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Abstract— Semantic scene understanding is a fundamental
task for autonomous driving. It serves as a build block for many
downstream tasks. Under challenging illumination conditions,
thermal images can provide complementary information for
RGB images. Many multi-modal fusion networks have been
proposed using RGB-Thermal data for semantic scene under-
standing. However, current state-of-the-art methods simply use
networks to fuse features on multi-modality inexplicably, rather
than designing a fusion method based on the intrinsic character-
istics of RGB images and thermal images. To address this issue,
we propose IGFNet, an illumination-guided fusion network for
RGB-Thermal semantic scene understanding, which utilizes a
weight mask generated by the illumination estimation module
to weight the RGB and thermal feature maps at different stages.
Experimental results show that our network outperforms the
state-of-the-art methods on the MFNet dataset. Our code is
available at: https://github.com/lab-sun/IGFNet.

I. INTRODUCTION

Semantic segmentation aims to label input images into
pixel-wise semantic classification maps. It is a fundamental
technology to understand scenes in many applications [1],
[2]. In robotic-related applications, semantic segmentation
can be used for many tasks, such as road detection [3],
trajectory prediction [4], negative obstacles segmentation [5],
[6], and decision making [7].

Due to the rapid development of deep learning, semantic
segmentation using RGB images has made great progress
[8], [9], [10]. However, RGB cameras can only capture high-
quality images with rich texture information when the envi-
ronment lighting conditions are satisfactory. This will lead to
the failure of semantic segmentation model based on RGB
images when encountering poor exposure conditions, such
as overexposure of the sky during the day, underexposure
and glare at night, etc. Therefore, thermal images are used
as complementary information to the RGB images under
the aforementioned challenging illumination conditions [11].
Due to the similarity between thermal images and RGB
images, RGB-Thermal semantic segmentation has also de-
veloped rapidly in recent years [12], [13], [14].

Though methods based on convolutional neural network
(CNN), such as MFNet [14] and RTFNet [15], have achieved
acceptable segmentation performance, they still cannot meet
the usage requirements. In contrast to CNN-based semantic
segmentation methods [14], [15], [16], transformer-based
methods [17], [18], [19], [20] establish long-range contextual
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dependencies between pixels of images by treating them as
sequences using the transformer. Building upon Segformer
[21], CMX [22] employs transformers to extract features for
the task of RGB-Thermal semantic segmentation. However,
whether it is a method based on CNN or a method based on
vision transformer, the fusion of RGB and thermal images
does not consider the intrinsic characteristics of different
data, but design a simple inexplicably fusion module to
use the network as a black box. In fact, RGB images can
provide rich texture information that thermal images do not
have, whereas thermal images may be affected by strong heat
sources in the scene. However, this information will be lost
in overexposed areas at night (e.g., glare areas caused by
vehicle headlights), underexposed areas at night (e.g., areas
lacking ambient light) and overexposed areas during the day
(e.g., sky) [23].

To address this issue, we have developed a novel
Illumination-Guided Fusion Network (IGFNet) that in-
corporates an Illumination Estimation Module (IEM)
and Illumination-Guided-Cross-Modal Rectification Module
(IGCM-RM). The IEM employs a Gaussian filter to map
the grayscale value of each pixel in the RGB image to
a weight factor, representing the significance of the RGB
information of that pixel during fusion. This allows the
multi-modal fusion to be guided by the illumination of
the environment. Subsequently, the IGCM-RM utilizes the
weight mask generated by the IEM to recalibrate the multi-
modal feature maps at various stages. This enables the feature
maps to be fused according to the significance of each pixel.
Our main contributions can be summarized as follows:

1) Rethink the fusion of RGB and thermal images, propos-
ing an Illumination Estimation Module (IEM) to gener-
ate a weight mask as a clue.

2) Propose an Illumination-Guided-Cross-Modal Rectifica-
tion Module (IGCM-RM), using the clue to recalibrate
the feature maps of RGB and thermal images.

3) Propose a novel RGB-Thermal semantic segmentation
network named IGFNet with IEM and IGCM-RM.

4) Our proposed method demonstrates state-of-the-art per-
formances on the MFNet dataset [14] and our code is
open sourced.

