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ST-TrackNet: A Multiple-Object Tracking Network
Using Spatio-Temporal Information

Sukai Wang , Member, IEEE, Yuxiang Sun , Member, IEEE, Zheng Wang , Senior Member, IEEE,

and Ming Liu , Senior Member, IEEE

Abstract— Multiple-object tracking (MOT) is a crucial compo-
nent in autonomous driving systems. However, inaccurate object
detection is always the bottleneck for MOT. Most detectors are
not designed to take the temporal information across consecutive
frames into consideration. To take advantage of such information,
we design a novel data representation, the spatio-temporal (ST)
map, which collects a batch of detection results spatio-temporally,
and we train a novel network, ST-TrackNet, to assign predicted
track IDs to each positive detection across a sequence. With our
ST map detection fed into the tracker, the correlation of objects
between adjacent frames becomes prominent, which improves
the performance of the tracker in the data association step.
Moreover, the long-term trajectory in a sequence also helps to
refine the detection results. We train and evaluate our network on
the KITTI dataset, a CARLA simulation dataset, and a dataset
recorded in a factory environment. Our approach generally
achieves superior performance over the state-of-the-art.

Note to Practitioners—We investigate the MOT problem in
this paper. A spatio-temporal pipeline is proposed to provide a
solution to this problem. Object detection results produced by
off-the-shelf object detectors are used to form the proposed ST
maps. In low signal-to-noise ratio (SNR) situations, our proposed
framework can achieve more accurate and robust tracking results
with more false-positives. Due to the simplicity and modular
design of our framework, it can be applied directly after the
detection stage to achieve the online tracking task. The proposed
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method is evaluated on several datasets, and the experimental
results demonstrate its effectiveness. Our method can also be
used for other autonomous driving applications, such as path
planning and trajectory prediction.

Index Terms— Autonomous driving, multi-object tracking,
deep learning, spatio-temporal map.

I. INTRODUCTION

MULTIPLE-OBJECT tracking (MOT) is gradually
receiving more and more attention in Advanced Driver

Assistance Systems (ADAS). A fully ADAS contains data
composing [1], calibration [2], localization and state estima-
tion [3], self-trajectory prediction and planning [4], perception,
etc. In the perception part, MOT task aims to associate the
objects in a long-term sequence with their unique track ID.
And as the prior result, the performance of object detection
networks is the key factor for tracking-by-detection trackers
in MOT. The motivation of object detection is to find the
bounding boxes and heading angles for objects. The cur-
rent state-of-the-art object detection techniques have achieved
impressive results on different benchmarks. However, the
balance between false-negatives and false-positives remains a
crucial problem. The confidence threshold (CT) for choosing
the object bounding boxes at the final stage of a detector
influences the detection performance: the higher the values of
the CT, the more false-negatives, and the lower the value, the
more false-positives. Too many false-positive detections can
lead to a dramatic decrease in the data association stage due
to the interference of redundant error information. However,
considering autopilot safety, more false-positives are more
acceptable than more false-negatives. With this prerequisite,
one of our motivations is to filter the false-positives and
associate the same object at different times in one trajectory.

The data association in consecutive frames is the main step
in MOT problems. The real world is four-dimensional (i.e.,
spatio-temporal): the 3-D length, width and height, and the 1-D
time. Objects in the 4-D world usually exhibit spatio-temporal
continuity. For example, objects in real road environments
will not appear or disappear suddenly. Fig. 1 shows a plot of
object detection and tracking results in the 4-D spatio-temporal
world, and this kind of plot is called a spatio temporal (ST)
map in this paper. The MOT task is to find the red trajectories
in the map. From the ST map, we can see that the object
trajectories become more distinguishable, which can benefit
the data association in MOT.
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In this paper, we propose a point-wise neural network,
ST-TrackNet, which treats detections in the ST map as
points in a point cloud. Our network takes as input the
spatio-temporal point cloud and outputs a track ID for each
object. However, there are two critical issues in the network.
One is that the number of trajectories is not constant, and
the other is that the order of trajectories is not required to be
fixed. One particular object only needs to be classified into
one trajectory, no matter what the track ID of the trajectory
is. And the number of trajectories depends on the number
of real objects at that moment, which is uncertain. These
two issues are especially prominent during network training.
In our approach, we set a maximum number of trajectories
to solve the first issue, and apply a track assignment module
to efficiently assign ground-truth trajectories to the predicted
trajectories for the second. The ST map also contains more
regulations than an ordinary point cloud. We employ novel
sampling and feature extraction methods to learn the associa-
tion relations in the ST map. The contributions of this work
are listed as follows:

1) We propose a new data format, the ST map, to rearrange
the detection results and encode the spatio-temporal
information in a point cloud type.

2) We propose novel ST-downsampling and ST-upsampling
layers in our network to learn the correlation features for
point-like objects in ST maps. And we first introduce the
label assignment method to solve the random track ID
prediction problem as a classification problem.

3) Our approach outperforms the state-of-the-art on the
KITTI online benchmark in terms of MOTP, IDS, and
FRAG. In addition, we demonstrate that the tracking
results can be used to refine the detection results.

