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Abstract— In this paper, we propose a novel path planning
framework for autonomous exploration in unknown environ-
ments using a mobile robot. A graph structure is incrementally
constructed along with the exploration process. The structure
is the road map that represents the topology of the explored
environment. To construct the road map, we design a sampling
strategy to get random points in the explored environment
uniformly. A global path from the current location of the robot
to the target area can be found on this road map efficiently.
We utilize a lazy collision checking method that only checks the
feasibility of the generated global path to improve the planning
efficiency. The feasible global path is further optimized with our
proposed trajectory optimization method considering the motion
constraints of the robot. This mechanism can facilitate the path
cost evaluation for the next best view selection. In order to select
the next best target region, we propose a utility function that takes
into account both the path cost and the information gain of a
candidate target region. Moreover, we present a target reselection
mechanism to evaluate the target region and reduce the extra
path cost. The efficiency and effectiveness of our approach are
demonstrated using a mobile robot in both simulation and real
experimental studies.

Note to Practitioners—This paper is motivated by the efficient
exploration problem, which plays a key role in various areas
such as the information gathering and environment monitoring.
In these applications, the mission length and executing time are
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often restricted by the battery capacity of the robot. In this paper,
an efficient path planning framework is introduced to reduce the
path length and exploration time. The robot keeps a road map
of the environment to facilitate the path planning. The proposed
target selection mechanism helps the robot determine the next
best target to explore. Furthermore, the proposed trajectory
optimization algorithm helps in reducing the path cost. Overall,
this framework enables efficiently and autonomously exploration
with a novel path planning framework.

Index Terms— Autonomous exploration, road map, target
selection, trajectory optimization.

I. INTRODUCTION

AUTONOMOUS robotic exploration is gaining increasing
attention in recent years. Typically, it involves infor-

mation collection of an environment using a robot without
the intervention of the human pilot. Researchers could get
a better understanding of the environment state through the
environment exploration. At present, autonomous exploration
is becoming one of the central tasks in various applications
such as disaster relief [1], monitoring of water quality [2],
and agricultural monitoring [3].

Decision-making and planning are of great importance for
a robot to achieve high-level autonomy and flexibility in the
exploration process. Decision-making module helps a robot
select the next best view (NBV) according to the evaluation
metric. One canonical evaluation metric for determining NBV
is the distance from the current location of the robot to the
frontier in the occupancy grid map [4]. Robot always selects
the frontier that is closest to itself for further exploration.
Another popular evaluation metric is the localization quality.
Various work has been devoted to reducing the localization
uncertainty during the exploration [5]. Oftentimes, the robot
needs to plan a longer path to reduce its localization uncer-
tainty because robust localization ability is a prerequisite
for autonomous robotic exploration. In addition, there are
also various evaluation metrics such as the amount of useful
information collected during the exploration [6]. However,
current research tends to focus on one evaluation metric rather
than multiple ones in the NBV selection.

Although a considerable amount of research on decision-
making has been done in the autonomous robotics exploration,
there is still a need for efficient path planning approaches.
For NBV selection involving path cost, it is simple and
straightforward to use Euclidean distance for evaluations.
This approach is efficient while it is inadequate in complex
environments. Conventional planners such as search-based [7]
and sample-based [8] methods are frequently used to generate
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a trajectory for the NBV evaluation and robot execution. Once
the robot determines a target region, it replans a path to
execute, which is already generated during the previous eval-
uation process. Moreover, the choice of NBV leaves several
candidate regions unexplored. When the robot is ready for
exploring these unexplored regions, it needs to replan a path
over the whole map although the robot already knows a path
to that area. This replanning mechanism would suffer from
a high computational complexity when the robot is exploring
large or high-dimensional environments.

In this paper, we present an efficient path planning frame-
work for autonomous robotic exploration in unknown environ-
ments. Our main contributions are in threefold.

1) We propose a graph-structured road map that is con-
structed along with the exploration process, which can
facilitate the evaluation of the path cost to every unex-
plored candidate regions.

2) We propose a trajectory optimization scheme that can
optimize the generated global path efficiently, in which
the motion constraints of the vehicle are taken into
consideration.

3) We develop a utility function that devotes to evaluating
the candidate regions according to the path cost to the
target area and the information that the robot can collect
at the area.

This paper is structured as follows. In Section II, we review
some related work on robot exploration. We formulate the
exploration problem in Section III. The overall framework of
our proposed method is presented in Section IV. In Section V,
we introduce our proposed method in detail. Experimental
studies are presented in Section VI. We summarize our work
and outline future work in Section VII.

II. RELATED WORK

Autonomous robotic exploration has been widely
investigated and increasingly used in a number of applications
in various fields. Hollinger et al. [9] use an underwater vehicle
to inspect underwater object autonomously. Plonski et al. [10]
develop exploration algorithm for habitat monitoring.
Krainin et al. [11] use a variant of the NBV planning based
on the information gain for 3-D object reconstruction using
a robot manipulator. The manipulator moves the object to
expose the most uncertain surface in order to build a complete
object model. Moreover, autonomous exploration is applied for
object search in [12]. Uncertainty semantics is utilized to build
the relationship among objects to facilitate exploration. In the
simultaneous localization and mapping (SLAM) [13], [14]
research community, autonomous exploration often involves
generating a path that reduces the localization and map
uncertainty, which is widely known as the active SLAM [15].