II. RELATED WORK

A. CNN-based RGB-Thermal Semantic Segmentation
Current research on RGB-Thermal semantic segmentation

primarily focuses on developing delicate models to efficiently
fuse multi-modal data, thereby enhancing segmentation per-
formance. MFNet [14] and RTFNet [15] both utilized the
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Fig. 1: The overview of IGFNet for RGB-Thermal semantic segmentation. The inputs are an RGB image and a thermal image.
IGFNet consists of a four-stage RGB encoder, a four-stage thermal encoder, a Illumination Estimation Module (IEM), a
three-stage llumination-Guided-Cross-Modal Rectification Module (IGCM-RM), a Cross-Modal Feature Rectification Module
(CM-FRM), a four-stage Feature Fusion Module (FFM) and a decoder. The encoder and decoder are borrowed from Segformer
[21]. The CM-FRM and FFM are borrowed from CMX[22]. The thermal image is colored with the jet color map.

feature fusion structure [22] (i.e., structure using two en-
coders and one decoder) to fuse the feature maps. Sun et
al. [24] proposed FuseSeg, which continued the previous
structure, and obtaind better segmentation results through a
two-stage fusion strategy. Xu et al. [25] proposed AFNet
based on the attention fusion module, utilizing attention to
guide the fusion of RGB and thermal features. To minimize
the modality differences between RGB and thermal features,
ABMDRNet [11] employs a bridging-then-fusing strategy
that utilizes a bi-directional image-to-image translation-based
method. Zhou et al. [26] proposed GMNet that divides
the feature extraction into three levels: junior, intermediate,
and senior. It is evident that the majority of the above
methods focus on developing advanced models that utilize
the complementary information from different modalities to
enhance the accuracy of segmentation results.

B. Transformer-based RGB-Thermal Semantic Segmentation

Unlike CNN-based methods that employ channel or spa-
tial attention to improve performance, Vaswani et al. [20]
proposed an attention mechanism that only relies on self-
attention to establish long-range dependencies among the in-
put. DANet [27] employed self-attention to selectively build
connections between local features and global dependen-
cies. Meanwhile, CCNet [28] proposed criss-cross attention
module to obtain the dense and global contextual informa-
tion. Further on, Dosovitskiy et al. [17] and Touvron [18]
proposed Vision Transformer (ViT) and a teacher-student
strategy based purely on attention, respectively. Building on
this, SETR [29] processed an input image as a sequence of
patches and employed a pure transformer structure to extract
global context at different stages. Similarly, Segmenter [30],
designed based on ViT, achieves semantic segmentation
using a purely transformer-based approach. Segformer [21]
introduced a hierarchical transformer structure to capture
multi-resolution features and combined these features to pre-
dict semantic labels using a decoder composed of multilayer

perceptrons (MLPs). Zhang et al. [22] introduced CMX, an
extension of Segformer to multimodal tasks, which achieves
semantic segmentation of RGB-Thermal images.

Though the aforementioned methods have continuously
improved the segmentation capabilities through a series of
advanced models, they only treat these models as black
boxes, allowing them to learn the connections between
different modalities on their own, resulting in a lack of in-
terpretability. Different from previous works, we rethink the
intrinsic characteristics of RGB-Thermal images, proposing
an fusion network guided by illumination.

III. THE PROPOSED METHOD

A. Network Overview

The overview of IGFNet is shown in Fig. 1. As illustrated
in Fig. 1., we adopt the feature fusion structure comprising
two encoders and one decoder. The two encoders are re-
sponsible for extracting features from the RGB and thermal
images, respectively.

In poorly exposed environments, thermal images can
provide complementary information to RGB images. By
combining the information from both modalities, it is possi-
ble to achieve mutual correction and improve segmentation
accuracy. Specifically, in extreme environments such as glare
areas caused by vehicle headlights or areas with low ambient
light at night, RGB images may lose texture information.
In these cases, thermal images can provide complementary
features to better understand the scene.

To exploit this property, we proposed the Illumination Es-
timation Module (IEM) to guide multi-modal fusion by gen-
erating an illumination-based weight mask. Subsequently, we
used interpolation modules to hierarchical downsample the
weight mask, and the results were applied to the following
feature fusion modules. Then, we proposed the Illumination-
Guided-Cross-Modal Rectification Module (IGCM-RM) to
utilize the weight mask in guiding the rectification of both
RGB and thermal features. In this manner, the rectified

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 26,2024 at 13:53:45 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: a) The pipeline of our proposed IEM. The input to
IEM is an RGB image, from which we derive a grey image
by calculating the mean illumination. We then obtain the
weight mask by applying a Gaussian filter to this grey image.
b) The graph illustrates the application of the Gaussian filter,
mapping the grey image to the weight mask. c) The corre-
sponding thermal image shows complementary information.

features are divided into two streams, one stream is used as
the input of the next stage encoder, while the other stream
is used as input to the Feature Fusion Module (FFM). Since
the weight mask essentially represents spatial attention, and
the spatial information in high-level features decreases as the
network depth increases, we only apply the IGCM-RM to the
first three stages of the encoder. Then, we apply Cross-Modal
Feature Rectification Module (CM-FRM) to the forth stage
of the encoder. This will be further demonstrated in Section
IV-C.