The remainder of this letter is organized as follows.
Section II reviews the related work. Section III describes
our data representation and the network model in detail.
Section IV presents the experimental results and discussions.
Conclusions are drawn and future work is given in the last
section.

II. RELATED WORKS

A. Tracking-by-Detection MOT

Based on whether the tracking frameworks separate the
detection from the trackers, they can be categorized as
tracking-by-detection methods or tracking-before-detection
methods. In this paper, we choose a tracking-by-detection
framework, like most current algorithms. In data association,
some approaches handled handcrafted object features [5],
[6], while others extracted learned features from the detector
network [7], [8], and some recent research has proved that
only using bounding boxes can also achieve high tracking
performance [9], [10]. In tracking-by-detection frameworks,
the tracking performance is mainly based on the detection
results. How to choose the detection threshold to balance the
false-negative and false-positive detections is a key problem
to be solved.

Fig. 1. Visualization of ST map. The points and lines represent the detected
objects and their tracked trajectories, respectively. The t represents time, and
the coordinates in the x-y plane represent the 2-D projected positions of the
objects.

B. Single-Scan MOT

MOT problems can be classified based on their area of
focus. According to the number of input frames, the algorithms
can be single-scan or multi-scan. Multi-scan techniques [11],
[12], [13] use an entire sequence or multiple frames of input to
find the optimal trajectory assignment, while single-scan [14],
[15], [16] methods only take two adjacent frames as input and
associate the objects within them. In the data association of
the single-scan MOT methods, the Kalman Filter [7], [8] and
Gaussian [17] are the conventional methods applied for motion
prediction. Convolutional Siamese networks [18], [19] are also
used widely for association similarity computation, to predict
the cost matrix of all object pairs and then the Hungarian
algorithm [20] can be applied to obtain a solution.

SORT [7] and AB3DMOT [9] are two baseline methods for
2-D and 3-D tracking-by-detection single-scan MOT, which
take as input the two adjacent frames, and finish the online
and real-time tracking results. These two methods use off-the-
shelf object detectors, with the Kalman Filter and Hungarian
algorithm to obtain the trajectories. Meanwhile, PointTrackNet
[15] is an end-to-end network for object detection and tracking,
which takes as input single-scan point clouds and outputs the
object movement for object tracking. Our proposed end-to-end
network tries to learn the global and connectivity features in
a batch of input detection data, rather than using Hungarian
algorithm directly, to handle the tracklets autonomously.

C. Multi-Scan MOT

Multi-scan MOT takes as input a batch of frames to achieve
better tracking performance by fusing long-term data. Various
kinds of networks focus on the importance of temporal rela-
tions in a batch of data, such as Recurrent Neural Networks
(RNNs), Long Short Term Memory (LSTM) [21] and Gated
Recurrent Unit (GRU) [22]. LSTM and GRU are variants of
RNNs, with LSTM solving the short-term memory problem
of RNNs, and GRU is a more efficient variant of LSTM.
Time-related networks are used widely in forecasting tasks
like trajectory prediction [23], [24], motion planning [25], etc.

Spatio-temporal-based methods are another approach to
merge long-term spatial information. Wang et al. [26] proposed
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a Bayesian and conditional random field-based framework in
an ST map to solve the data association problem between
frames. Spatio-temporal LSTM [27], which uses sequential
data as input, was introduced to save long-term contexture.
End-to-end network DiTNet [28] used a PointPillar-based
detector to extract multi-frames detection features, and merged
batches of features to learn the associated track IDs. However,
the huge consumption of time and resources makes the algo-
rithms difficult to implement in real time.

Our proposed framework uses bounding boxes to generate
the ST map representation, and consolidate the detection
results at all times to help us finish the data association
task. Experiments show that our ST-TrackNet can also achieve
comparable tracking performance with much faster speed
using our bounding box-based features only.

III. THE PROPOSED APPROACH

A. Approach Overview

The overview of our approach is shown in Fig. 2. It consists
of two main components: 1) an ST map generator, and 2) our
proposed ST MOT network, which is named ST-TrackNet.

The input to the ST map generator can be 2-D camera
images, 3-D point clouds, or both. Using an object detec-
tor, the position and bounding box information of objects
can be obtained from the raw sensor measurements. Then,
we convert the object detection results into a 3-D ST map.
Our ST-TrackNet treats the ST map as a point cloud, taking
it as input, and it outputs the track ID of each detected
object. The network mainly consists of an ST-downsampling
module, an ST-upsampling module and a track assignment
module. Note that the track assignment module is only used
during training to associate the predicted trajectories with
the ground-truth trajectories so that the training loss can be
calculated.