A variety of methods have been proposed to tackle the
autonomous exploration problem. The seminal work in [4]
propose to use the nearest frontier as the evaluation met-
ric to guide the exploration. The work in [16] adopts the
similar strategy that utilizes the nearest neighbor approach
for environment exploration. Stachniss et al. [6] use Rao–
Blackwellized particle filter to build a map and utilized the
information gain at different frontier regions to determine the

next exploration action. Furthermore, Makarenko et al. [17]
propose a utility function that incorporated the information
gain, navigation, and localization quality for guiding the
exploration. The three evaluation metrics are combined using a
weighted sum. Lauri and Ritala [18] formulate the exploration
as the partially observable Markov decision process. The ray-
casting method [19] is applied for evaluating the information
gain of candidate regions. Charrow et al. [20] present a
trajectory planning framework for autonomous exploration.
An original objective function based on Cauchy–Schwarz
quadratic mutual information is proposed to determine the
goal to explore optimally. The generated global path is further
optimized to maximize the objective function and satisfy the
motion constraints.

Recently, Dornhege and Kleiner [21] propose a frontier-
void-based exploration approach that takes the void volumes
in 3-D environments into consideration. In order to reduce the
localization uncertainty in visual SLAM, Costante et al. [5]
move the robot through a feature-rich area when it moves
to the goal point. The work is dedicated to reducing the
uncertainty in robot pose estimation, even the path in the
exploration may not be the shortest. Bai et al. [22] propose
to use the Gaussian process (GP) to model the unknown
environment. The GP is then optimized using the Bayesian
optimization method to predict the information gain. A star
discovery exploration strategy is described in [23] based on
the large scale direct-SLAM framework. The vehicle flies with
a star pattern to generate the motion parallax for the SLAM
module to achieve environment exploration.

Research focusing on balancing the path cost and the
information gain during exploration is becoming increasingly
important, especially when we want to build a precise map of
the environment using a robot with energy constraint. Shnaps
and Rimon [24] present an online algorithm for environment
coverage using a mobile robot limited by the battery capacity.
The work in [25] proposes a utility function to evaluate the
path cost and the information gain of every candidate goal
regions. Similarly, Heng et al. [26] use this function to evaluate
the candidate target regions. Both the exploration and the cov-
erage are considered in this paper. The work in [27] presents
an original utility function considering the information and
the movement cost in a normalized way. Velez et al. [28]
propose an anytime planning framework for exploration, which
considers the motion cost and the information gain at every
motion primitive.

Efficient path planning during exploration is vital in
large or high-dimensional environments. A sampling-based
planning algorithm is proposed for information gathering [2].
The method aims to generalize an optimized trajectory, along
which the robot can collect more information. Likewise,
a receding horizon path planning method is proposed in [29],
where the random tree is computed online and is extended
to the area that contains more information. Wallar et al. [30]
present a reactive motion planning strategy for multiple robots
to achieve surveillance task. Robots utilize a riskmap to deter-
mine the next best region to survey. Shade and Newman [31]
propose to use an artificial potential field (APF) [32] for
path planning during the exploration. A harmonic function is
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Fig. 1. High-level system architecture of exploration. The SLAM module is responsible for generating the map and localizing the robot simultaneously. The
Frontier Extraction module extracts the information gain of the required regions for the following modules. The Goal Selection module generates the goal
point for the path planner. The Path Planner module consists of an incremental constructed road map and following trajectory optimization module.

employed to avoid the local minimum problem caused by the
APF method. The work in [33] also uses the APF planner for
the 3-D reconstruction of the environment. Oriolo et al. [34]
propose a sensor-based exploration strategy called SRT that
can build the road map of the environment. A random sam-
pling tree is expanded with the sensor coverage.

III. PROBLEM FORMULATION

We model the environment using the occupancy grid map
M. Occupancy grids are cells in which the values encode the
probability of being occupied. We denote the set of grid as
{s1, s2, . . . , sk, . . . , sN } and the whole 2-D space as S ⊂ R

2.
The space is supposed to be unknown initially. During the
exploration, the map grids can be divided into three types,
the occupied cells Soccupied, free cells Sfree, and unknown cells
Sunknown. Both occupied cells and free cells belong to cells that
are known, i.e., Sknown = {Soccupied,Sfree}. The objective of
the exploration is to increase the number of cells that belong
to Sknown as many as possible.

We apply the entropy H to describe the uncertainty of the
map [35]

H (S) = −
N∑

k=1

p(sk)log(p(sk)) (1)

where p(sk) is the occupancy probability of grid sk in the
occupancy grid map, and N represents the total number of
grids in the map. We propose to reduce the map uncertainty
H with less time and path cost during the exploration. We use
the mutual information I to represent the reduced uncertainty
after the robot executing a certain path li ∈ L and the path
cost of li is ci . The mutual information is defined as

I (S; li ) = H (S)− H (S|li) (2)

where H (S) is the current map entropy and H (S|li) is
the entropy after executing a certain path li . For several
candidate regions that lie in the frontier area, namely, F =
{ f1, f2, . . . , fn}, they have two attributes, the path cost ci =
L(li ) ∈ C to get there, and the information gain Ii = I (S; li ) ∈
I that it contains. Every time the robot chooses an exploration
target to explore that satisfies

arg min
fi∈F

U( fi {Ii , ci }). (3)

We aim to find the target that is more informative while it
is also near the current location of the robot. The function
U(·) in (3) takes as arguments the information gain Ii and
path cost ci of region fi and returns an evaluation result of
that candidate region. The region that minimizes U will be
selected as the target region to be explored. We propose a
novel utility function for balanced the information gain and
path cost, which is detailed in Section V.

