thermal-depth information

and RGB-depth information into the localization algorithm,

which consists of the thermal direct method, ORB-SLAM2

and pose fusion thread. Finally, the dual spectrum point

cloud is generated simultaneously using PCL library [27]

for visualization.

In the experiment section, we demonstrate that our pro-

posed thermal direct method is fairly accurate when the

image texture is rich enough. Then, we test our whole

system on 3D reconstruction. We generate the point cloud

Warm place

Cold place

(a) Dual spectrum mapping for corridor (indoor)

Working AC

(b) Dual spectrum mapping for air conditioners (outdoor)
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Fig. 12. 3D reconstruction for large-scale environments with visible
and thermal information. (a) shows an indoor corridor and (b) is an air
conditioner outdoor unit.

which contains thermal and color information. The results

qualitatively demonstrate the accuracy of the system. Our

approach can be used in industrial areas for monitoring

the temperature of the machine, such as fire management

and response. Our system can also reconstruct thermal and

visible spectrum 3D models for intuitive thermal analysis.

Its lightweight hand-held hardware and integration based on

ROS makes it easy to be operated.

Our system combines thermal information in 3D mapping,

which can be widely used in industrial monitoring and

service applications. However, note that thermal information

has not been used in global optimization and close-loop

detection. Our future work includes adding thermal data into

the back-end of SLAM to enhance the robustness under

unstable illumination environments. In addition, we plan

to deploy our system on mobile robots [28] or manipula-

tors [29], [30] for practical service applications; Another

interesting application domain of our multi-modal sensing

technology is in robotic manipulation tasks that involve safe

interactions with humans, e.g., in cosmetic dermatology [31],

[32] or ultrasound scanning of tissues [33], [34].
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