B. Spatio-Temporal Map Generator

The offline object detector can provide 1) the position
coordinates {pt

i = (x t
i , yt

i , zt
i )}Nt

i=1, where Nt represents the
maximum number of objects at the current time t ; and 2)
the bounding boxes {bt

i = (l t
i , w

t
i , ht

i , at
i , st

i )}Nt
i=1, where l, w,

h, a, and s are the length, width, height, orientation angle, and
confidence score of a bounding box. With the position results
obtained from a whole sequence, a sliding window is used to
crop a batch of data on the time axis. Let T denote the length
of frames in the ST Map (time window size) and �t denote
the step size of the sliding window. The object positions in this
time window are denoted as {pt

i = (x t
i , yt

i , zt
i )}i∈[1,NT ],t∈[0,T−1],

where NT = N ·T . To construct the ST map, we first drop the
height information z of the position coordinates, because road
objects (e.g., cars, pedestrians and cyclists) move on the 2-D
road plane in most cases. Then we plot the 2-D coordinates
of objects (x, y) from the whole sequence with time t as the
ST map. The ST map can be viewed as a 3-D point cloud.

Our proposed tracking framework can handle batch-based
or online 3-D object tracking tasks. The batch-based tracking
method means that we can achieve the whole data first; and
the online method means the tracker will utilize every online

Algorithm 1 Creation of ST Map From Detection Results
Input :
Detections in time t :
{Deti = (xi , yi , zi , li , wi , hi , ai , si )}Nt

i=1,
Detections in sequence from time 1 to Tseq : {Dett }Tseq

t=1
Output:
ST maps in the whole sequence: M = {Pt , Ft }Tseq

t=1,
Points in each ST map: P = {pi}Ni=1,
Features of each point: F = { fi }Ni=1

1 M ← ∅, P ← ∅, F ← ∅

2 while t + T ≤ Tseq do
3 // Start to create t-th ST map: Mt = {Pt , Ft }
4 for t ≤ t j ≤ t + T do
5 // Add detections to Pt and Ft

6 foreach p
t j

i ∈ Dett j do
7 Add (t j − t, x

t j

i , y
t j

i ) to Pt

8 Add (l
t j

i , w
t j

i , h
t j

i , a
t j

i , s
t j

i ) to Ft

9 end
10 end
11 Add Mt to M
12 t = t +�t # Move forward �t frames
13 end

input in real-time and then associate the new objects with the
past trajectories. When our method is applied as an online
method, every ST map will include the frames from tcurrent −
T to the current frame tcurrent , and the step of the sliding
window should be 1. If it is applied as a batch-based method
by contrast, the step size can be larger than 1 to speed up the
tracking process. The pseudo-code of the ST map generator
in a batch-based situation is described in Algorithm 1.

There are three main reasons that we need to rearrange the
detections into an ST map. Firstly, the ST grouping layer in
our ST-TrackNet uses the spatial and temporal relationship
of objects in different frames to group the neighborhoods.
The ST map can provide it so that the subsequent network
architecture can learn from other fundamental frameworks
like PointNet++ [29]. Secondly, the state prediction step in
Algorithm 3 needs to fit quadratic curves in the X-t, Y-t, and
Z-t plane, and uses the curve function to predict the current
location. The ST map can provide convenience for collecting
essential data. Lastly, the ST map representation is better for
visualization and trajectory analysis, so it is worthwhile to
spend a trivial amount of time creating the ST map for further
usage.

C. ST-TrackNet

The aim of our ST-TrackNet is to predict the object track ID
with confidence scores between different time layers of the ST
map. As previously mentioned, our network mainly consists of
an ST-downsampling module, an ST-upsampling module, and
a track ID prediction module. The downsampling and upsam-
pling modules help to merge the time-related features, and
the track ID prediction module applies the softmax function
to predict the tracking confidence score and track ID of each
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Fig. 2. Overall architecture. Given T frames’ detection results in the grey shadow, which are cropped from the sequence by the time sliding window, the
ST map generator generates the ST map, and the ST-TrackNet learns to predict each object’s track ID. The modules in the red shadow are only used in the
training process, to find the bipartite matchings between the predicted trajectories and the ground-truth trajectories. The red dotted lines show the backward
data flow.

Fig. 3. Architecture of ST-TrackNet. In this figure, the blue dotted lines represent a skip connection, and Max T raj means the maximum number of
objects at each time frame. The tracking result includes each point’s mask and track ID information.

Fig. 4. ST downsampling and upsampling layers in ST Sampling
module. In this example, we set the time window size to 10, and set three
downsampling layers and three upsampling layers.

object. The inference architecture of ST-TrackNet is shown
in Fig. 3. Our ST-TrackNet consists of three downsampling
layers, three upsampling layers, and three fully-connected (FC)
layers. The input of ST-TrackNet is a point cloud in the ST
map which has size N×8, and the size of the output of the last

Fig. 5. ST Grouping layer. The chosen object groups the features of the
objects inside the range of choice.

FC layer is N × (2+max trajectories number). The softmax
operation is applied to generate the mask in [0, 1] and applied
for each track ID in a time layer, because one object only has
one track ID, and different points of the same object in one
ST map should have the same track ID.