The goal of the whole exploration process is

min H (P)

s.t. cost(P) ≤ C (4)

where P represents the total path generated for exploration,
i.e., P = {l1, l2, . . . , lend}, the function cost(·) is used for
getting the path cost, and C is the budget path cost for the
exploration. During the exploration, we aim to reduce the map
entropy as much as possible, which means generating a map
with high resolution without exceeding the cost budget.

IV. METHOD OVERVIEW

We propose an efficient path planning framework for
autonomous exploration in 2-D environments. As indicated
in Fig. 1, the Frontier Extraction module extracts the
frontiers in the map built by the SLAM module to provide the
information gain. Instead of singly considering information
gain in the frontier area, we consider both the information
gain and the path cost in our work. The Goal Point
Selection module takes as inputs both the path cost from
the current location of the robot to the goal region and the
information gain of that region. The prerequisite for this
module is an efficient path planner that provides an exact
path cost efficiently. We propose an efficient path planner
that incrementally constructs the road map of the environment
during the exploration process. The Path planner module
maintains a graph-structured road map that provides a coarse
global path from point to point. Then, the generated global
path will be optimized by the trajectory optimizer to generate
a smooth trajectory for the robot to execute.

As indicated in Algorithm 1, CalculateFrontiers(·) is
responsible for extracting the frontier clusters in the map.
In our algorithm, the frontier clusters are grouped into
several regions in order to reduce the complexity using
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Algorithm 1: Autonomous Exploration Algorithm
Input: sensor information: laser Msg
Output: whole map of the environment

1 map← Sensing ;
2 Pv isual .empty ;
3 while ExplorationFlag do
4 Pclusters ← CalculateFrontiers(map) ;
5 Pcentroid ← GroupIntoRegions(Pclusters) ;
6 road Map← BuildGraph(laser Msg) ;
7 if target reselection flag is true then
8 [Goal Region, path] ←

T arget Selection(Pcentroid , road Map) ;
9 end

10 if LazyColli sionCheck(path) is failed then
11 road Map← Prune(path, road Map) ;
12 find another path on the road map ;
13 go to line 10 ;
14 else
15 pathopt ← Optimizer(path) ;
16 end
17 while robot.pose-target < distThreshold do
18 execute the robot to reach the target along the

generated pathopt ;
19 map← Sensing ;
20 end
21 end

Fig. 2. Change the target at a proper time. (a) Robot is heading toward a
chosen target. (b) Ray casting method is employed at the target location to
detect the information at the target area.

GroupIntoRegions(·). The function BuildGraph(·) con-
structs the road map of the environment incrementally with the
exploration process. Once the target is found, we can query a
path on the road map, as Line 8 shows. We present a target
reselection mechanism to reduce the extra path cost. In order to
improve the planning efficiency, only if the path is found will it
be checked by LazyColli sionCheck(·) function to determine
its feasibility. If the path is not feasible, the edges that meet
collisions will be deleted on the road map. The robot will find
another path on the road map to achieve the exploration. Once
the path is found, it will be optimized by the Optimizer(·)
to generate an optimal path Pathoptfor the robot. The robot
then moves along this path to the goal until a new target is
assigned, as indicated in Lines 17–20.

Algorithm 2: Target Selection
Input: goals,Graph G,robot Pose
Output: goal,path

1 value=0;
2 for goalc ∈ goals do
3 in f o← In f o(goalc) ;
4 global Path← Find Path(G, robot Pose, goalc) ;
5 pathopt ← Optimizer(global Path) ;
6 cost ← CheckCost (pathopt) ;
7 value← Evaluate(in f o, cost) ;
8 if value > value then
9 goal ← goalc ;

10 path ← global Path ;
11 end
12 end

V. PROPOSED METHOD

A. Target Selection

We use coefficient of variation (CV) cv to describe the
degree of variation of variables, which is defined as follows.

Definition 1 (Coefficient of Variation [36]): Let σ be the
standard deviation and μ be the mean value of a sequence
of variables, CV is then defined as cv = σ/μ.

cv is useful in comparing the degree of variation of two
variables with different units. In the target selection process,
the information gain and the path cost are two input evaluation
metrics for the decision maker. The output of the decision
maker is the target region to be explored. For these two
input decision variables, we define the dominant variable as
follows.

Definition 2 (Dominant Variable): For two variables v1 and
v2 in the decision-making problem, if cv (v1) � cv (v2),
variable v1 is defined as dominate variable.