B. Illumination Estimation Module

As previously discussed, RGB and thermal images provide
distinct information under varying illumination conditions.
To leverage this, we have developed the IEM to generate a
weight mask indicating the importance of each RGB pixel
based on illumination.

The pipeline of the IEM is shown in the part a) of Fig. 2.
The first step in our process involves calculating the average
grayscale value of the three channels in the RGB image.
This produces a grey image that reflects the illuminance
values at different positions. Then, we propose a Gaussian
filter to map the grayscale values of individual pixels to
weights representing the importance of RGB information.
The Gaussian function of this filter is described as follows:

f(x) = exp

(
− (x− µ)

2

2σ2

)
(1)

where µ = 0.5 and σ = 0.15. As shown in the part b) of
Fig. 2, µ determines the midpoint position of the Gaussian

function. We have chosen a value of µ = 0.5, as this yields
the best exposure and most abundant texture information
in the RGB image. At this point, the corresponding output
weight is 1, indicating that the RGB information is the most
important. For instance, the RGB image in Fig. 2 shows
the glare-affected area caused by vehicle headlights, and
we cannot find any useful texture in this area. In contrast,
the corresponding thermal image provides complementary
information. The weight mask we have obtained maps the
glare-affected area to 0 and the well-exposed areas to 1 ac-
cording to the Gaussian distribution. This guides the network
to primarily utilize thermal features in this area and RGB
features in well-exposed areas during the feature fusion stage.
Additionally, we can observe that the edges of the glare-
affected area are assigned values close to 1 in the weight
mask. This indicates that RGB information will be primarily
utilized in feature fusion, facilitating accurate segmentation
of object edges.

C. llumination-Guided-Cross-Modal Rectification Module

After obtaining the weight mask from the IEM, we pro-
posed the IGCM-RM to recalibrate the features of RGB and
thermal images, guided by the weight mask. The structure
of the IGCM-RM is shown in Fig. 3. First, we obtain the
inverted mask by subtracting the weight mask from a all-
ones matrix. This inverted mask represents the importance
of various positions within the thermal feature map during
fusion.

For better illustration, we will use the stream of the
weight mask Mask ∈ RH×W×1 and the RGB feature
map FRGB ∈ RH×W×C as an example. To ensure that
the dimensions of the weight mask correspond with the
feature maps, we expand the weight mask along the channel
dimension to get Mask ∈ RH×W×C . Instead of performing
an element-wise multiplication of Mask ∈ RH×W×C and
FRGB ∈ RH×W×C , we first concatenate them. Then, the
resulting output is fed into a block, which consists of two
1 × 1 convolution layers, a 3 × 3 convolution layer, and a
ReLU layer. The purpose of this block is to adaptively re-
calibrate the values of the feature map FRGB , guided by the
weight mask Mask. The output of this stream undergoes an
element-wise addition with the output of another stream. This
second stream originates from FRGB and passes through a
1×1 convolution layer, with the goal of providing the original
information of the RGB features. The outputs of this stage
are RRGB ∈ RH×W×C and RT ∈ RH×W×C .

The rectified RGB feature, RRGB ∈ RH×W×C , which
is embedded with illumination information, is then con-
catenated with the corresponding thermal feature, RT ∈
RH×W×C . Subsequently, max pooling and average pooling
are applied to the output features, RRGB−T ∈ RH×W×2C ,
respectively. Then, the concatenated output vectors, Y ∈
R4C , is fed into the MLP layer. The output of this MLP
layer contain two channel weights, CRGB ∈ RC and CT ∈
RC . Similarly, two spatial weights, SRGB ∈ RH×W×1 and
ST ∈ RH×W×1, can be generated by another MLP layer.
The output of IGCM-RM is formulated as:
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Fig. 3: The structure of our proposed IGCM-RM. The inputs to this module are the feature maps of the RGB and thermal
images from the encoder, as well as the weight mask generated by the IEM. After rectification guided by the weight mask,
the rectified feature maps are divided into two streams. One stream serves as input to the subsequent stage encoder, while
the other is input to the FFM for feature fusion. The part in green background is borrowed from CMX[22].

