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Abstract—With the development of video technology, a large
amount of video data generated from video conferences, sports
events, live broadcasts and network classes flows into our daily
lives. However, ultra-high-definition video transmission is still a
challenge due to the limited network bandwidth and instability,
which further affects the quality of video service closely linked
with consumer electronic video display. To address this challenge,
we propose a deep-learned perceptual quality control approach,
which can significantly improve the video quality and visual
experience at the same bandwidth. The proposed scheme mainly
involves saliency region extraction, perceptual-based bits alloca-
tion, and video enhancement. Firstly, we exploit a multi-scale
deep convolutional network module to predict the static saliency
map that semantically highlights the salient regions. Secondly, we
develop a recurrent neural network model to extract the dynamic
saliency regions. Finally, a three-level rate allocation scheme is
developed based on the resulted saliency guidance, which is more
reasonable by taking into account the visual characteristics of
human eyes. Experimental results on a large dataset show that
our method achieves an average gain of 1.5dB on the salient
regions without introducing an extra bandwidth burden, which
significantly improves the visual experience and paves the way
to intelligent video communication.

Index Terms—HEVC, perceptual static

saliency, dynamic saliency.

quality control,

I. INTRODUCTION

O REDUCE the impact of the COVID-19 epidemic,
Tvideo conferences and online classrooms have become
ubiquitous [1], [2], [3], due to the fact that many countries
have been forced to shut down the public face-to-face com-
munication. In addition, more and more people use short

Manuscript received 2 August 2022; accepted 6 September 2022. Date of
publication 14 September 2022; date of current version 24 October 2022. This
work was supported in part by the National Natural Science Foundation of
China under Grant 62106152 and Grant 61701310; in part by the Natural
Science Foundation of Guangdong Province under Grant 2022A1515011245
and Grant 2019A1515010961; and in part by the Natural Science
Foundation of Shenzhen City under Grant 20220809160139001 and
Grant  20200805200145001. (Corresponding authors: Miaohui Wang;
Shing Shin Cheng.)

Xuebin Sun and Miaohui Wang are with the Guangdong Key Laboratory of
Intelligent Information Processing, Shenzhen Institute of Artificial Intelligence
and Robotics for Society, Shenzhen University, Shenzhen 518060, China
(e-mail: sunxuebin@szu.edu.cn; wang.miaohui @gmail.com).

Rongfu Lin and Shing Shin Cheng are with the Department of Mechanical
and Automation Engineering, The Chinese University of Hong Kong,
Hong Kong, China (e-mail: rongfulin@126.com; sscheng@cuhk.edu.hk).

Yuxiang Sun is with the Department of Mechanical Engineering,
The Hong Kong Polytechnic  University, Hong Kong, China
(e-mail: yx.sun@polyu.edu.hk; sun.yuxiang @outlook.com).

Digital Object Identifier 10.1109/TCE.2022.3206114

videos sharing their highlight moments via consumer elec-
tronics (Smartphone, Tablet, Laptop, efc). However, video
communication has the characteristics of large data volume,
and it is sensitive to network delay and jitter. Therefore, per-
ceptual quality control is essential to consumer products based
on video storage and transmission [4], [5], [6].

Recently, human vision has been widely investigated in
visual signal processing [7]. It shows that human eyes pay
unbalanced attention to different video scenes, and have dif-
ferent visual perception sensitivities to different image areas.
Further, human eyes are selective for the brightness, texture,
motion regions in videos, and the sensitivity and tolerance to
different content are different. In general, for still videos (e.g.,
video conferencing and remote classrooms), face areas attract
more attention [8], but for dynamic videos, attention is more
focused on moving objects. Thus, when the salient regions
have higher perceptual quality, it will significantly improve
reviewers’ visual experience.

Rate-distortion optimization (RDO) [9] based on an objec-
tive distortion metric has been adopted to optimize the video
coding efficiency [10], [11]. However, the distortion metrics
(e.g., sum of square error (SSE) or mean absolute differ-
ences (MAD)) have a low correlation with human vision.
Moreover, the Lagrange operator is only related to the quanti-
zation parameter (QP), ignoring the perceptual characteristics
of video content. In other video content. In other words,
RDO fails to fully consider the factors of human vision when
optimizing the coding efficiency. Since human eyes are the
ultimate receiver for video applications, it is of great signifi-
cance to consider the human visual characteristics to improve
coding efficiency.

