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MMFSeg: Multi-Structure Multi-Feature Fusion for
Segmentation of Road Potholes

Zhen Feng , Yanning Guo , Rui Fan , and Yuxiang Sun

Abstract—Road pothole segmentation is important for the driv-
ing safety of autonomous vehicles, especially in unstructured or
rural environments. Recently, many effective multi-modal fusion
networks have been proposed for road pothole segmentation.
However, most of them adopt two encoders with the same type of
structure, such as only convolutional neural network (CNN) or
only Transformer, to extract features from different modalities.
This overlooks the fact that the information richness of features
extracted from different modalities varies across the types of
features, such as CNN features or self-attention features. To
provide a solution to this issue, we design a novel RGB-Disparity
segmentation network, named MMFSeg, by adopting the two
types of structures as encoders. Specifically, we adopt CNN
and Transformer as encoders to extract two types of features
from each modality, and also propose a late-fusion multi-feature
alignment fusion module to fuse the two types of features with
different numbers of channels. Experimental results demonstrate
that our network outperforms well-known networks, and can
trade-off between accuracy and efficiency.

Note to Practitioners—This study is driven by the chal-
lenge of segmenting road potholes to ensure the safety of
autonomous driving. Our proposed network can utilize dif-
ferent structures to extract diverse feature information from
each modality of data, thereby achieving more accurate road
pothole segmentation results. Our proposed fusion module
effectively fuses diverse features from each modality through
a late fusion strategy. Our method validates effectiveness on
multiple datasets. This work contributes to the safety of
autonomous vehicles by enhancing their driving performance
under poor road conditions. Our network achieves supe-
rior performance compared with existing networks, thereby
enabling more effective deployment of downstream tasks, such
as path planning and navigation, in autonomous driving
systems.

Index Terms—Pothole segmentation, multi-modal fusion,
autonomous vehicles, convolution-transformer structure.

Received 2 January 2025; revised 8 May 2025 and 27 June 2025;
accepted 17 September 2025. Date of publication 23 September 2025; date
of current version 30 October 2025. This article was recommended for
publication by Associate Editor W. Zhang and Editor D. Song upon evaluation
of the reviewers’ comments. This work was supported by the City University
of Hong Kong under Grant 9610675. (Corresponding author: Yuxiang Sun.)

Zhen Feng and Yuxiang Sun are with the Department of Mechan-
ical Engineering, City University of Hong Kong, Hong Kong (e-mail:
zhen.feng@cityu.edu.hk; yx.sun@cityu.edu.hk).

Yanning Guo is with the Department of Control Science and Engi-
neering, Harbin Institute of Technology, Harbin 150001, China (e-mail:
guoyn@hit.edu.cn).

Rui Fan is with the College of Electronic and Information Engineering,
Tongji University, Shanghai 201804, China (e-mail: rui.fan@ieee.org).

Digital Object Identifier 10.1109/TASE.2025.3613629

I. INTRODUCTION

ROAD potholes, usually appearing on roads without main-
tenance [1], pose a great threat to the driving safety of

vehicles [2]. Road potholes not only cause bumps, but also
lead to accidents if vehicle speed is fast and potholes are large.
So, accurate detection of potholes is essential to autonomous
driving [3]. Semantic segmentation has been extensively used
to detect objects at the pixel level [4], [5], [6]. So, detection
of road potholes based on semantic segmentation has received
great attention [7].

Recently, many single-modal networks have demonstrated
effective road pothole segmentation results [8], [9]. However,
due to the limitation of single-modal data to environmental
changes, the performance of these networks degrades as the
data quality degrades. For example, poor lighting conditions
at nighttime may decrease useful information in RGB images,
hence hindering the segmentation accuracy [10]. So, single-
modal networks could not well work in complex and changing
road environments. To address this issue, multi-modal fusion
networks have been applied to this area [11], [12]. Considering
depth differences between potholes and road surfaces, some
methods have been proposed by fusing RGB and depth data
(e.g., point clouds [13] and depth images [14]).

Although these multi-modal fusion networks present accept-
able results, they employ two encoders with the same structure
to extract features of the same type from different modalities at
the same stage [15], [16], ignoring the effects between different
modalities and different types of features. For example, using
convolutional neural network (CNN)-based encoders to extract
convolutional features from RGB images and disparity images
[12], or using Transformer-based encoders to extract self-
attention features from RGB images and depth images [14].
We argue that extracting the same type of features, such as
convolutional features or self-attention features, from different
modalities may not fully utilize the information from each
modality.

To provide a solution to the above issues, we design a
novel multi-modal fusion network, which adopts a CNN-
based encoder and a Transformer-based encoder to extract
two different types of features from each modality. To fuse
different types of features, we design a Multi-feature Align-
ment Fusion (MAF) module with the late fusion strategy to
fuse two features that have different numbers of channels. The
experimental results show that our proposed network can better
fuse two different types of features. Moreover, the superiority
of our network is demonstrated by comparing with existing
well-known multi-modal fusion networks. Our code is open-
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TABLE I
CATEGORIZATION OF THE SINGLE-MODAL SEGMENTATION NETWORKS

BY THEIR BACKBONES AND APPLICATION DOMAINS

sourced.1 The contributions of this paper are summarized as
follows:

1) We design a novel RGB-Disparity (RGB-D) net-
work for pothole segmentation, named MMFSeg,
which adopts CNN and Transformer as encoders
to extract two types of features from each
modality.