The dominant variable is the one that imposes a greater
impact on the final decision. For example, if the path cost
to one target is much smaller than that of the other targets,
and the candidate target regions have the similar amount
of information gain, we can then choose the path cost as
the main variable for the final decision. Formally speaking,
the decision variable that has bigger cv predominates over the
other variables in the decision-making process. To encode this
idea into our exploration method, we propose a novel utility
function to evaluate the candidate goal regions

U = cv1
λ1 Ii∑N
i=1 Ii

− cv2
λ2ci∑N
i=1 ci

(5)

where cv1 and cv2 are CVs of two corresponding decision
variables. Here, we normalize the information gain I and
path cost c to evaluate them together. We assume that the
two variables are independent, which means that there is no
relationship between I and c. We calculate I at target regions
using the ray-casting method [32]. Details about how to obtain
the information gain are specified in the Appendix. We use
our proposed path planning method to get the path cost to a
target area. In (5), the information gain Ii and the path cost
ci are normalized to remove their unit. Coefficient cv i will
influence the weight of the corresponding decision variable in
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Fig. 3. Conceptual illustration of our proposed path planning framework. (a) Edges of the graph consists of sampling points generated using our proposed
sampling method and the centroids of frontier clusters. (b) Graph structure is constructed along with the exploration process. (c) and (d) Robot chooses the
most valuable target region to explore.

the utility function. We tune the constants λ1 and λ2 manually
in different environments.

The objective of target selection is used to find the target that
has the minimum value of utility function, as indicated in (3).
Algorithm 2 shows the details of goal point selection from
the candidate target regions. First, we compute the mutual
information of candidate regions and the path cost. We assume
that the function Find Path(·) can find a path that is collision
free on the road map G. Then, we use the function Evaluate(·)
to choose the goal by minimizing the utility function in (5).
Algorithm 2 outputs the selected goal region and the global
path for reaching there.

B. Target Reselection

Once the goal point is selected, the robot executes a series
of control actions to reach the target. Normally, the target
reselection is enabled at a fixed frequency. However, if the
frequency is high, the robot could not find a long-term goal
to execute. If the frequency is low, the robot would go to one
selected target area no matter how much information there
exists, which will cause extra energy cost.

There is a case that before the robot reaches the target
region, that area may already be sensed by the sensor. In our
implementation, the frontier regions are swept by the laser
range finder. As shown in Fig. 2(a), the target point marked
as green point is far away from the robot. Before the vehicle
reaches the area, the unclear regions are already swept by the
sensor, as shown in Fig. 2(b). Hence, the vehicle does not need
to move that much. Based on this observation, we propose a
novel method to perform target reselection.

As shown in Fig. 2, when the target area is chosen to
explore, we utilize the ray-casting method at a fixed frequency
to calculate the information gain at the target area. With
this forward simulation method, the robot will determine the
amount of information at the target area. Note that when
the robot is pretty confident about the state of the gird,
i.e., p(sk) = 1 or p(sk) = +0, the information that the grid
sk can provide is zero. We use (1) to describe the information
around the target region (see the Appendix for more details).
The condition that triggers the target reselection mechanism
is: H (Sc) ≤ T hreshold, where Sc is the set of grids under
a circular region using the ray-casting method. If the total
collected information is less than a predefined threshold,
which means there is no more information at the target area,

Fig. 4. Proposed sampling strategy. (a) Green points: generated sampling
points under the coverage scope of laser sensor. (b) Corresponding function
of laser ray length.

the robot does not need to explore the region anymore and
will reselect a new target area to explore, as shown Fig. 2(b).
By avoiding going to those unnecessary areas, our proposed
target reselection mechanism helps to reduce the extra energy
and improve the efficiency of the exploration.

C. Incremental Road Map Construction

As Fig. 3 shows, we maintain a road map that is constructed
incrementally with the exploration process. The road map is
structured as a graph G = (V , E). The robot can query a path
on the generated road map directly. We will introduce how to
generate the road map in detail in the following texts.

1) Sampling Points Generation: As Fig. 3(a) shows, when
the robot begins the exploration, random points can be gen-
erated in the Sfree space. Instead of generating the points
randomly in the whole map M and checking their validity,
we generate the required sample points in the free space
covered by the laser range finder scope, which is denoted as
SsensorFree. This is known as the sensor-based planning [34].
The points generated in this way do not need the collision
checking process; hence, this operation will save a lot of time
because the collision checking is relatively a time-consuming
part in the process of constructing a graph. The connections
between those points are also inclined to be collision free.

In Fig. 4(a), the blue lines represent the laser rays of a
lidar. To generate these points, one simple and straightforward
strategy is to choose a random point in every ray. However,
the generated points are not uniformly distributed in SsensorFree.
In some areas where the laser rays are shorter, the gen-
erated sampling points would be dense. Fig. 4(b) reveals
the distribution of the length of the laser rays in SsensorFree.