The ST-downsampling module consists of three sequen-
tial Sampling-Grouping-Convolution blocks. We adopt the
point-cloud processing method proposed in PointNet [30],
which directly takes as input the raw point clouds. The
Sampling layer in each block aims to downsample the points
from the ST map. The first Sampling layer downsamples
the input point cloud {pt

i }t∈T0 into {pt
i }t∈T1 , where T0 and
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T1 are the set of different time layers, and T1 ⊂ T0. During
the downsampling operation, we extract all the points in the
interval time planes. For example, in this paper, we choose
the time window size as 10. Then in the first downsampling
operation, the points in time {1, 3, 5, 7, 9} will be temporally
dropped and saved, and points in time {0, 2, 4, 6, 8} will be
passed into the ST Grouping layer. The process of all Sampling
layers in the three downsampling and upsampling operations
is shown in Fig. 4.

Inspired by the K-Nearest Neighbors (KNN) algorithm, and
considering the characteristics of our ST map and the tracking
task, we propose an hourglass-like ST Grouping layer in Fig. 5.
This layer aims to group the neighboring features of the
downsampled or upsampled points. For one chosen point in
the grouping layer, the other points in the same time plane
are not grouped with this point. The reason is that there are
not two or more objects that have the same track ID at the
same time. In the local region grouped by the ST Grouping
layer, we use the relative position as one of the inputs for
distance computation. For each chosen point p, the relative
position d is the Euclidean distance between its K neighbors:
{di = pi− p}i∈[1,K ]. Then the output of the first grouping layer
has the size N ′ × K × C , where K is the number of grouped
points, and C is the number of feature channels.

The output is next fed into the Convolution layer, which
consists of several multi-layer perceptrons (MLPs), and aims
to produce the features. A pooling layer is then set to merge the
features from the gathered points to the chosen point. In this
paper, we choose max-pooling method in this layer.

The ST-upsampling module likewise consists of three
sequential blocks, Interpolation-Grouping-Convolution. The
Interpolation layer in each block is designed to gradually
restore the points which were dropped in the Sampling
layers in the ST-downsampling modules. The reason for
this restoration is that every original point needs a track
ID. We adopt a similar hourglass-like grouping operation
in the ST-upsampling module to that adopted in the ST-
downsampling module, as shown in Fig. 5. In each Group-
ing layer, the features of the corresponding sampling layer
are concatenated into the features after the Convolution
layer in the ST-downsampling module through skip connec-
tions, with another shared MLP connected. Our proposed
hourglass-like grouping operations help the network better
extract the location-correlated features without interfering with
other objects at the same time.

D. Training Process

1) Track Assignment Module: Due to the randomness of
the track ID assigned to each trajectory, we cannot directly
calculate the loss between the predicted tracking trajectory and
the ground-truth trajectory. Thus, we design a track assignment
module to find the bipartite-matching between the predicted
and ground-truth trajectories. The module takes as input the
predicted trajectories as well as the ground-truth trajectories
and assigns the most well-matched ground-truth trajectory ID
to the predicted one.

We employ the Intersection over Union (IoU) as the cost
metric to measure how well a pair of trajectories matches.
It calculates the ratio for the number of overlapping points
over the total number of points in a pair. Since the number
of predicted trajectories varies, it is reasonable to set L ≥ L̄,
where L is the number of predicted trajectories and L̄ is the
number of ground-truth trajectories. The size of the output of
the module is B × N × (L + 2), where B is the batch size,
N is the number of points, and 2 is the size of the confidence
score. Let {Si , Sj } denote a pair of trajectories, Ci, j ∈ R

L×L̄

denote the cost for the matching, and I ∈ R
L×L̄ denote the

reordering matrix. The assignment problem can be formulated
as a bipartite matching problem:

argmin
I

L∑
i=1

L̄∑
j=1

Ii, j Ci, j

subject to: 0 ≤ i ≤ L, 0 ≤ j ≤ L̄,

Ii, j ∈ {0, 1},
L∑

i=1

Ii, j = 1, for ∀ j. (1)

In this paper, we use the Hungarian algorithm [20] to solve
this problem. With the matching matrix I , we can associate
the predicted unordered trajectories with the ground-truth
trajectory to get the ordered trajectories. Then the network loss
can be calculated. The Hungarian algorithm is only applied in
the training process, so our tracking network is end-to-end and
the inference speed is much faster than the training speed.

2) Loss Functions: Our loss consists of a binary cross
entropy loss Lmask , a softmax IoU (SIoU) loss LSIoU , a triplet
loss Ltr i , and a discriminative loss Ldis :

Lall = Lmask + LSIoU + Ltr i + Ldis . (2)

Lmask is computed from the tracking confidence score of
each point:

Lmask = −s · log(ŝ)− (1− s) · log(1− ŝ), (3)

where s ∈ {0, 1} is the ground truth, 1 represents that the
detection is true positive, 0 represents that it is false positive,
and ŝ is the prediction confidence score of each point.

With the associated tracking trajectories, we can calculate
the SIoU with the following:

LSIoU = 1− 1

L

L∑
l=1

∑N
n=1 f l

n · gl
n∑N

n=1 f l
n +

∑N
n=1 gl

n−
∑N

n=1 f l
n ·gl

n

, (4)

where N is the number of points, gl
n ∈ {0, 1} represents the

ground truth, and f l
n ∈ [0, 1] is the probability that point n is

on the trajectory l, which is obtained by applying the softmax
function on the trajectory class prediction for point n.