2) We design the MAF module to fuse the two types of
features that have different numbers of channels.

3) We conduct comparative experiments to compare
our MMFSeg with well-known networks. The
results demonstrate the superiority of our
network.

This paper is structured as follows. Section II reviews the
related work. Section III describes the details of our proposed
method. Section IV discusses the experimental results. The
last section concludes this work and discusses the future
work.

II. RELATED WORK

A. Single-Modal Segmentation Networks

CNN and Transformer are commonly used as back-
bones to design semantic segmentation networks [17], [18].
Ronneberger et al. [19] proposed the U-shaped semantic
segmentation network, UNet, with the encoder-decoder archi-
tecture. Chen et al. proposed Deeplab [20] and Deeplabv3+

[21] with the atrous convolution in the encoder-decoder archi-
tecture. Han et al. [22] designed ConvUNeXt by combining
UNet and ConvNeXt [23] for medical image segmentation.
Feng et al. [24] adopted ResNet [25] as an encoder to design
InspectionNet++ for detecting cracks on concrete infrastruc-
ture. Dosovitskiy et al. [26] introduced the Transformer from
natural language processing, which is then widely used as the
encoder of semantic segmentation networks. Wu et al. [27]
designed a multi-Scale efficient transformer attention mecha-
nism with a U-shaped network for the segmentation of polyp
segmentation. Recently, Many segmentation networks based
on Transformer have been proposed [28], such as Seg-
Former [29] and SeaFormer [30]. For medical image

1https://github.com/lab-sun/MMFSeg

segmentation, Du et al. [31] designed SwinPA-Net with
Swin-Transformer as the encoder, Chen et al. [32] designed
TransAttUnet by combining Transformer and UNet. Guo et
al. [33] used the Transformer as encoders and introduced
a morphology-aware mechanism to design MorFormer for
the pavement crack segmentation. The above networks are
categorized in Tab. I by their backbones and application
domains.

B. Multi-Modal Fusion Segmentation Networks

Element-wise addition and concatenation are commonly
used to fuse feature maps extracted from different modal-
ities of data. However, Feng et al. [11] found that simple
element-wise addition and concatenation sometimes lead to
performance degradation when fusing features from two
modalities with inconsistent information. Element-wise mul-
tiplication is often used to capture the interactions between
modalities. However, it may result in information loss in
modeling high-dimensional dependencies [34]. Element-wise
maximum is also another commonly used fusion method.
However, it is sensitive to noise and may lead to information
loss [35], [36]. So, these methods may not be appropriate to be
used to fuse features with obvious noises. Average value fusion
is a weighted fusion method. It ignores the properties of each
modality [36]. Sun et al. [37] designed RTFNet that adopts
element-wise addition to fuse the feature maps from RGB
and thermal images. Fan et al. [38] designed RoadSeg that
adopts element-wise addition to fuse the feature maps from
RGB and depth images. To improve fusion performance, some
researchers resort to using attention mechanisms. Zhou et al.
[39] designed a cross-modality awareness module in FRNet
to fuse the features from different modalities. Liang et al.
[40] designed an explicit attention-enhanced fusion module
based on attention mechanisms to fuse RGB-Thermal (RGB-
T) features. Cai et al. [41] designed DHFNet to fuse RGB-T
features with an adaptive attention-filtering fusion module.
Zhang et al. [42] designed a multi-modal fusion knowledge
distillation framework based on the channel attention mecha-
nism.

In addition, some researchers resort to using specially-
designed fusion strategies. Zhou et al. [43] proposed GMNet
for RGB-T segmentation with two fusion modules respectively
for shallow features and deep features. Zhou et al. [44]
designed a multiple-strategy fusion module to fuse different
features by different strategy, such as element-wise addition,
element-wise multiplication, maximum pixel value, and aver-
age pixel values. Feng et al. [45] proposed an adaptive-mask
module to avoid the effect of invalid information in depth
images, and introduced adaptive weights to fuse the features
of RGB-Depth (RGB-D) images. Zhou et al. [46] designed a
demand-modal adaptive module to adaptively determine the
ratio of the integrated cross-modal information for RGB-D
feature fusion. Feng et al. [47] designed a three-stage fusion
module with spatial attention and channel attention to fuse
features of RGB-D images. In the staged fusion module, a
holistic attention module is designed to discriminate inherent

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on November 05,2025 at 04:15:11 UTC from IEEE Xplore.  Restrictions apply. 



22744 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

differences between different features from different modali-
ties. A heterogeneous feature contrast descriptor is designed to
capture shared and distinct characteristics of different features.
In the last stage, the features are adaptively fused by the
adaptive weights. The staged fusion module enhances the
comprehensiveness of feature fusion for freespace detection.
Zhou et al. [48] designed an RGB-T fusion network MMSM-
CNet with the modal memory sharing (MMS) module that
adopts the staged fusion technique. They separately extract
the contour and skeleton of a target, and finally obtains
the complementary information through the morphological
complementary modules, which optimizes targets of different
morphologies at various scales. Zhou et al. [49] adopted
a method that emphasizes feature contrast and difference
inversion for multi-modal feature fusion. And then, they
refined high-level semantic information and complemented the
modality with clustered instance regularization. Feng et al.
[11] proposed a residual-guided fusion module placed at the
decoder stage to complement the missing features of RGB
images for obstacles segmentation. Li et al. [50] designed
a heterogeneous feature synergy block to fuse features of
two modalities with a feature fusion stage and a feature
recalibration stage. Huang et al. [51] divided the features of
each modality into global features and local features, and
then adopted a global feature recalibration module and a
local feature fusion module to fuse the features from two
modalities.