WANG et al.: AUTONOMOUS ROBOTIC EXPLORATION BY INCREMENTAL ROAD MAP CONSTRUCTION 1725

We, hence, use this distribution to generate the sampling points
in SsensorFree. In some areas that sensor rays are longer, which
is corresponding to larger free areas, more sample points are
generated. The model we adopted is

1

π R2 =
N

πr2 (6)

where R represents the maximum length of the length ray, r
represents the selected ray, and N represents the number of
points generated on the corresponding ray. Hence, the number
of points is determined by: N = r2/R2. The green points
in Fig. 4(a) indicate the generated sampling points Vrand =
{v1, . . . , vn}. These points are then utilized to construct the
road map of the environment. Based on the observation that
newly generated cluster centroids are often generated near
the explored frontier centroids, we also use the generated
frontier cluster centroids Vcentro to construct the graph. Hence,
the vertices V of the graph G consist the random sampling
points Vrand and the frontier cluster centroids Vcentro.

2) Road Map Construction: The road map is constructed
incrementally along with the exploration process. Different
from the way of constructing the graph in the rapidly exploring
random tree (RRT) [8] and the probabilistic road map [37]
method, our method is original. In our previous work, we have
shown that the efficiency of planning will be improved by
making full use of every collision-checking and releasing the
restriction of the size of the edge in the graph [38]. In this
paper, the generated edges E are connected directly without
collision-checking. Only if a path is found, the edges on the
path will be checked to determine its feasibility.

When a new point v ′ ∈ Vnew is generated, the function
N(G(V , E), v ′) is used to determine the closest vertex v in
the existing graph G(V , E) to v ′, that is,

N(G(V , E), v ′) = arg min
v∈V

||v ′ − v||. (7)

The new edge e is then determined by v and v ′. Note that our
proposed method is to find a global path first and then optimize
the generated path. We can simplify the graph as long as the
path between the location of the robot and the target region
is found. Hence, in the construction of the graph, instead of
connecting all the vertexes that are visible with each other,
the generated sampling points will not be connected to other
nodes on the graph once it has been added to the tree. We use
the function CheckV alidi ty(e,M) to check the feasibility of
the edge e. If CheckV alidi ty returns true, the feasible edge
will be added to the existing graph. While if the edge e is not
collision free, then the generated point v ′ will continue until
a feasible edge is found. In this way, the graph built is more
like the tree built by RRT. Different from the tree structure
that is used for the single-query purpose, we design the tree
as a multiquery structure to facilitate the path-finding.

The whole process of road map construction is introduced in
Algorithm 3. Lines 3–6 indicate the process of generating the
sampling points in SsensorFree. The sampling strategy Random
outputs random points in SsensorFree. The vertex vrand repre-
sents the node generated by our proposed sampling algorithm.
Lines 8–19 show the graph construction in which all the
generated sampling points and the frontier centroids are added

Algorithm 3: Road Map Construction
Input: laserMsg, map M
Output: road map G

1 V .pushback(star tnode) ;
2 //generate candidate vertices ;
3 for every nth ray of LaserMsg do
4 vrand = Random[0, laser Msg.dist (nth)] ;
5 Vrand .pushback(vrand) ;
6 end
7 Vcand = {Vrand , Vcebtro} ;
8 //check validity of edges ;
9 for i ∈ I do

10 rank(Vcand [i ], V , ascend) ;
11 for j ∈ J do
12 edge = Line(Vcand [i ], V [ j ]) ;
13 if CheckValidity(edge,M) then
14 E .pushback(edge) ;
15 V .pushback(Vcand[i ]) ;
16 break ; // to simplify the graph
17 end
18 end
19 end

to the existing graph. Line 10 shows the function rank(·)
that sorts V in an ascending order according to the distance
between Vcand[i ] and v ∈ V . Vcand[i ] will try to connect to the
vertices on the graph from near to far. The function Line(·)
generates the edge connecting the nodes Vcand[i ] and V [ j ].
As indicated in Lines 13–17, if the edge is collision free,
the edge and node are then added to the existing graph. The
break at Line 16 is for simplifying the graph. In contrast with
the traditional method that connects the newly generated point
Vcand[i ] to all the feasible vertices on the graph, Vcand[i ] will
not connect to other vertices as long as it has connected to
a vertex on the graph. This simplification can facilitate the
following path-finding on the road map.

3) Path-Finding on the Road Map: We use A* [39] to
search for a global path on the existing graph G. The complex-
ity of the graph search is O(|V | + |E |). The final global path
consists of several edges on the graph. Some generated edges
in the graph may not be feasible for constructing the final path.
As Fig. 5(a) shows, one candidate edge is constructed. How-
ever, the generated edge is demonstrated to be infeasible along
with the exploration, as Fig. 5(b) indicates. In our proposed
method, we utilize the idea of the lazy collision checking
[40], [41]. When a new path is generated, we check the
feasibility of the path using function CheckV alidi ty(e,M).
If the generated path is not feasible, i.e., one or more edges for
constructing the graph are not collision free, we delete those
edges on the graph and restart the path-finding process.

D. Trajectory Optimization

Our planning method consists of a global planner and
a trajectory optimizer. The generated global plan is just a
reference for the robot since it is not optimal. When the global
plan is generated, the trajectory optimizer proceeds to optimize
the global plan and to make the plan executable for the robot.
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Fig. 5. Lazy collision checking in finding the global path. (a) Edges will be
generated in unknown regions. (b) When the final generated path encounters
collision, the edge will be deleted and replanning process will be triggered.