To relieve the burden of ultra-high-definition video commu-
nication among in consumer electronics, a deep learning-based
perceptual quality control scheme for HEVC is proposed in
this paper. Videos, such as sports events, live broadcasts, con-
ferences, entertainment programs, etc., are first encoded into
the bitstream by a perceptual quality control-based encoder.
When receiving the bitstream, a typical consumer device
decodes it, which is further enhanced by a deep-learned mod-
ule. Fig. 1 illustrates the coding results of Host and Video
conference by the proposed scheme and the HEVC algo-
rithm [12]. For the Host video, face regions attract more
attention as illustrated in Fig. 1(a), and the profile of the
connecting guests is more important. Compared with HEVC
illustrated in Fig. 1(b), the proposed algorithm obtains high
visual quality in the face region, especially in the eye regions,
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(c) Perceptual-based coding results

Fig. 1. Experimental results of the HEVC algorithm and the proposed method
for Host and Video conference sequences: (a) Heat map of the gaze locations,
(b) HEVC (Host: 44512 bits, Video conference: 64184 bits), and (c) Deep-
learned perceptual quality control method (Host: 44000 bits, Video conference:
63392 bits). Best viewed by zooming in.

as described in Fig. 1(c). Similarly, the foreground human
attracts more attention than the background wall for video con-
ferences. By zooming in, it can be observed that the proposed
scheme obtains higher coding quality in the face region. The
most important thing is that the bit costs are almost the same,
which means that our algorithm significantly increases the
visual experience without the additional bandwidth burden,
paving the way for intelligent video communication.

To realize perceptual quality control, one needs to investi-
gate a reasonable rate allocation strategy, and simultaneously
regulate the output bit-rate to maintain satisfying visual qual-
ity. In this paper, we first develop a compression-based
saliency detection method, and propose a new rate regulation
and quality control method according to the significance map.
Furthermore, due to the fact that humans will feel uncom-
fortable at their boundaries where the encoding quality of
salient regions is too high and the coding quality of non-
salient regions is too low, we hence investigate an effective
video enhancement module to address this difficulty. Our main
contributions are summarized as follows.

« We have investigated a deep-learned static and dynamic
salient extraction method for video compression.
Compared with the traditional saliency advances, the
proposed multi-scale network is more compatible with
video coding on consumer electronics in considering the
human visual characteristics. From the perspective of the
computation efficiency, the deep models proposed in this
paper is a suitable choice.

o Based on the resulted saliency guidance, a quality con-
trol method is further designed, where a new tanh-based
rate allocation is developed by considering the group of
picture level, frame level and coding tree unit level. To

our knowledge, this is the earliest exploration to model
visual attention with tanh-based rate allocation in per-
ceptual quality control by considering visual saturation
effect.

o To alleviate the mutation of coding quality at the bound-
ary between the salient and non-salient regions, a time-
varying and space-varying recurrent neural network for
video enhancement is explored to further improve the
compressed video quality for consumer electronic video
display and transmission. In general, it is a new attempt to
further improve the visual performance for deep-learned
perceptual quality control, which have rarely been studied
before.

Subjective and objective results demonstrate that the proposed
method can significantly improve the performance of percep-
tual coding,! which can be specially used for various video
applications, including video conference, sport broadcasting,
and online education.

The remainder of this paper is organized as follows.
In Section II, the related works are briefly reviewed.
The proposed methodology is introduced in Section III.
Experimental results are presented in Section IV, and the
conclusion is given in Section V.

II. RELATED WORKS

The proposed scheme is specially designed for deep-learned
perceptual quality control for intelligent video communication.
Therefore, we mainly review some representative perceptual
video coding and rate control methods in this section.

A. Perceptual Video Coding

To achieve perceptual video coding, visual attention mod-
els [22], [23], [24] (e.g., saliency detection) have been
investigated to improve compressed video quality.

For dynamic videos with intense motion, a moving object is
regarded as a salient region [25], [26], [27]. For surveillance
videos, the foreground objects attract more attention [13],
[28], [29]. In some cases, a stationary saliency model can
be jointly considered with the motion vector (MV) field to
calculate the dynamic saliency [30]. Based on the saliency
detection, some early perceptual-based intelligent video cod-
ing algorithms have been developed in recent years. For
instance, human face is usually considered as a saliency region
that needs high-quality compression [14], [31]. Similarly,
Li et al. [15] proposed to allocate different bits to differ-
ent blocks according to their saliency values. Hadizadeh and
Baji¢ [16] introduced a saliency-aware video coding tech-
nique based on the Itti-Koch-Niebur (IKN) saliency model.
Zhu et al. [17] proposed an enhanced HEVC method by intro-
ducing a learning-based attention mechanism to extract the
spatial and temporal saliency maps. To our knowledge, the
above perception-based coding methods were designed for
still videos, so they were unsuitable for videos with intense
motion, in which the viewer’s attention may be focused on
moving objects. Compared with the traditional methods, a

IThe implementation can be downloaded from https://github.com/simaniu
/Perceptual-Quality-Control.
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deep learning-based method is more competitive in extract-
ing salient regions for intense motion modeling, which can be
more consistent with the human visual system (HVS).