RFRGB = RRGB + λ1CRGB ⊗RRGB + λ2SRGB ⊙RRGB

RFT = RT + λ1CT ⊗RT + λ2ST ⊙RT (2)

where ⊗ denotes channel-wise multiplication, ⊙ denotes
spatial-wise multiplication, λ1 and λ2 are two hyper-
parameters. Inspired by [22], we set λ1 = λ2 = 0.5. Finally,
the rectified features, RFRGB and RFT , will be sent to the
next stage encoder and the FFM for feature fusion.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

For our experiments, we utilized the available MFNet
dataset released in [14]. This dataset contains 9 classes (i.e.,
unlabelled background, car, person, bike, curve, car stop,
guardrail, color cone, and bump), with manually annotated
labels for semantic segmentation. The dataset contains 2,390
pairs of RGB and thermal images, derived from the original
dataset consisting of 1,596 pairs. We employed the same
split scheme as described in [14] to train our network, with
1568 pairs used for training, 392 for validation, and 393 for
testing.

B. Implementation Details

Our IGFNet is implemented using PyTorch and trained
and tested on a PC equipped with an NVIDIA RTX 3090
(24GB RAM). For the encoder, we utilize the Mix Trans-
former encoder (MiT-B2) pretrained on ImageNet [31] as
the backbone, while the decoder employs an MLP, both
of which were proposed in SegFormer [21]. We train the
network using the AdamW optimizer [32], with a weight
decay set to 0.01. The initial learning rate is set to 6e−5, and
a poly learning rate schedule is employed. The momentum
and the decay strategy are set to 0.9. The batch size is set to 4
during training and we use cross-entropy as the loss function.
We use Precision (Pre), Accuracy (Acc), F1, Intersection
over Union (IoU), Floating Point Operations (FLOPs) and
Parameters (Params) to evaluate our network in Section IV-
C, while using Acc and IoU in Section IV-D.

TABLE I: The results of the ablation study. ’✓’ means the
IEM and IGCM-RM are used behind the n-th stage of the
encoder. ’—’ means the CM-FRM [22] is used hehind the
n-th stage of the encoder. The best results are hightlighted
in bold font.

No.
Stage

mPre mAcc mF1 mIoU FLOPs(G) Params(M)
1st 2nd 3rd 4th

(A) — — — — 75.93 67.32 69.85 58.19 66.87 66.57
(B) ✓ — — — 73.25 72.67 70.39 58.46 67.54 66.60
(C) — ✓ — — 71.65 72.01 69.97 58.40 67.52 66.68
(D) — — ✓ — 73.88 71.36 69.96 58.24 67.86 67.29
(E) — — — ✓ 72.30 72.07 69.73 58.18 67.50 68.42
(F) ✓ ✓ — — 74.50 72.04 70.77 58.89 68.19 66.71
(G) ✓ ✓ ✓ — 73.92 72.91 71.04 59.01 69.18 67.44
(H) ✓ ✓ ✓ ✓ 73.03 72.18 70.21 58.47 69.82 69.29

C. Ablation Study

We conducted an ablation study to evaluate the bene-
fits of IEM and IGCM-RM, and subsequently selected the
optimal structure for our IGFNet. In this section, we use
CMX [22] based on MiT-B2 as the baseline. In the first
part of our study, we positioned the two modules (IEM
and IGCM-RM) behind the encoder at different stages. For
instance, in No.B network, the two modules were placed
behind the first stage encoder. Subsequently, the rectified
RGB and thermal features were input into the FFM and
the second stage encoder. Table I shows that, except for
No.E, the segmentation performance (i.e., mF1 and mIoU)
of all networks (i.e., No.B, No.C, and No.D) with IEM and
IGCM-RM added is better than the baseline. Additionally,
our results indicate that the network’s performance gradually
decreases as the stage at which the two modules are inserted
is delayed. This can be attributed to the fact that the weight
mask obtained through IEM essentially represents spatial
attention. As the stage of the encoder progresses, the spatial
information contained within the high-level features learned
by the network diminishes. Hence, we designed several
combinations based on this characteristic in the second stage.
For instance, network No.F placed IEM and IGCM-RM
behind the first and second stages at the same time. As shown
in Table I, the network No.G obtains the best performance.
In contrast, the performance of network No.H was found to
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Fig. 4: Sample qualitative demonstrations. The rows from top to bottom are RGB images, thermal images, ground truth,
CMX results, and IGFNet results.