The local planner optimizes the global path by using the
global path as a heuristic and plans the motion of the robot
under the inherent constraints of the robot platform. As shown
in Fig. 6(e), we denote the global path σG with a series of
vertices and σG = {v0, v1, . . . , vn}. Here, the local motion
planning problem is to find a trajectory σ : [0, T ] �→ X ,
coming up with a corresponding series of control inputs u :
[0, T ] �→ U , such that σ(0) = v0, σ(T ) = vn and ∀t ∈ [0, T ]⎧⎪⎨

⎪⎩

σ(t) ∈ Xfree,

σ (t) = f ′(σ (t − 1), u(t))

u(t) ∈ U ′(u(t − 1), ε)

(8)

where f ′ denotes the kinematic functions of the robot and U ′
represents the set of the possible controls with respect to the
control input u(t−1) of the last node and the inherent control
constraints of the robot ε.

In this paper, the differential-driven wheeled robot is uti-
lized as the robot platform. The parameters ε of the robot
utilized here include the maximum linear velocity, the maxi-
mum angular velocity, the maximum linear acceleration, the
maximum angular acceleration, and the size of the robot,
namely, ε = {vMAX, ωMAX, aMAX, αMAX, L, W }. With the
last control input u(t − 1) and the constraints of the robot
ε, the possible control inputs u(t) are then bounded and all
the possible control inputs are recorded in S. Each control
input in U ′ corresponds to one robot pose at time t , which
can be calculated by using the kinematic function f ′.

The line-of-sight (LOS) algorithm proposed in [42] is
adopted here to do the trajectory optimization, which is used to
check whether two nodes on the global path can be connected
directly under the nonholonomic constraints. An illustration
of the LOS checking algorithm is shown in Fig. 7. If the
LOS checking between node P and node Q succeeds without
collision, a trajectory tra jlos is then generated by the LOS
checking algorithm and it is proven to be the optimal trajectory
from P to Q under the current constraints of the nonholonomic
robot.

On the basis of the LOS checking algorithm, a checking-
discrete-checking scheme (CDCS) is proposed to optimize the
global trajectory, as shown in Fig. 6. When a global path is
obtained, denoted with the blue thick line in Fig. 6, then we
start the LOS checking from the current robot state to the
nodes on the global path. Fig. 6(a) demonstrates that the LOS

Fig. 6. CDCS trajectory optimization with the global path as a heuristic.
(a) Checking: LOS checking from the current robot state to the nodes
on the global path. (b) Discrete: discrete the global path from n4 to n5.
(c) Checking: LOS checking from n0 to the discretized nodes on the
global path. (d) Sampling: sample nodes on the LOS checking trajectory.
(e) Checking: LOS checking from the new sampled nodes on the LOS
checking trajectory to the node on the discretized nodes on the global path.
(f) Global path and the optimized local path.

Fig. 7. LOS checking from P to Q under the nonholonomic constraints.
Light green arc: possible robot states under the constraints of the last control
input u and the inherent nonholonomic constraints.

checking from n0 (current robot state) to nodes n2, n3, and
n4 has already succeeded and the trajectories generated by the
LOS checking are denoted with black fine lines. Afterward,
the LOS checking from n0 to n5 collides with the obstacles
and we denote the checking trajectory with a red dashed line.

When encountering collisions, as shown in Fig. 6(b), a judg-
ment is made to make whether the end node of the failure LOS
checking, namely, n5, and the target node, namely, n7, are on
the same side of the last passable LOS checking trajectory
L last. As stated in [42], if n5 and n7 are not on the same side
of L last, the end node of the LOS checking moves to the next
node on the global path. If n5 and n7 are on the same side of
L last, as shown in Fig. 6(b), the global path from the last LOS
successful node n4 to the failure node n5 is then discretized
into a series of adjacent nodes, namely, i1, i2, i3,. . . .

Then, the LOS checking from n0 to the discretized nodes
on the global path is further carried out. Fig. 6(c) shows that
the LOS checking from n0 to i1 and i2 has succeeded while
the LOS checking from n0 to i3 collides with obstacles. Since
i2 and i3 are adjacent nodes, then no discretization will be done
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Fig. 8. Autonomous exploration using our proposed framework in typical indoor environments. Green dots: frontier centroids. Blue lines: graph structure
built along with exploration. Red line: trajectory of the robot during exploration. (a) T = 5 s. (b) T = 15 s. (c) T = 42 s. (d) T = 68 s. (e) T = 89 s.
(f) T = 112 s. (g) T = 117 s. (h) T = 145 s.

between them and instead we sample nodes on the last pass-
able trajectory, as denoted with j1, j2, j3, . . . in Fig. 6(d).

The LOS checking is then conducted from the sampled
nodes on the last passable LOS trajectory j1, j2, j3, . . . to
i3 until the LOS checking succeeds. Fig. 6(e) shows that the
LOS checking from ja to i3 succeeds. Then, the start node of
the LOS checking moves to ja. The CDCS process is repeated
until the end node of the LOS checking reaches the goal. An
inverse search is then applied from the goal to the current
robot state and then the local path planning is finished. The
optimized path and the global path are shown in Fig. 6(f) and
the optimized path is proven to be optimal in the homotopy
class of the global path [42]. The robot then executes the
optimized path to explore the environment.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup

We use the turtlebot robot as the mobile robot platform.
A Rplidar laser range finder is mounted on the lower base.
The laser range finder has 360◦ field of view (FOV) and
adjustable sensor range. The software system is implemented
in the robot operation system indigo release on an Ubuntu
14.04 LTS operating system. The simulation environment is
built using the Gazebo simulator; the simulated robot is the
same with our real robot except that the laser range finder in
the simulation has 180◦ FOV and 30-m sensor range.