C. Pothole Segmentation Networks

Many pothole segmentation networks based on single modal
of data have been proposed. RGB images are commonly
used in pothole segmentation tasks. Han et al. [52] designed
a reflection attention unit (RAU) and introduced the unit
into a fully convolutional network to segment water hazards
using only RGB images. The proposed RAU is designed
to capture the light-reflective properties of water surfaces
in water hazards across different image regions based on
a reflection correspondence mechanism. RAU captures the
difference between water hazards and roads, which improves
the accuracy of water hazards segmentation. Huang et al.
[53] proposed a plug-and-play embranchment aggregation and
detail enhancement module to improve the performance of
pothole segmentation and detection. Zhou et al. [54] designed
LightCrackNet for crack segmentation based on split exchange
convolution that decomposes the features into high- and low-
resolution features, and utilizes the pooling layer to reduce the
size of the low-resolution features to decrease the data volume.
The convolution makes full use of information of different
scales and significantly reduces the number of parameters
and computational complexity, enabling realization of high
efficiency and lightweight. Dong et al. [9] proposed CRAM-
Seg-CapsNet with neural capsules that extract vector features
for pothole segmentation. Since cracks are similar to potholes,
some researchers also studied crack segmentation. Liu et al.
[55] introduced atrous spatial pyramid pooling and coordinate
attention blocks into UNet to design a network for pothole
and crack segmentation. Xu et al. [56] proposed a wall crack

segmentation network with a model-agnostic meta-learning
method that was deployed in a drone. Ma et al. [57] proposed
an unsupervised network UP-CrackNet for the detection of
road cracks. UP-CrackNet adopts undamaged road images
with random masks to train an image generator to detect the
cracks in damaged road images.

The ability of thermal images to capture infrared radiation
from objects enables their application in pothole segmentation
tasks. Aparna et al. [10] built a dataset with thermal images for
pothole segmentation. They used thermal cameras to capture
images of potholes on sunny days and at night, respectively.
The authors also designed a convolutional network for this
task.

Many multi-modal fusion methods have been proposed to
improve the performance of pothole segmentation. RGB-D
images are commonly used in pothole segmentation tasks.
Fan et al. [12] designed RGB-disparity fusion networks,
AAUNet and AARTFNet, by placing channel attention mod-
ules (CAMs) and dual attention modules (DAMs) between the
encoder and decoder stages of UNet and RTFNet. The authors
released an RGB-disparity dataset with 600 pairs of images for
pothole segmentation. They adopted the CAMs to select some
more important channels that are more crucial for segmenting
potholes by adjusting different weights for different channels.
The DAMs are placed at the last two stages of the encoders
due to the limitation of the memory consumed. The DAMs
are used to learn the weight distribution of the feature maps
in both spatial and channel dimensions, selecting the important
features for better results. Feng et al. [2] designed MAFNet by
combining Transformer [26] and ResNet [25] as the encoder
for the segmentation of road potholes. They used ResNet to
extract local features from low-level feature maps, and used
Transformer to extract global features from the last high-
level feature maps. The combination of the local and global
features improves characterization learning for multi-modal
road pothole segmentation. The authors also designed two
fusion modules based on channel attention and dual attention
to fuse the features of RGB images and disparity images.
Feng et al. [58] proposed a multi-modal fusion knowledge
distillation framework for road-pothole segmentation. They
designed a channel and position-wise distillation module to
transfer knowledge. Feng et al. [14] designed PotCrackSeg
for the segmentation of potholes and cracks, which adopts a
proposed dual semantic-feature complementary fusion module
to fuse the features from RGB and depth images.

The paradigm of fusing RGB images with LiDAR point
clouds is also applied to road pothole segmentation. Li et al.
[13] designed a fusion module based on the attention mech-
anism to fuse features of RGB images and point clouds
for pothole segmentation. They designed residual mapping
structure and point attention to fuse the features of RGB
images and point clouds.

D. Difference From Existing Work

Although the existing multi-modal networks for pothole
segmentation have achieved effective results, most of them
adopt two encoders with the same structure (i.e., only CNN
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Fig. 1. The overall architecture of our proposed MMFSeg. It adopts the encoder-decoder architecture: two convolution-based encoders, two Transformer-based
encoders, and one decoder. We adopt ConvNeXt-T as convolutional encoders and SegFormer-b0 as Transformer encoders.

or only Transformer) to extract features. The main dif-
ference between ours and the existing works is that we
combine both CNN and Transformer for feature extrac-
tion. This could fully take the advantages of CNN and
Transformer.