TABLE II: The comparative per-class results on the MFNet dataset [14]. To evaluate the methods, we utilized the IoU of each class
and the mean IoU of all classes. The results demonstrate the superiority of our IGFNet, with the top two results in each column
are highlighted in red and blue.

Method Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [14] 77.2 65.9 67.0 58.9 53.9 42.9 36.2 29.9 19.1 9.9 0.1 0.0 30.3 25.2 30.0 27.7 45.1 39.7
RTFNet [15] 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2
AFNet [25] 91.2 86.0 76.3 67.4 72.8 62.0 49.8 43.0 35.3 28.9 24.5 4.6 50.1 44.9 61.0 56.6 62.2 54.6
ABMDRNet [11] 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8
FEANet [16] 93.3 87.8 82.7 71.1 76.7 61.1 65.5 46.5 26.6 22.1 70.8 6.6 66.6 55.3 77.3 48.9 73.2 55.3
CMX(MiT-B2) [22] 92.2 89.4 81.3 74.8 73.4 64.7 63.5 47.3 38.8 30.1 36.3 8.1 53.3 52.4 67.7 59.4 67.3 58.2
IGFNet(ours) 93.2 88.0 83.4 74.0 71.8 62.7 67.6 48.2 45.4 36.0 68.5 14.2 58.8 52.4 68.3 57.5 72.9 59.0

be inferior to that of the network No.G. This observation is in
alignment with our conclusion before. According to FLOPs
and Params, it can be seen that adding IEM and IGCM-
RM does not bring much computational complexity to the
framework. Based on the results of our ablation study, we
choose network No.G as the optimal structure of our IGFNet.

D. Comparative Study

We compared our proposed IGFNet with the state-of-the
art methods, including MFNet [14], RTFNet [15], AFNet
[25], ABMDRNet [11], FEANet [16], and CMX(MiT-B2)
[22].

1) Quantitative Results: As shown in Table II, we can find
that the mIoU of our proposed IGFNet is higher than other
methods. Specifically, our IGFNet demonstrates a significant
advantage over other methods in accurately segmenting the
most challenging categories of car stop and guardrail. Addi-
tionally, it achieves the highest mIoU for the segmentation
of curve. This shows that IGFNet significantly improves the
segmentation performance of small and difficult-to-recognize
objects by using illumination-guided feature fusion. Though
FEANet achieves the highest Acc in the segmentation of
guardrail and bump, its corresponding IoU do not show a cor-

responding performance. In contrast, our proposed IGFNet
consistently maintains a highly competitive performance of
both Acc and IoU across the segmentation of all classes.

2) Qualitative Results: To intuitively demonstrate the
effectiveness of our IGFNet, we selected four groups of
daytime and nighttime images as examples, respectively. We
compared them against the two best-performing methods,
i.e., CMX(MiT-B2) and IGFNet, listed in Table II. As shown
in Fig. 4., the segmentation performance of our IGFNet on
curve and car stop is significantly superior to that of CMX.
This is consistent with the quantitative results in the first
part of Section IV-D, which demonstrate that the strategy of
utilizing illumination to guide feature map fusion in IGFNet
can effectively enhance segmentation accuracy, especially for
objects that are difficult to distinguish.

V. CONCLUSIONS

We proposed here a novel semantic segmentation network
IGFNet, which introduces an interpretable RGB-Thermal
fusion network and utilizes illumination to guide the fusion
of multi-modal features. The IEM employs a Gaussian filter
to generate a weight mask, indicating the significance of each
RGB pixel based on the illumination. Then, the generated
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weight mask is utilized as a cue within the IGCM-RM
to rectify the multi-modal features, enabling their more
effective fusion. The experimental results show that our
proposed IGFNet achieves better performance than the state-
of-the-art methods. However, there are still some limitations
in our IGFNet. For instance, we found that the semantic
segmentation results of consecutive frames lack consistency,
which can lead to hesitation or misjudgment in autonomous
driving decisions. Therefore, we would like to solve this issue
in the future work.
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[1] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Glaeser,
F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep multi-modal ob-
ject detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 3, pp. 1341–1360, 2020.

[2] J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Müller, and
R. Stiefelhagen, “Trans4trans: Efficient transformer for transparent
object segmentation to help visually impaired people navigate in the
real world,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1760–1770.