B. Simulation Experiments

The autonomous exploration process in a typical indoor
simulation environment is shown in Fig. 8. The environment
is an office environment that consists of several rooms. Green
points in those figures are the centroids of candidate target
regions needed to be explored. The robot heads toward to
the target regions guided by these green dots. The centroids

are added to the road map for further exploration. The
blue segments show the road map that is the topological
representation of the environment. The pink line represents the
trajectory of the robot during exploration. Fig. 8(a)–(h) shows
the graph structure constructed along with the exploration.
Our proposed graph structure can represent the space
topology of the environment appropriately. As Fig. 8 shows,
the structure can be extended to every part of the environment.
The robot can find a path on the graph structure from its
current location to every candidate goal region represented
by the green point, which facilitates the process of target
evaluation. Our proposed graph structure is more efficient
because of the simplification of the whole environment.
We can see in Fig. 8 that every green point can be connected
to the road map without meeting collision, which means that
the path to every candidate goal region can be queried on
this graph. Qualitatively speaking, our planning method is
more efficient than conventional methods like RRT* and A*.
On the one hand, the constructed graph structure simplifies the
environment so the robot can query a path on this simplified
structure instead of on the whole environment, which is
another kind of complex graph when it is represented as the
occupancy grid map. On the other hand, our proposed method
does not need to replan the path because the path to every goal
region has already been computed in the evaluation process.

We tested our proposed method in four different kinds of
environment scenarios. As shown in the first row of Fig. 9,
the four environment scenarios are different with each other.
We compare our proposed method with the nearest fron-
tier method and the random walk method. Both the nearest
frontier method and the random walk method use RRT* as
the path planner. Fig. 9(a)–(d) shows the performance of
different exploration methods corresponding to the environ-
ments above. In all the environment scenarios, our proposed
method outperforms the other methods in the rate of the
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Fig. 9. Map entropy reduction in the experimental studies. The proposed algorithm is tested in four environments. We compare our proposed framework
with the nearest frontier method and the random walk method. The blue lines in the first rows show the trajectory during exploration using our proposed
method. The charts below show the comparison among our proposed method and other methods in the upper corresponding environments.

entropy reduction. We test our method with different para-
meters λ1 and λ2. Compared with the other methods, our
method can reduce the uncertainty of the map with relatively
shorter time. As Fig. 9(a) indicates, in the unstructured envi-
ronment, the performance of our proposed method is similar
to the random walk method. While our method is better with
different parameter settings, the performance of our proposed
method resembles the nearest frontier method in Fig. 9(b). The
blue line in the corridor environment map above Fig. 9(b)
shows the exploration trajectory of our proposed method.
Typically, there is only one unexplored frontier in this special
environment during the exploration. Hence, our method is
similar to the nearest frontier method, while the efficient
path planner and the target reselection mechanism in our
proposed method help to reduce the exploration time. As
Fig. 9(d) shows, our method is better and more stable than the
other two methods in the office environment. For the frontier-
based method and the random walk method, their performance
is not stable in different environments. The nearest frontier
method is better than the random walk in three different
kinds of environments. While in the unstructured environment,
the random walk method is better than the nearest frontier
method. Hence, the performance of those two methods is
more environment dependent, which cannot provide reliable
performance in different environments.

Fig. 10 shows the statistics of the time and the path
costs of different kinds of exploration methods in a typical
office environment. Compared with other methods, the random
method costs the most energy. The dispersion degree of these
two statistics of the random algorithm is also larger than our
method, which means the random walk may not be reliable in
office environments. The frontier-based method costs less path
cost than random walk method and it is more stable in reducing

Fig. 10. Office environment exploration with our method, the nearest
frontier method, and the random walk method. (a) Exploration path cost.
(b) Exploration time. Frontier-based method is better than the random walk
method while our proposed method achieves the best performance.

the time cost. In both trials of our methods, our proposed
method is superior to the others in reducing the time cost and
the path cost. Not only the proposed path planner method helps
reduce the planning and evaluation time but also the proposed
utility function helps to determine the next best target. The
effect of our proposed utility function is shown in Fig. 10.
We set different λ in these experiments. For Trial 1, we set
λ1 = 1 and λ2 = 2. For Trial 2, we set λ1 = 1 and λ2 = 1.
As Fig. 10 shows, the performance of Trial 1 is better than
that of Trial 2 in five experiments.