III. THE PROPOSED NETWORK

A. The Overall Architecture

Our MMFSeg adopts CNN and Transformer to extract
features from two modalities of data at the same time. Since
the features extracted by the two structures are with different
types and usually have different numbers of channels, we
design the MAF module to fuse the two types of features.
Our MMFSeg adopts the encoder-decoder structure that con-
tains two CNN-based encoders (denoted as convolutional
encoders), two Transformer-based encoders (denoted as trans-
former encoders), and one decoder. The MAF modules are
placed to fuse the feature maps from each encoder stage and
the outputs are fed into the decoder. The overall structure of
our network is shown in Fig. 1.

We adopt ConvNeXt-T [23] as the convolutional encoders
and SegFormer-B0 [29] as the transformer encoders. In the
encoder stage, there is an RGB stream, a disparity stream, and
four MAF modules. The RGB stream contains a convolutional
encoder and a transformer encoder, which is used to extract
features from RGB images. The disparity stream has a similar
structure as the RGB stream.

Each encoder has four stages for feature extraction. The
output of the n-th stage of the RGB/disparity convolutional
encoder is denoted as Rc

n/Dc
n, and the n-th stage of the

RGB/disparity transformer encoder is denoted as Rt
n/Dt

n, where
n ∈ [0, 4]. The outputs of each stage of the disparity stream
are fed into the MAF module and the following stages. But
the outputs of each stage of the RGB stream are only fed
into the MAF module. In the RGB stream, except for the first
stages of the encoders, the inputs of the (n + 1)-th stages of
the encoders are the outputs of the n-th MAF module, where
n ∈ [1, 3]. The n-th MAF module has 3 outputs: transformer
features Tn, convolutional features Cn, and fusion features Fn,
where n ∈ [1, 4]. The transformer features Tn are fed into the

Algorithm 1 The Encoder

RGB transformer encoder, and the convolutional features Cn

are fed into the RGB convolutional encoder. Note that the last
MAF module only outputs fused features. All of the fused
features from all the MAF modules are fed into the decoder.
We detail the pipeline of the encoder in a pseudocode, which
is shown in Algorithm 1.

B. The MAF Module

Due to the structural differences in convolutional encoders
and transformer encoders, the features extracted by the same-
level stages have different numbers of channels and different
types. The numbers of channels of the features extracted by the
convolutional encoder are 96, 192, 384, and 768, respectively.
The numbers of channels of the features extracted by the
transformer encoder are 32, 64, 160, and 256, respectively.
To address the issue of fusing features containing different
numbers of channels and different types, we design the MAF
module in our MMFSeg. The structure of the MAF module
is shown in Fig. 2. Algorithm 2 presents the details of the
operations in the MAF module in pseudo-code.

The MAF module contains three blocks: spatial block,
alignment block, and channel block. The spatial block is
designed to modify the spatial weights of two different types
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Fig. 2. The structure of our proposed MAF module. FC and BN refer to the
fully connected layer and batch normalization layer.

Algorithm 2 The n-Th MAF Module

of features. In the spatial block, the same type of features are
first fused with element-wise addition, that is, Tn = Rt

n + Dt
n

and Cn = Rc
n + Dc

n, where n ∈ [1, 4]. The fusion results
Tn and Cn are fed into the next stages of the RGB stream.
Secondly, the average and maximum values of Tn and Cn

along the channel axis are calculated. The processes of the
average values and maximum values are denoted as ave(·) and
max(·). The average results (Ac

n and At
n), maximum results (Mc

n
and Mt

n), and the original Tn and Cn are concatenated along
the channel axis. Thirdly, the concatenated result is fed into

two consecutive blocks: a convolution-ReLU block denoted as
convR(·) containing a convolutional layer and a ReLU layer,
as well as a convolution-Sigmoid block denoted as convS (·)
containing a convolutional layer and a Sigmoid layer. The
convolution-Sigmoid block generates 2-channel spatial weight
maps with the same resolution as the concatenated result.
Finally, the spatial weight maps are divided to fuse with Tn

and Cn through element-wise multiplication, respectively. The
fusion results (T s

n and Cc
n) are fed into the alignment block.

The alignment block, containing an alignment strategy con-
troller and two convolutional layers conv(·), is used to resize
the number of channels to be the same for both features.
The controller controls the alignment strategies: 1) Align
transformer features to convolutional features (T2C); 2) Align
convolutional features to transformer features (C2T). In the
T2C strategy, the T s

n is fed into a convolutional layer to
resize the number of channels to that of Cc

n. But there are
no operations for Cc

n. In the C2T strategy, the Cc
n is fed into

a convolutional layer to resize the number of channels to
that of T s

n . But there are no operations for T s
n . The ablation

study results demonstrate that the C2T strategy offers the
better trade-off between performance and efficiency, and thus
is adopted in our MMFSeg framework. The outputs of the
alignment block (T a

n and Ca
n) are fed into the channel block.

In the channel block, the inputs are first fed into adaptive
pooling layers (denoted as adapool(·)). Then, the outputs of
the adaptive pooling layers are concatenated along the channel
axis. We repeat each output twice to provide more information.
Thirdly, the concatenated result is fed into two consecutive
blocks (denoted as f br(·)) to generate the channel weights
for each input of the channel block. Each block contains a
fully connected layer, a batch normalization layer, and a ReLU
layer. Then, the channel weights and the inputs of the channel
block are fused with element-wise multiplication. Finally, the
multiplication results are fused with element-wise addition,
and the fusion result Fn is fed into the decoder.