B. Perceptual Rate Control

As discussed above, there are few studies on the deep-
learned saliency-driven rate control for HEVC as summarized
in Table I. The main reason is that a perceptual-based rate con-
trol method is more difficult than a perceptual video coding
method.

Recently, several studies have been developed on percep-
tual rate control in video communication [18], [19], [20],
[21]. For instance, Zhou et al. [18] proposed a Structural
Similarity (SSIM)-based coding tree unit (CTU)-level rate con-
trol for HEVC, where mean square error (MSE) was replaced
by SSIM in the RDO process. Li et al. [19] proposed a
modified R-A model to make a balance between coding qual-
ity and bandwidth burden. Chen and Pan [20] designed an
optimized RDO strategy for H.265/HEVC, where the CTU-
level rate allocation was formulated as a decision-making
problem. To satisfy low-bit applications, Wang et al. [21]
introduced an optimal CTU-level bit allocation for HEVC
based on the motion vectors and complexity. Currently, most
of the RDO-based rate control methods are designed by
exploring an improved R-A model or a new bit-rate allo-
cation to obtain a more accurate or lower complexity rate
control. However, the existing coding methods are the lack
of taking human perception information into account, which
still leave space for exploring perceptual-based rate control
solutions.

III. PROPOSED PERCEPTUAL QUALITY CONTROL METHOD

In this paper, we address the problem of deep-learned
saliency-driven perceptual quality control for HEVC. The
architecture of the proposed framework is presented in Fig. 2,
where the green parallelograms represent the encoder and
decoder modules, and the yellow parallelograms highlight the
proposed saliency module, rate control module and enhance-
ment module. We describe them in detail as follows.

A. Static Saliency Extraction Module

A saliency map is one of the most-used methods to represent
the weight distribution that attracts human visual attention.

Dynamic Saliency
Extraction Network

Encoder side
Video Enhancement Output
Network Video Data

Decoder side

Compressed
Bitstreams

Fig. 2. Block diagram illustration of the proposed deep-learned perceptual
quality control for intelligent video communication: the yellow parallelograms
represent the modification that we have made, and the pink parallelograms
indicate the input-output data.

Down Sampling
V. Oria i

Up Sampling

1

Static Saliency Result
Party Sence

Fig. 3. The multi-scale DCN structure for the static saliency extraction.

In this section, we investigate a new static saliency method
based on a multi-scale deep convolutional network (DCN).
As illustrated in Fig. 3, the proposed DCN model takes an
RGB image on two different scales. Let I(x, y) represent the
input image, and I'(x, y) be half the size of the original one.
Each image is processed by a feature encoder, and the latent
features are fused to generate the final saliency map.

Let Y; denote a three-dimensional array containing the
responses of the neurons at the k-th layer. The size of Y
is my X ng X dr, where my X nj represents the spatial size
of the receptive field, and d; denotes the template for which
the neuron is tuned. Higher-layer neural responses encoded
more meaningful semantic representations than lower-layer
neural responses. The encoder is designed based on the VGG-
16 network [32] by removing the final pooling and fully
connected layers.

Let Y, represent the neural response of the last convolutional
layer, which is useful for object detection. A 1x1 convolution
layer is added after Y., which has only one filter to detect
whether the response in Y, belongs to a salient region or not.
The output of Y, with a saliency detection filter is represented
as Y. Finally, to obtain a saliency map, we use a linear inter-
polation to upscale Y to match the input image size, and scale
pixel values to the range of 0 and 1.

The value of the ground-truth saliency is quantized to the
interval [0, 1], which can be considered as the probability dis-
tribution that an observer pays attention to each pixel. If using
Softmax in the last layer, it will introduce a polynomial dis-
tribution to the prediction result. However, the observer may
focus on multiple points, so each prediction is more reason-
able as an independent one. Thus, for the last layer, we adopt
a Sigmoid operation. In this way, the predicted outcome
can be viewed as the probability of an independent random
binary variable. A binary cross-entropy is adopted as the loss
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®

Fig. 4. Experiment results of the static saliency: (a) Kimono, (b) BlowingBubbles, (c) FourPeople, (d) Vidyo3, (e) KristenAndSara, (f) Host, (g) Broadcaster,

(h) BOSquare, and (i) VirtualConference.

function, which is defined as follows:
| N
Loss = — X;(Sjlog(Sj) + (1= 8)log(1-5)),
]:

where S and S represent the predicted saliency map and its
corresponding ground-truth, respectively. We train and evalu-
ate the proposed saliency model on the OSIE dataset [33]. The
Adam optimization is used to train our model with a learning
rate of 0.0001.