We test our proposed exploration method in eight simulated
environments with different structures and sizes. In simulated
environments, we use simulated Hokuyo laser range finder
with 180◦ FOV. The detection range of the sensor is set
according to the environment size. We test our algorithm
in four different kinds of environments, including the corri-
dor, the office, the unstructured environment, and the maze
environment. We also test our method in the same type of
environment with different sizes. As shown in Table I, our
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TABLE I

STATISTICS OF OUR ROBOT EXPLORATION METHOD IN SIMULATION AND REAL EXPERIMENTS

proposed method can finish the exploration task in different
environment scenarios efficiently. In the corridor environment
with the size of 28 × 15 m2, the robot can finish the task
within 206 s with an average speed of 0.32 m/s. In the mean-
while, 2083 nodes of the road map are generated. Comparing
with the original map that has over 8000 nodes, our proposed
graph simplified the exploration environment. In the same
kind of environments with different map sizes, bigger map
means more nodes and longer exploration time. We use the
Find Target Rate to record the target centroids that failed
to connect to the road map, which we cannot evaluate with
our proposed graph structure and utility function. We can see
the failure rate is very low. In our experiments, the areas
that fail to connect to the graph will finally be scanned by
the sensor. According to Table I, the Find Target Rate is
little higher in the unstructured environment than that of other
environments. The reason for this is that in the unstructured
environment that contains more scattered objects, the segment
that connects the target centroid and the graph is prone
to intersect with obstacles. In different scenarios, the more
complex the environment, the longer the path length and the
higher the time cost.

C. Real-World Experiments

The results of our proposed method in real experiments
are shown in Fig. 11. Fig. 11(a) and (b) shows the setup of
our robot and the structured environment. The environment
is set to be an officelike one. As shown in Fig. 11(c), our
proposed method can explore the environment with smooth
trajectory without walking back and forth. We also test our
method in the real environment with different sizes, as shown
in Table. I. In the real implementation, the laser range finder
with 360◦ is remolded mechanically to generate the laser range
finder with 270◦. We increased the map resolution in the small
environment for the purpose of generating more frontier grids
in the occupancy map. In the real experiment, the average
speed for exploration is relatively slower than that in the
simulated environments. The Find Target Rate in our real
experiments are little larger than that in the office environment

Fig. 11. Experiment in real environment. (a) and (b) Setup of robot and real
environment. (c) Corresponding occupancy map. Yellow stripes with red dots
indicate the trajectory of robot exploration.

of our simulation experiments. This may be caused by that
there is much uncertainty in the real environment than the
simulated environment.

D. Discussion

We conduct experiments in both simulated and real-world
experiments. The qualitative and quantitative analysis in the
experimental studies demonstrates the efficiency and efficacy
of our framework. However, the limitation is that our graph
structure cannot connect to all candidate regions in com-
plex environments. This is because in complex environments,
the edges that connect the target regions and the existing graph
are sometimes not collision free. Note that many centroids of
target candidate regions that fail to connect to the graph struc-
ture are generated during the interval of two target selection
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process. Hence, these centroids will not be involved the final
target selection. However, there still may exist possible failure
in more complex and uncertain environments. This could be
solved by using other indicators of the frontier clusters to guide
the exploration.

VII. CONCLUSION

In this paper, we propose an efficient framework for
autonomous robotic exploration in 2-D unknown environ-
ments, which is different from other conventional pipelines
in both the planning method and decision-making method.
We use frontiers as the candidate target regions to explore.
Our method first uses a novel utility function to evaluate
target regions, in which the utility function considers both the
information gain of the frontier region and the path cost to go
there. A target reselection mechanism is presented to reduce
the extra exploration effort. We propose a road map that is
constructed along with the exploration process. The robot can
find a path on this structure efficiently. Hence, we do not need
to consider the whole environment every time when we want
to find a path from the current location of the robot to the
target region. The generated global path is then optimized with
our proposed trajectory optimization method. Both simulated
and real experimental studies show that our proposed method
can build a precise map of the environment autonomously.
Compared with other methods, our method cost less
path cost.

As we can see from the experiments, there exist some target
points that cannot be connected to the graph structure. We will
further improve our method in the future. Despite the frontier
centroid, other indicators of the frontier, such as the nearest
vertex on the existing graph to the frontier cluster, will be
tested for guiding the exploration.

APPENDIX

We calculate the information gain I (S; fi ) at target regions
using the ray-casting method. Sr is the set of grids within a
circle centered at the frontier area fi . Since we only consider
the information gain at target regions, the path li is reduced
to the target point fi . Let So = S \ Sr , then (2) becomes

I (S; fi ) = H (S)− H (S| fi)

= H (Sr ∪ So)− H (Sr ∪ So| fi )

= H (Sr )+ H (So)− H (Sr | fi )− H (So| fi ). (9)

The operation of ray-casting will not affect the value of the
grids in So; hence, H (So| fi ) = H (So). In this forward
simulation model, we assume the sensor is accurate and can
obtain all the information of a grid exactly without any noise.
In other words, performing ray-casting around fi will result
in p′(sk)  1 or p′(sk)  +0, ∀sk ∈ Sr , where p′(sk) is the
occupancy probability of grid sk after performing ray-casting.
Then

H (Sr | fi ) = −
R∑

k=1

p′(sk) log(p′(sk)) = 0 (10)

where R is the number of grid sk ∈ Sr . Hence, we get

I (S; fi ) = H (Sr)

= −
R∑

k=1

p(sk) log(p(sk)). (11)

Then, we get the information gain at the target area fi .
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