C. The Decoder

In the decoder, we adopt 4 Multilayer Perceptron (MLP)
to restore information from the inputs (i.e., F1, F2, F3, and
F4). The outputs of all MLPs have the same number of
channels. The outputs of the MLP for F2, F3, and F4 are
fed into upsampling layers to resize the resolution to that
of F1. Next, the same-resolution feature maps are fed into a
segmentation head after concatenating along the channel axis.
The segmentation head contains a convolutional layer, a batch
normalization layer, and a ReLU layer, as well as a dropout
layer and a convolutional layer. The segmentation head finally
generates the segmentation maps that have the same resolution
as the input RGB-Disparity images.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset

We use the Pothole-600 dataset [12] in our experiments.
The dataset contains RGB images captured by a ZED camera,
as well as disparity images generated by the disparity transfor-
mation algorithm [59]. There are 600 pairs of images that are
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divided into three subsets: training set (240 pairs), validation
set (180 pairs), and testing set (180 pairs). Each pair of images
is provided with a hand-labeled ground truth.

We also use the NO-4K dataset [58] for comparative experi-
ments. The NO-4K dataset is collected from rural environments
for pothole segmentation. This dataset contains a large number
of images of potholes with puddled water, as well as blurred
images caused by fast vehicle speed. The dataset contains
3, 745 pairs of RGB and disparity images with the 576×1024
resolution. There are 745 manually-labeled images, which are
divided into a validation set with 245 images and a testing set
with 500 images. The remaining 3, 000 images are formed as
the training set with generated labels. The authors used the
manually labeled 245 images and 600 images in the whole
Pothole-600 to train MAFNet [2]. The well-trained MAFNet
is used to generate the pothole mask of the remaining 3, 000
images with a confidence threshold of over 0.5. The generated
labels contain noises in certain areas (e.g., wet or blurred
regions), which is one of the challenges in the NO-4K dataset.

B. Training Details

We implement our MMFSeg with PyTorch 1.12 and train
our network with an NVIDIA RTX3090 graphics card (24GB
GPU RAM). The parameters of the transformer encoder are
initialized with the strategy from [29]. The parameters of
the convolutional encoder are initialized with the pre-trained
weights provided by [23]. Other parameters are initialized
with the PyTorch default method. The AdamW optimizer with
6×10−5 of the initial learning rate is used to train our network
and its variants. The learning rate is increased from 0 through a
10-epoch warm-up, and then decreased after the 10-th epoch
with a polynomial learning rate decay. During training, we
apply random clipping and cropping to augment images before
feeding them into the network. We treat the unlabeled pixels
as background class that is also segmented.

C. Evaluation Metrics

We use the metrics, Precision (Pre), Recall (Rec), F-score
(F1), and Intersection over Union (IoU), to evaluate the per-
formance of all the networks. They are calculated as follows:

Prec =
|{x|x ∈ TPc}|

|{x|x ∈ TPc ∪ FPc}|
, (1)

Recc =
|{x|x ∈ TPc}|

|{x|x ∈ TPc ∪ FNc}|
, (2)

F1c =
2 × Prec × Recc

Prec + Recc
, (3)

IoUc =
|{x|x ∈ TPc}|

|{x|x ∈ TPc ∪ FPc ∪ FNc}|
, (4)

where c refers to class (i.e., background and potholes), T Pc,
FPc, and FNc refer to the true-positive area, false-positive
area, and false-negative area of class c. x refers to the pixels
in the areas. We calculate the four metrics for each class
and mean values (i.e., mPre, mRec, mF1, and mIoU) across
the two classes (i.e., pothole and backgroud) to evaluate the
performance. In addition, we evaluate the efficiency of the
networks in terms of the average runtime cost and frame-per-
second (FPS) for each image.

TABLE II
THE RESULTS (%) OF SELECTED VARIANTS FROM THE ABLATION

STUDY ON ENCODER

D. Ablation Studies

1) Ablation on Encoder: We conduct ablation studies to
find the optimal combination between the transformer encoder
and the convolutional encoder. We design variants by using
Segformer with different layers, such as Segfomer-B0 (T0),
Segfomer-B1 (T1), Segfomer-B2 (T2), Segfomer-B3 (T3),
Segfomer-B4 (T4), Segfomer-B5 (T5), and ConvNeXt with
different layers, such as ConvNeXt-T (C0), ConvNeXt-S (C1),
ConvNeXt-B (C2), ConvNeXt-L (C3). Firstly, we fix the con-
volutional encoder and change the transformer encoder from
T0 to T5 to design variants. Secondly, we fix the transformer
encoder and change the convolutional encoder from C0 to C3.
Thirdly, we respectively remove the transformer encoder (NT)
or convolutional encoder (NC) to design variants. In addition,
we also change the alignment strategy (i.e., T2C and C2T)
of the MAF module to design variants. We use C2T-C0T0 to
refer to the variant that adopts T0 and C0 as encoders and
employs the C2T alignment strategy. Note that the C3T4 and
C3T5 variants cannot be trained on the NVIDIA RTX3090
due to the limited GPU memories.