The proposed multi-scale DCN model is tested on the video
dataset recommended by JCT-VC [34]. Fig. 4(i) illustrates the
saliency results of nine different video sequences. As seen,
static salient regions can be accurately extracted, where the
salient area gradually changes with an arbitrary shape. This
will alleviate the blocking effect in the bit-rate allocation.

B. Dynamic Saliency Extraction Module

In certain video scenes, moving objects attract more atten-
tion [35]. If these objects can be encoded with high quality, the
visual experience can be significantly improved. In this sec-
tion, a moving object extraction network model is designed
based on this observation.

As illustrated in Fig. 5, the proposed model learns long-term
spatial-temporal features directly from the training data in an
end-to-end fashion. The offline trained model can accurately
propagate the initial motion by memorizing and updating
the target features, including appearance, position, and scale,
which can automatically propagate the temporal motion in a
whole video. Since long short-term memory (LSTM) can learn
long-term correlation, it is adopted in modeling the dynamic
saliency for video data. In the segmentation part, we use con-
vLSTM to track the characteristics of spatial-temporal data at
different scales to improve the performance on small objects.

Firstly, the convolutional encoder processes a frame x; to
extract the feature graph X;, which is defined as follows:

X; = Encoder(x;). 2)

Then x; is sent as the input of convLSTM. The internal states
¢; and h; are automatically updated when new observations x;
are given, which capture new features from a salient object.

a0 P
# t=1
-0

t=0

Snowboard Sequence - Saliency Result

Fig. 5. Network structure for the dynamic saliency extraction.

¢t and h; is calculated by the following formula:
cr, hy = ConvLSTM (X7, ¢;—1, hy—1). (3)

The output A4, is passed to the decoder to obtain a full reso-
lution segmentation result y;, which is calculated by Eq. (4).
We also add a skip connection between the encoder and the
decoder, which allows shallow convolution features F, can be
introduced.

V: = Decoder(h, Fy). 4)

Combining shallow-layer and deep-layer features is more ben-
eficial to generate segmentation masks. In the training process,
the binary cross-entropy loss is calculated between y; and y;.
Back propagation is used to train the parameters of the
encoder, decoder, and convLSTM modules.

We use the cross-entropy loss and the logarithm of the
Jaccard index as the loss functions to train the segmentation
network. Experimental results are shown in Fig. 6. As seen,
the proposed method can accurately extract dynamic objects.
As human eyes pay more attention to moving objects than
background regions, these salient regions should be allocated
more bits and encoded with higher quality.

C. Perceptual Quality-Driven Quality Control Approach

Video communication is one of the most challenging
research areas in consumer electronics, such as smartphones,
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Fig. 6. Experimental results of the dynamic salient region extraction: (a) Pair figure-skating, (b) Men’s figure-skating, (c) Women’s figure-skating, (d) Artistic

gymnastics (e) Rollercoaster, and (f) Snowboard.

tablets, laptops, efc. The current video coding systems rarely
take into account the human visual system (HVS), where peo-
ple may pay more attention to specific areas and moving
objects. There are two main challenges to achieve perceptual
quality control: one is how to efficiently predict the salient
region for human eyes (see Secs. III-A and III-B), and the
other is how to allocate the bit-rate to these salient regions and
perform the quality control. In this section, we will provide the
detailed descriptions of the proposed rate control approach.

In video coding, the traversal of every possible combination
of coding unit (CU), prediction unit (PU), and transform unit
(TU) is determined by a so-called rate-distortion optimization
(RDO), which is the fundamental of a modern video codec.
RDO can guarantee that a codec can find the optimal solu-
tion based on two basic facts: 1) the relationship between rate
(R) and distortion (D) is a convex function, and 2) the num-
ber of the coding parameter space is discrete and countable.
A detailed mathematical derivation and analysis for RDO is
referred to [36].

The perceptual quality-driven quality control algorithm aims
to minimize distortion while maintaining the target bit rate,
which can be expressed by minimizing the distortion D
according to the number of bits R used for the target R;:

{Para}opy = argminD  s.t. R <R;. (®)]

{Para}
The relationship between D, R, and Para have been well
defined and introduced in HEVC [37]. Simply put, a hyper-
bolic R-D model has been witnessed in HEVC [11], which
is a convex function. In other words, the optimal solution of
R-D can be theoretically guaranteed.