As our task resembles the instance segmentation for point
clouds (i.e., point-wise trajectory ID labelling), we borrow the
triplet loss and discriminative loss [31] that are widely used in
instance segmentation for our task. These two losses encourage
the features from the same tracklets to stay as close as possible
to each other, while the features on different tracklets are
separated as far as possible. Specifically, we choose the batch
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hard triplet loss:

Ltr i = 1

L

L∑
l=1

{
max

pa ,pb∈l
D[Fθ (pa), Fθ (pb)]

− min
pa∈l,pc /∈l

D[Fθ (pa), Fθ (pc)]+ δtr i

}
+
, (5)

where δtr i is a margin parameter, D(·) is the distance function,
Fθ (p) means the features of point p from the output of the
last upsampling layer, pa and pb are points from the same
tracking trajectory, pa and pc are points from different tracking
trajectories, and the symbol {}+ represents the ReLu function.
The discriminative loss Ldis is calculated by:

Ldis = ωvar · Lvar + ωdistant · Ldistant + ωreg · Lreg, (6)

where different ω represent different weighting parameters,
Lvar ,Ldistant and Lreg are respectively calculated by

Lvar = 1

L

L∑
l=1

1

Nl

Nl∑
n=1

[‖μl − Fθ (pn)‖ − δv

]
, (7)

Ldistant = 1

L(L − 1)

∑
lm ,ln∈L

[
2δd −

∥∥μlm − μln

∥∥]2
+, (8)

Lreg = 1

L

∑
l∈L

‖μl‖, (9)

where Nl is the number of points in the trajectory l, μl is the
average embedding in the trajectory l, μlm and μln represent
the average embeddings for trajectories lm and ln , and δv and
δd are margin parameters. In our experiments, we set α = 1.0,
β = γ = 0.1, ωvar = ωreg = 1.0, ωdistant = 0.001, and the
margin parameters as 1.0.

E. Inference Process

During the inference process, our network takes as input
the ST map and outputs the track ID for each point in a
batch. By moving the aforementioned sliding window step
by step, we first find the track ID in each batch, then use
a post-processing module in Algorithm 2 to make the network
more robust, and finally connect all track IDs and refine the
detection results for the whole sequence in Algorithm 3.

Our ST-TrackNet may make some wrong predictions, for
example, two tracklets being predicted to have the same ID
or one track having a small number of points assigned the
wrong ID. Thus, in the post-processing in Algorithm 2, we use
the small RANSAC [32] algorithm to find the best fitting
tracklets, and apply rules (maximum acceleration, maximum
speed and breaking times) to ensure the tracklet is valid.
In this way, the network will be more robust to different
situations. In this paper, we use RANSAC{#NU M} to name
the RANSAC algorithm with a particular number (#NU M) of
iterations. Since the number of points fed into the RANSAC
algorithm and the number of iterations are small, the time cost
of the algorithm can be ignored. The details of the Kalman
filter used in Algorithm 3 are the same as in [9]. The objects P
in the two algorithms have all detection and tracking features,
{t, x, y, z, w, h, l, θ, detection score, tracking score}.

Algorithm 2 Post-Processing Algorithm to Refine the
ST-TrackNet Prediction Results

Input : ST map location P = {pt
i }i∈[1,NT ],t∈[1,T ],

predicted track ID and confidence score of each
point I D = {[I Dt

i , scoret
i ]}i∈[1,NT ],t∈[1,T ]],

maximum number of tracklets L.
Output: Tracklets set S = {P, I D}.

1 S← ∅

2 for i <= L do
3 Find the largest tracklet Si = {Pi , I Di }, I Di == i
4 P ← Pi

5 while Si 
= ∅ do
6 RANSAC20 get valid tracklet

Sv = {Pv , I Dv }, Pv ⊂ P
7 if Success then
8 Si ← Si − Sv , P ← P − Pv , S ← S + Sv

9 else
10 break
11 end
12 end
13 end
14 Output S.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets

The first dataset we use is the object tracking benchmark
dataset from KITTI [33], which has 21 sequences with ground
truth. The second is the simulation dataset generated from
CARLA [34]. Our approach is trained on the CARLA dataset,
and quantitatively evaluated on CARLA and the KITTI
dataset. Moreover, we qualitatively demonstrate our method
on sequences which are recorded in crowded environments.
We also upload our test results on the 29 test sequences
from KITTI to the online benchmark. Since the KITTI dataset
mainly uses the vehicle class for validation, we only track
the Car and Van categories on KITTI. In the CARLA dataset,
we set the number of pedestrians to 30 and the number of
vehicles to 20 in the settings.