The results of the four variants are shown in Fig. 3. We can
see that the distribution of the mF1 and mIoU results is similar
within C2T and T2C. The C2T/T2C variants refer to the
variants adopting the C2T/T2C alignment strategy. The results
demonstrate that the appropriate combination of different
encoders can yield superior results. In both C2T and T2C, the
dual-structured variants achieve better results than the single-
structured variants. The results demonstrate that our proposed
MAF module and CNN-Transformer structure can fully utilize
features and improve the performance of pothole segmentation.
In addition, it also demonstrates that our MAF module is
able to align two features with different types and different
numbers of channels, either aligned from transformer features
to convolutional features, or from convolutional features to
transformer features.

Further, we select one lightweight and one heavyweight
well-performing variant from both C2T and T2C variants,
respectively. The results of these selected variants are dis-
played in Tab. II. We also test the runtime of each variant
on RTX3090. The table shows that C2T-C0T0, T2C-C1T1,
and T2C-C2T3 achieve similar performance, but the inference
speed of C2T-C0T0 is the fastest among all the selected
variants. Similarly, although the results of C2T-C0T4 are
better than those of C2T-C0T0, the inference speed of C2T-
C0T0 is around 2.5 times that of C2T-C0T4. For the C0T0
architecture, the superior performance of the C2T strategy over
T2C may be attributed to the following reasons: In the T2C
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Fig. 3. The results (%) for the ablation study on encoder. The above four figures are the results of the variants with the C2T alignment strategy, and the
below four figures are the results of the variants with the T2C alignment strategy. 3-D surfaces are obtained by fitting the results of different variants and
visualized with the jet color map. The values are increased from blue to red.

structure, excessively high feature dimensions are employed to
encode the fused features. However, for features extracted by
lightweight encoders, the dimensionality provided by the C2T
strategy is already sufficient to effectively represent the critical
features for pothole segmentation. Based on the above results,
we design MMFSeg as the same structure as C2T-C0T0 to
achieve a trade-off between accuracy and efficiency.

2) Ablation on MAF: We conduct ablation studies on the
structure of the MAF module to show the benefits of each
block in our proposed MAF module. Since the alignment block
is used to modify the channel for element-wise addition, we
remove the other two blocks from the MAF module to design
variants. The details of the variants are listed as follows:

1) w/o s: The spatial block is removed from the MAF
module.

2) w/o c: The channel block is removed from the MAF
module. The element-wise addition is placed at the end
of the alignment block.

3) w/o c&s: The channel block and spatial block are
removed from the MAF module. The element-wise
addition is placed at the end of the alignment block.

4) Cat: The MAF module is replaced with a concatenation
method along the channel axis.

The variants are designed based on the lightweight and
well-performing C2T-C0C0 and T2C-C1T1 variants. We also
compare the performance of these variants with that of single-
structure variants from Section IV-D.1, which are denoted as
Conv and Trans. It should be noted that the variants based
on C2T-C0C0/T2C-C1C1 should be compared with variants
C0NT/C1NT and NCT0/NCT1. The results of the variants are
shown in Fig. 4. We can see that the mPre and mRec results
for the variants are inconsistent. For example, the mPre of the
w/o c&s variant based on C2T-C0T0 is better than that of the
Cat variant. However, the mRec of the w/o c&s variant based
on C2T-C0T0 is inferior to that of the Cat variant. However,
the mF1 and mIoU for the variants are consistent. Compared
to the variants Trans, Cat, and w/o c&s, we can find that
the fusion by concatenation along the channel axis and the

Fig. 4. The results (%) of the ablation study on the structure of the MAF
module.

channel-interpolation method (alignment block) cannot well
fuse the features extracted by the different-structure encoders.
Specifically, the variants using these methods may achieve
higher or lower results than a single structure variant. The
results of the variants w/o c and w/o s are better than those of
the Trans and Conv. This illustrates that our proposed channel
block and spatial block in the MAF module can improve the
fusion results. Compared to the variants w/o c&s, w/o c, and
w/o s, we can find that both channel block and spatial block
can boost the performance. The variants with our proposed
MAF module achieve the best results among the variants
adopting the same alignment strategy, which demonstrates the
benefits of our MAF module.

3) Ablation on the Feature Types in MAF: We conduct
ablation studies on the feature types in the MAF module to
show the contributions of the CNN and Transformer features.
We design some variants by removing or doubling one of
features. The details of the variants are listed as follows:
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TABLE III
THE QUANTITATIVE RESULTS (%) ON THE Pothole-600 DATASET OF ALL COMPARED NETWORKS AND OUR MMFSEG. † MEANS THAT THE RESULTS

ARE DIRECTLY IMPORTED FROM THE ORIGINAL PAPER [2], WHICH IS TRAINED WITH THE AUGMENTED DATASET. THE OTHER NETWORKS ARE
TRAINED WITH THE TRAINING SET OF THE Pothole-600 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

TABLE IV

THE QUANTITATIVE RESULTS (%) ON THE NO-4K DATASET OF OUR MMFSEG AND ALL COMPARED NETWORKS. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD FONT

TABLE V

THE RESULTS (%) OF SELECTED VARIANTS FROM THE ABLATION STUDY
ON THE FEATURE TYPES IN THE MAF MODULE

1) O-Cn: Transformer features are removed from the MAF
module. The branches of the Transformer features are
removed from each block of the MAF module.

2) D-Cn: Transformer features are replaced by CNN fea-
tures. The number of channels in each block of the MAF
module are adjusted with the input.

3) O-Tn: CNN features are removed from the MAF module.
The branches of the CNN features are removed from
each block of the MAF module.