[3] H. Wang, R. Fan, Y. Sun, and M. Liu, “Dynamic fusion module
evolves drivable area and road anomaly detection: A benchmark and
algorithms,” IEEE Transactions on Cybernetics, vol. 52, no. 10, pp.
10 750–10 760, 2022.

[4] Y. Sun, W. Zuo, and M. Liu, “See the future: A semantic segmentation
network predicting ego-vehicle trajectory with a single monocular
camera,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3066–3073, 2020.

[5] Z. Feng, Y. Feng, Y. Guo, and Y. Sun, “Adaptive-mask fusion
network for segmentation of drivable road and negative obstacle with
untrustworthy features,” in 2023 IEEE Intelligent Vehicles Symposium
(IV), 2023, pp. 1–6.

[6] Z. Feng, Y. Guo, D. Navarro-Alarcon, Y. Lyu, and Y. Sun, “Inconseg:
Residual-guided fusion with inconsistent multi-modal data for neg-
ative and positive road obstacles segmentation,” IEEE Robotics and
Automation Letters, vol. 8, no. 8, pp. 4871–4878, 2023.

[7] Y. Feng, W. Hua, and Y. Sun, “Nle-dm: Natural-language explana-
tions for decision making of autonomous driving based on semantic
scene understanding,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 9, pp. 9780–9791, 2023.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18. Springer, 2015, pp. 234–241.

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[10] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818.

[11] Q. Zhang, S. Zhao, Y. Luo, D. Zhang, N. Huang, and J. Han, “Abm-
drnet: Adaptive-weighted bi-directional modality difference reduction
network for rgb-t semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2633–2642.

[12] G. Li, Y. Wang, Z. Liu, X. Zhang, and D. Zeng, “Rgb-t semantic
segmentation with location, activation, and sharpening,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 33, no. 3,
pp. 1223–1235, 2022.

[13] S. Zhao, Y. Liu, Q. Jiao, Q. Zhang, and J. Han, “Mitigating modality
discrepancies for rgb-t semantic segmentation,” IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[14] Q. Ha, K. Watanabe, T. Karasawa, Y. Ushiku, and T. Harada, “Mfnet:
Towards real-time semantic segmentation for autonomous vehicles
with multi-spectral scenes,” in 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
5108–5115.

[15] Y. Sun, W. Zuo, and M. Liu, “Rtfnet: Rgb-thermal fusion network
for semantic segmentation of urban scenes,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2576–2583, 2019.

[16] F. Deng, H. Feng, M. Liang, H. Wang, Y. Yang, Y. Gao, J. Chen, J. Hu,
X. Guo, and T. L. Lam, “Feanet: Feature-enhanced attention network
for rgb-thermal real-time semantic segmentation,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 4467–4473.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[18] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[19] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 10 012–10 022.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[21] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 12 077–12 090, 2021.

[22] J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and R. Stiefelhagen,
“Cmx: Cross-modal fusion for rgb-x semantic segmentation with
transformers,” arXiv preprint arXiv:2203.04838, 2022.

[23] K. Song, Y. Zhao, L. Huang, Y. Yan, and Q. Meng, “Rgb-t image anal-
ysis technology and application: A survey,” Engineering Applications
of Artificial Intelligence, vol. 120, p. 105919, 2023.

[24] Y. Sun, W. Zuo, P. Yun, H. Wang, and M. Liu, “Fuseseg: Semantic
segmentation of urban scenes based on rgb and thermal data fusion,”
IEEE Transactions on Automation Science and Engineering, vol. 18,
no. 3, pp. 1000–1011, 2020.

[25] J. Xu, K. Lu, and H. Wang, “Attention fusion network for multi-
spectral semantic segmentation,” Pattern Recognition Letters, vol. 146,
pp. 179–184, 2021.

[26] W. Zhou, J. Liu, J. Lei, L. Yu, and J.-N. Hwang, “Gmnet: Graded-
feature multilabel-learning network for rgb-thermal urban scene
semantic segmentation,” IEEE Transactions on Image Processing,
vol. 30, pp. 7790–7802, 2021.

[27] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
3146–3154.

[28] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnet:
Criss-cross attention for semantic segmentation,” in Proceedings of
the IEEE/CVF international conference on computer vision, 2019, pp.
603–612.

[29] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr, et al., “Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2021, pp. 6881–6890.

[30] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 7262–7272.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International journal of
computer vision, vol. 115, pp. 211–252, 2015.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 26,2024 at 13:53:45 UTC from IEEE Xplore.  Restrictions apply. 