B. Evaluation Metrics

The CLEAR MOT metrics are used widely for evaluating
detection and tracking accuracy. The first metric is Multiple
Object Tracking Accuracy (MOTA):

M OT A = 1−
∑

t(mt + f pt + mmet)∑
t gt

, (10)

where mt , f pt and mmet are the numbers of misses, false
positives and mismatched objects at time t respectively. The
second metric is Multiple Object Tracking Precision (MOTP):

M OT P =
∑

i,t di
t∑

t ct
, (11)

where d is the metric distance between the detection and
ground truth bounding boxes for matched pairs and c is the
total number of matches. These two metrics help us to estimate
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Algorithm 3 Online Update Tracklets in the Sequence
Using Predicted ST Map Result
Input : ST map tracklets {St = {[Pi , I Di ]}i∈[1,L]}t>0.
Output: Tracklets set T rk = {[Pj , I D j ]} j>0

1 T rk← ∅

2 for Online update t do
3 for valid i <= L do
4 # Compose tracklet si = [Pi , I Di ] ∈ St

5 Search Pi in Pj ∈ T rk
6 if have same point in [Pj , I D j ] ∈ Trk then
7 # refine current detection using previous

3 detections
8 Find last 3 points in this tracklet.
9 State Prediction: Fitting quadratic curves in

XYZ plane and predict current values.
10 State Update: Kalman Filter to update current

detection.
11 Add current point into [Pj , I D j ] ∈ T rk with

I Di = I D j .
12 else
13 # newborn tracklet
14 Assign new track ID to si .
15 Trk ← Trk + si .
16 end
17 end
18 end
19 Output Trk.

the overall performance of the detection and tracking pipeline.
Besides these metrics, Mostly Tracked (MT), Mostly Lost
(ML), ID Switches (IDS) and FRAGmentation (FRAG) can
provide more tracking orientation characteristics. A higher
MT and a lower ML, IDS, and FRAG mean the tracker has
improved in continuous tracking and reduced the trajectory
fragmentations and ID_switches.

For network validation on each window, the IoU for each
class is chosen as one of the evaluation metrics. After we
reorder the predicted track IDs to pair with the ground truth
track IDs, a higher m IoU means better performance of the
network. For point m and track class n,

m IoU = 1

L

L∑
n=1

T Pn

T Pn + F Pn + F Nn
,

where T Pn , F Pn and F Nn mean the number of true-positive,
false-positive and false-negative points inside the track class
n. This matrix shows the most intuitive evaluation quality of
the network.

C. Network Settings and Details

Considering misdetections like false-positive results, we set
the number of points in each time stamp to N = 90 to include
all detection results in the ST map. If the number of detection
results is less than the number of points, we fill the points
with {t, 0, 0}. We set the maximum number of trajectories in
each time stamp as L = 60. The time window size T is set

Fig. 6. Comparison of sampling methods with detection confidence
thresholds. Our ST Sampling method helps networks stay relatively steady
as the threshold changes, and shows better performance than other baseline
methods.

to 10 and the sliding window step size �t is set to 4 in our
experiments, since the all detection results of the datasets can
be achieved before tracking. If our method is applied in an
online situation, the step size �t should be set to 1. During
the training process, we get the labels of the objects in the
sequence by fitting the label trajectories to conics in the x-y
planes using the least-squares method. The detection results
that are close to these curves are chosen as positive detections
and assigned the curve label. The number of grouped points
K is set to 6. The S1 downsampling layer setting in Tab. I is
used in the ST Sampling layers.

D. Ablation Study

1) Sampling Methods With Detection Threshold: In our
proposed framework, the ST map is considered to be a point
cloud, and is fed into the point cloud-based network. In this
section, we compare our proposed ST downsampling layers
and ST upsampling layers with the PointNet++ based Set
Abstract layers (downsampling layers) and Set Upconv layers
(upsampling layers), to distinguish the tracking problem in
the ST map from the common 3-D point cloud environment.
Specifically, our ST Sampling layer is compared with the FPS
method in all downsampling and upsampling layers.

The five networks in the comparison, which have different
downsampling and upsampling layers, are described as fol-
lows: “PN” means PointNet++ based, “ST” means our ST
based, “D” and “U” mean down- and up-sampling respectively.
“FPS-” means using FPS in the downsampling layers.

Fig. 6 shows the comparison of the downsampling and
upsampling methods with different detection confidence
thresholds. Since our proposed network based on the ST map
has the ability to refine the detection results by eliminat-
ing redundant detections, all networks stay relatively steady
as the threshold changes. Our proposed ST-downsampling
and ST-upsampling layers show better performance than the
PointNet++ layers in feature extraction and interpolation,
which means the points in the same time stamp do interfere
with the track feature extraction. Comparing our ST Sampling
layer with FPS, we can find that the performance becomes
worse when the FPS layers replace the ST Sampling layers.
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TABLE I

DIFFERENT DOWNSAMPLING LAYER SETTINGS

This comparison reveals that in such a time-related ST map
environment, sampling from the time dimension is better than
sampling from the spatial dimension.

2) Other Network Settings: After demonstrating that the ST
Sampling method is better than the other point-based sam-
pling methods, we conduct several experiments to study the
performance of ST-TrackNet with different network settings.
The main factors of influence of the proposed network include
the time window size, downsampling layer setting, and the
utility of each item in the loss function. Uniform experiments
are conducted to illustrate the impact of each factors, and the
comparison is shown in Tab. III. The mIoU metric represents
the network’s performance, and the MOTA, IDS, and FRAG
metrics represent the tracker’s performance. The detection
confidence threshold in this experiment is set to 0.4.