4) D-Tn: CNN features are replaced by Transformer fea-
tures. The number of channels in each block of the MAF
module are adjusted with the input.

The experimental results are displayed in Tab. V. By com-
paring the results of Variant O-Cn, Variant O-Tn, and our
MMFSeg, we can see that when there is only one type of
feature in the MAF module, that is, only CNN features or only
Transformer features, the performance is inferior to that when
both types of features are present. In addition, by comparing
Variant O-Cn with Variant D-Cn, and Variant O-Tn with Variant
D-Tn, it can be found that simply doubling a single type
of feature cannot effectively improve the performance. We
also find that the variants with the CNN features outperform
the variants with the Transformer feature. The reason may
be that the textures of the potholes are similar to those of
the background area, which imposes challenges to the self-
attention mechanism in the Transformer feature to identify
the pothole features. Therefore, the fused features take into
account both local and global features, containing more fea-
tures, and thus achieving better accuracy. The experimental
results demonstrate the contribution of each type of features
in the MAF module, and also the effectiveness of our proposed
MAF module to fuse two different types of features.

E. Comparative Experiment

We compare our MMFSeg with some well-known networks:
AARTFNet [12], GMNet [43], AMFNet [45], InconSeg [11],
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Fig. 5. The Precision-Recall curve for our MMFSeg and all the compared networks trained with the Pothole-600 dataset and the NO-4K dataset.

MAFNet [2], CENet [60], EAEFNet [40], RoadSeg [38],
FRNet [39], MMSMCNet [48], and PorCrackSeg [14]. All
the networks are trained and tested with the same dataset. The
four metrics (i.e., Pre, Rec, F1, and IoU) of background and
pothole and the mean values of the metrics are employed to
evaluate the performance of each network. We also test the
inference speed of each network on the NVIDIA RTX3060
and RTX3090 graphics cards.

1) Quantitative Results on Pothole-600: The quantitative
results on the Pothole-600 of all compared networks and our
MMFSeg are displayed in Tab. III. We can see that our MMF-
Seg achieves the best performance among all the compared
networks. Specifically, for the background class, our MMFSeg
achieves the best results in terms of Pre, F1, and IoU. For the
pothole class, our MMFSeg achieves the best results in terms
of Rec, F1, and IoU. In addition, our MMFSeg outperforms
the other compared networks in terms of mRec, mF1, and
mIoU. Tab. III displays our re-trained results of MAFNet
trained with the training set of the Pothole-600 dataset.
The table also displays the results of MAFNet trained with
the augmented dataset [2] (denoted as MAFNet†), which are
directly importing from its original paper [2]. Our MMFSeg
network outperforms MAFNet† in terms of mRec by 0.52%,
mF1 by 0.63%, and mIoU by 1.02%. In all the compared
networks trained with the training set of the Pothole-600
dataset, PotCrackSeg achieves the second-best results. Our
MMFSeg network outperforms PotCrackSeg in terms mRec
by 2.97%, mF1 by 1.22%, and mIoU by 1.94%. Although
AMFNet outperforms our MMFSeg in terms of Rec on the
background class, Pre on the pothole class, and mPre on both
the classes, the other metrics of AMFNet are significantly
inferior to our MMFSeg.

We also plot the Precision-Recall (PR) curve for our MMF-
Seg and all the compared networks trained with the training set
of the Pothole-600 dataset. Fig. 5 (a) shows the PR curve.
We can see that the curve of our MMFSeg is smoother and
higher than that of the compared networks. This illustrates that
the precision of our MMFSeg is higher than the compared
networks for the same recall. Overall, the results in Tab. III

TABLE VI

THE EFFICIENCY ON NVIDIA RTX3060 AND RTX3090 GRAPHICS
CARDS

and Fig. 5 (a) demonstrate the superiority of our proposed
MMFSeg.

2) Quantitative Results on NO-4K: The quantitative results
on the NO-4K dataset are displayed in Tab. IV. We can see
that our MMFSeg achieves the best performance among all
the compared networks, for example, our MMFSeg achieves
the best results in terms of F1 and IoU on the background and
pothole classes. Our MMFSeg outperforms the second-best
MMSMCNet in terms mF1 by 0.74% and mIoU by 1.25%.
We also plot the Precision-Recall (PR) curve for our MMFSeg
and all the compared networks trained with the NO-4K dataset.
Fig. 5 (b) shows the PR curve. We can see that the curve of our
MMFSeg is smoother and higher than that of the compared
networks at high accuracy and high F1 values. This illustrates
that the precision of our MMFSeg is higher than that of the
compared networks for the same recall. The results in Tab. IV
and Fig. 5 (b) show the superiority of our proposed MMFSeg
on the NO-4K dataset.

Overall, the results on the Pothole-600 dataset and NO-4K
dataset demonstrate the generalization capabilities of our pro-
posed MMFSeg.
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Fig. 6. Sample qualitative demonstrations for our MMFSeg and the compared networks with the top five performance trained with the Pothole-600 dataset.
The segmentation results are overlaid on the RGB images with different colors. The first seven columns show different pothole images. The last two columns
are different views of the pothole contained in 7-th columns. The results show that our network performs better at the edges of potholes.