Our multi-scan-based network uses the detection results in a
continuous time period. The size of the sliding window, which
is the input sequence length, decides the ability to compose
the short-term occlusions or misdetections. In the experimental
results #1–6 in Tab. III, the sampling layer stride is set as 1,
all losses in Eq. 2 are used, and the time window size is
varied from 3 to 12. The results of the metrics show that, when
the mIoU is maintained at similar levels, the longer the time
window size, the better the performance of the tracker. And
when the time window size is longer, the mIoU performance
will be lower. As we mentioned before, a longer time window
size will cover more misdetections in a short time duration, and
our tracker can track objects in a long time period. However,
the mIoU metric, which directly represents the performance
of the network, will gradually decrease as the window size
increases. The overall results show that when the time window
size is 4, the network accuracy is highest; and when the time
window size is 10, the tracker is the best. This is the reason
why we choose the time window size to be 10 in our base
experiment.

Another possible key factor is the stride and number of
layers in ST Sampling. The relationship of the downsampling
layer stride and number of layers with the other layers while
downsampling is shown in Tab. I, with the mean of Down-
1 to 4 illustrated in Fig. 4. In experimental results #1 and
#7–11 in Tab. III, the time window size is set to 10 and
all losses in Eq. 2 are used. From these results, we can find
that result #1 is better than result #7, and similar to results
#8–9. Because in experiment #1, all layers are calculated in
the four layers all along the network, the comparison of result

Fig. 7. Comparison of trackers under different recall confidence
thresholds. Our method’s performance stays stable in all recall thresholds,
and it can achieve more accurate tracking results in a low SNR situation.

TABLE II

COMPARATIVE RESULTS OF DIFFERENT DETECTORS WITH REFINEMENT

MODULE

TABLE III

COMPARATIVE RESULTS OF DIFFERENT NETWORK SETTING IN

ABLATION STUDY. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS

#1 with result #7 reveals that the ST Sampling process can
boost the mIoU from 0.9131 to 0.9295, while the comparison
of results #10 and #11 (which have two and one downsampling
layer respectively) with result #1 shows that the “deeper”
the sampling process, the better the network performance.
On this basis, our proposed network framework chooses to
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TABLE IV

COMPARATIVE RESULTS OF EVALUATION METRICS WITH DIFFERENT CTS FOR DIFFERENT TRACKERS ON KITTI CAR VALIDATION DATASET. THE

BOLD FONT HIGHLIGHTS THE BEST RESULTS

TABLE V

COMPARATIVE RESULTS OF EVALUATION METRICS WITH DIFFERENT CTS FOR DIFFERENT TRACKERS ON KITTI PEDESTRIAN VALIDATION DATASET.

THE BOLD FONT HIGHLIGHTS THE BEST RESULTS

TABLE VI

COMPARATIVE RESULTS OF EVALUATION METRICS ON KITTI CAR TEST DATASET. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS

use three downsampling and upsampling layers and sets the
downsampling layer stride as 1 in the ST Sampling process.

In experiments #12–15, we respectively remove the loss
items LSIoU , Ltr i , Ldis , and Ltr i with Ldis in Lall in Eq. 2.
For example, L−SIoU means the SIoU loss is removed. Our
ST-TrackNet decreases the mIoU performances to 0.8106 for
Lall − LSIoU , 0.8749 for Lall − Ltr i , 0.8925 for Lall − Ldis ,
and 0.7766 for Lall − Ltr i − Ldis . Since the triplet loss and
discriminative loss are used for clustering the features of
the same object at different times, the spatial and temporal
features of the same object over a period of time should be
similar. From experiments #13–15, we can find that these two
loss items are similar for the network training, but they are

necessary to cluster the features without track ID limitation.
Meanwhile, the SIoU loss helps the network to output the track
ID directly, which is unique at one moment and ranges from
0 to a maximum track ID in that time period.

In the dataset preparation, we augment the CARLA dataset
to simulate the different detection results with different CTs
and effects. All networks are trained using the same training
dataset and are tested on the detection results from PointRCNN
[35] with different network settings.

3) Different Detectors With Refinement Module: In the
inference process of our framework, the Kalman filter and
quadratic curve fitting in the refinement module helps refine
the current detection results using the last three objects in
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Fig. 8. Qualitative results. Top two rows are the visualization of tracking results of sequence 0 and sequence 3 on KITTI test dataset. And bottom two
rows show two different scenes in Foxconn factory. The leftmost column is the detection results and trajectories in ST map, the detections are red points and
trajectories are blue lines. The right most four columns are the bird’s eye view of trajectories of Lidar data at different time stamps.

one tracklet. Tab. II shows the comparison results of our
tracking-by-detection framework with different detectors with
or without the refinement module. The experiments are using
the whole 21 sequences on KITTI training dataset. When the
framework does not the refinement module, the Algorithm 3
changes line 9-11 to use the original detections rather than
the predicted and updated detections. When the last three
objects has a fragmentation, which means missing one or more
detections in the past, the complementary detection will use
the quadratic curve fitting results directly.