3) The Efficiency: We also evaluate the efficiency of the
networks on NVIDIA RTX3060 and RTX3090 graphics cards.
The results are displayed in Tab. VI. For the Pothole-600
dataset with the 512 × 512 resolution, our MMFSeg achieves
nearly real-time speed (19.1 FPS) on RTX3060 and real-time
speed (34.6 FPS) on RTX3090. Compared with the other
networks, we can find that our proposed MMFSeg achieves
the third place in inference speed on RTX3060, and the fourth
place in inference speed on RTX3090. For the NO-4K dataset
with the 576 × 1024 resolution, the inference speed of our
MMFSeg also ranks among the top four of all the networks,
and MMFSeg still achieves nearly real-time inference (20.5
FPS) on RTX3090. So, our MMFSeg achieves a trade-off

between accuracy and efficiency compared with the other
networks.

4) Qualitative Demonstrations on Pothole-600: Fig. 6
shows sample qualitative demonstrations for our MMFSeg and
the top five performance networks trained with the training set
of the Pothole-600 dataset from Tab. III. The first three rows
are RGB images, disparity images, and the ground truth. The
other rows are the segmentation results of the networks. We
overlay the segmentation results with different colors on the
RGB images.

The images of the first two columns contain large potholes.
One common feature of these two potholes is the significant
difference in depth within them. For example, in the disparity
image of the first column, the depth of the upper left side of
the pothole is significantly deeper than the lower right side.
From the segmentation results, we can find that the difference
in depth increases the difficulty of segmenting the regions
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Fig. 7. Sample qualitative demonstrations for our MMFSeg and the compared networks with top five performance trained with the NO-4K dataset. The
segmentation results are overlaid on the RGB images with different colors.

with shallower depth in potholes. The figure shows the five
compared networks incorrectly segment the shallower-depth
regions. In contrast, our network achieves better results in
these regions, which correctly segments most of the potholes.

The 3-rd and 4-th columns show images containing small
potholes. The results show that all the networks correctly
segment most regions of the potholes. The main segmentation
errors occur at the edges of the potholes. In contrast, our
MMFSeg is closer to the ground truth at the edge of the
pothole. Each image of the fifth and sixth columns contains
two potholes. We can see that our network achieves better
results within these areas (i.e., the center area of the potholes
in the fifth column.) and sharp areas of potholes (i.e., the upper
left area of the above pothole in the sixth column).

The last three columns show the same pothole in different
viewpoint images obtained with different augmentations. The
results illustrate that our network achieves better results for
the same pothole at different viewpoints. Overall, our network
is significantly superior to the well-known networks.

5) Qualitative Demonstrations on NO-4K: Some sample
qualitative demonstrations for our MMFSeg and the top five
performance networks trained with the NO-4K dataset are
shown in Fig. 7. The first column and the third column
demonstrate that our MMFSeg outperforms the other networks
on the edges of the potholes. In the second column, the
wet areas interfere with the segmentation of the potholes. In

contrast, our MMFSeg is able to overcome the interferences
from the wet areas and achieve high segmentation accuracy.
The fourth column shows the high accuracy of our MMFSeg
for small potholes. The first column and the last column
show the same pothole in different viewpoints obtained with
data augmentation. The results also show that our network
achieves better results even with different viewpoints for the
same pothole. In addition, our MMFSeg could overcome the
influences of the puddled water in the potholes, achieving
the best performance.

F. Main Findings From Experiments

From the experimental results, we have the following five
main findings:

1) Our proposed MAF module can fuse the two types of
features (i.e., CNN features and transformer features)
to achieve superiority over those using a single-type
feature.

2) Our proposed MMFSeg achieves the optimal accuracy
compared with well-known networks on two public
datasets (Pothole-600 and NO-4K).

3) Experiments show that our MMFSeg exhibits better
generalization ability than the well-known networks.

4) Our proposed MMFSeg achieves a trade-off between
accuracy and efficiency.
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5) Our proposed MMFSeg outperforms the other well-
known networks at the edges of potholes.

V. CONCLUSION AND FUTURE WORK

We proposed MMFSeg with a Transformer-convolution
encoder for road pothole segmentation. We use a Transformer-
based encoder and a convolution-based encoder to extract
features from the two modalities of data. We also designed
the late-fusion MAF module to align and fuse the features
extracted by encoders that have different structures and dif-
ferent numbers of channels. Our proposed methods are able
to better fuse different types of features and improve the
performance of road-pothole segmentation. The experimental
results demonstrate the superiority of our MMFSeg in terms
of accuracy and efficiency compared with the well-known
networks. Specifically, our MMFSeg achieves 1.02% improve-
ment on the Pothole-600 dataset and 1.25% improvement on
the NO-4K dataset in terms of mIoU.

Although our MMFSeg is superior to the other networks,
some limitations still need to be addressed. For example, the
accuracy of the edge area of potholes needs to be improved. A
potential solution is to introduce edge information to improve
the performance at the edge areas of potholes. Specifically, we
can refine the decoder architecture to output edge information
as supervisory information, and introduce an edge-aware loss
function to improve the performance of the edge areas. In
addition, our MMFSeg relies on RGB-D data for segmentation,
so in scenarios where depth data are unavailable, the network
may not be able to work. A potential solution is to use
the disparity data as privileged information, and through the
distillation method, transfer the ability of MMFSeg to an RGB-
only network to segment potholes.
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