From Eq. 10 and 11 we can find that the detection accuracy
mainly inferences the MOTP metric, and the MT and ML met-
rics are more robust when the detection results are modified a
little. The MOTP metric in Tab. II illustrates that the precision
of the detections in the whole sequence will improve with
our refinement module. The relatively similar MOTA results
between different detectors show that our framework is robust
in terms of detection results.

E. Comparative Results

In this section, we compare our method with the other
three baselines RANSAC200 [32], RANSAC1000 [32], and
AB3DMOT [9] on the KITTI validation dataset. Also,

we show the comparative results of all evaluation metrics
on the KITTI test dataset with the state-of-the-art methods.

For tracking-by-detection methods, the performance of the
detector is one of the key factors in the tracking perfor-
mance. Thus we compare our method with other tracking-
by-detection methods which have the same detection results.
AB3DMOT [9] uses off-the-shelf 3-D bounding box detection
results, with a 3-D Kalman filter in the motion prediction
step and the Hungarian algorithm in the data association
step, to finish accurate and real-time tracking. We choose
AB3DMOT as the single-scan tracking-by-detection baseline
and use PointRCNN as the detection method for both
AB3DMOT and our method. Using the same detector guar-
antees that the comparison focuses on the data association
and tracking. RANSAC [32] is used here to generate the
trajectories directly in the ST map. It makes sense to use
RANSAC as a conventional trajectory fitting method for com-
parison. RANSAC200 means we iterate 200 times in the fitting
process in each time window, while RANSAC1000 means
iterating 1000 times. The number of iterations depends on the
complexity of the detection results. More iterations are needed
to find the suitable trajectories in a denser object environment.
In the KITTI validation dataset, when the number of iterations
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is larger than 1000, the tracking results have very limited
changes.

Tab. IV and Tab. V show the comparative results of the
evaluation metrics with different CTs for the different trackers.
Tab. IV evaluates the tracking performance on cars and vans,
and Tab. V evaluates the pedestrians. From the results we can
find that, firstly, our proposed network outperforms the others
on MOTA by a remarkable margin, which means the overall
tracking performance is much better than that of the others.
Secondly, since we choose the same detection results before
tracking, the performance on MOTP is close between the
methods. But our network still improves on the others by
above 1%, which means the tracking can not only choose
the true-positive detections but also helps refine the detection
results. Considering the identity switches and the trajectory
fragmentation, our multi-scan method helps to improve the
completeness of the tracker. We further draw the comparative
results of MOTA in Fig. 7, from which we can find that our
performance stays stable in all recall thresholds, and we can
achieve more accurate tracking results in a low SNR situation.

Tab. VI shows the comparative results of the evaluation
metrics on the KITTI test dataset (Car). It reveals our method’s
competitive results on MOTA, while we can also see that,
on the MOTP, IDS, and FRAG metrics, our method outper-
forms all the others on the KITTI benchmark. The running
time of 0.01 seconds shows that our tracking framework is
real-time, which means that if we first have the detection
results, we can track them in real-time.

F. Qualitative Results

Fig. 8 demonstrates the qualitative results on the KITTI
test dataset and our own LiDAR dataset from an unmanned
vehicle in a factory environment. This part of the dataset has
no public labels, and our network still shows good results.
We choose to visualize the tracking results of sequences 0 and
3 on KITTI, and two scenes from our dataset. The bird’s-
eye-view of the trajectories from Lidar data at three different
time stamps are shown in the right-most four columns in the
figure. We find only one IDS in sequence 0 on KITTI and
fairly good continuity on our dataset. These qualitative results
demonstrate the practicality and robustness of our approach.
In a total 29 sequences of the KITTI test dataset, our network
only has 13 IDSs in all.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel tracking-by-detection
tracker framework, which includes an ST map generator and
an ST MOT network, ST-TrackNet. The ST map genera-
tor takes the detection results in a sequence as input, and
outputs the point cloud in the ST map. The 3-D detection
results can be obtained by any object detector. Our proposed
ST-TrackNet has the ability to output the track ID of each
object directly, without the data association step required in
other trackers. It consists of three ST downsampling layers,
three ST upsampling layers, and three FC layers. In the
training process, we designed a track assignment module to
find the matchings between the predicted trajectories and the

ground-truth trajectories, to solve the problem that the track
IDs are random and unordered. From the experiment results,
we found that our ST Sampling method is better than the
other point-based sampling methods. Our method’s tracking
performance stays stable in all recall thresholds, and it can
achieve more accurate tracking results in a low SNR situation.
On the open KITTI car test dataset, our approach outperforms
the others on the KITTI benchmark in terms of both MOTP
and IDS. However, a number of issues still need to be solved in
the future. For example, the features fed into the network are
insufficient, because we only choose the position and bounding
box information as the input features. In the future, we will
collect the features of each object inside the detector, and
provide them to our neural network, which could improve our
method’s performance.
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