The proposed perceptual bit allocation is designed for three
levels: a GOP layer, a picture layer, and a CU layer. A new
picture-level salient weighting Sp;. is designed by

i o
SR i) o
width x height '

Spic =

Thus, the number of target bits of the current picture Targetp;.
is computed by

Targetgop — Codedgop
ZUncodePics SPiC
where Targetgop represents the bit budget of the current GOP,
and Codedgop denotes the number of bits encoded in the cur-

rent GOP. Spj.c,r and Sp;. represent the saliency map of the
current frame and that of the uncoded frames, respectively.

Targetp;. = X SpicCurs (7N

® (occoding quality)
142k,

1+k;

SCTUAve

Fig. 7. The relation curve between Scry and w.

The CTU-level saliency is indicated by w;, which repre-
sents the bit weight of the current CTU. wj is calculated by a
modified tanh function

ko (S, -5
o =14k <m”h( 2(Scru CTUAve)> N 1)

Scruave
1-— exp(

1+ exp(
®)

where Scry and Scruave represent the saliency value for
the current CTU and the average saliency value of the cur-
rent frame, respectively. Scry is calculated according to the
saliency guidance by adding the value of all pixels belong-
ing to it. k; determines the limit value of the saliency result
for the salient and no-salient regions, while ky determines the
changing speed of the saliency value from salient regions to
non-salient regions. Here, we set k;=0.5 and k= 1, empiri-
cally. As illustrated in Fig. 7, the higher the significance value
of Scru, the larger the weight of w. w has a positive correlation
with the compressed video quality.

In a traditional R-A model, bpp determines the final QP
value. In our method, we assign bits based on the weight map
of the proposed saliency model. Firstly, bits per weight (bpw)
is initialized:

—2k2(Scru — SCTUAve)>
ScTuAve +1].
—2ky(Scru — SCTUAve)>

ScruAve

=1+k

T
—— ©)

n=1%n

bpw =

where T represents the target bit for the current frame, and w,
represents the weight of the n-th CTU. N denotes the index
number of CTU in the current frame. The relationship between
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Tsar and Ty sq1 is defined as follows:
Tsal + Tno_sal =T
D nenyy ©nbpw
Znennoﬁsa] Cl)nbp w

; (10)

non_sal s

Tsa =

where ng, represents the index of the salient CTU, and the
weighting value of which is larger than 1. n,, ¢, denotes
the index of the non-salient CTU, and the weighting value
of which is smaller than 1. Then, the target bit T, for the
salient regions can be calculated by

Znensm @n
Znenm1 @n + Znennoﬁsal @n

Meanwhile, T}, s is calculated by

)
Zn €Npo_sal n

NE€Ngq] wn + Znenno,sal @n

T = T. (11)

Tnu_sal = Z T. (12)

Then, taking into consideration of a salient map, the target
bits for the salient and no-salient regions can be obtained as
follows. bpw; for the j-th CTU can be computed by

ded
) (Tsal — T;;Iw ¢ )/ Zne?zm/ Wn
pwW; = . )
J (Tnafsul - Tencoded)/ Zneﬁn(,_saz @n

no_sal

13)

encoded encoded .
where T, and T77¢07r represent the encoded bits for

salient and no-salient regions, respectively. 7y and 7ipo sar
denote the current and its subsequent CTUs for the salient
and non-salient regions, respectively.
Let T; denote the target bits for the j-th CTU. bpp; can be
calculated by
T; W) bpw;j

bppj = N; = N; ) (14)
where w; represents the weight value of the j-th CTU. It can be
observed that CTUs with larger bpw and o will be allocated
more bits. Therefore, the salient regions are emphasized with
more target bits. Then, rate control can be performed with bpp;
known for each CTU. Additionally, we adjust the boundary
constraints of A; and QP; so that a salient region has a higher
priority in bit allocation.

Generally, based on the proposed saliency model, we
employ bpw to estimate the perceived weight for each CTU.
Then bpp, A and QP are calculated successively based on bpw.
After encoding a CTU, the related model parameters, such as
o and B, are updated. Thus, the proposed perceptual quality
control scheme sequentially obtains a QP value for each CTU
in a frame. The difference between our method and the tradi-
tional R-A is that we use a perceptual model and the weight of
each pixel in bpw to estimate the value of bpp for each CTU.
The larger the weight and bpw, the higher the bits allocated,
which further results in better visual quality. The high-level
sketch of the proposed approach is described in Algorithm 1.

D. Video Enhancement Network

In perceptual quality control, one of the key problems is
that if the coding quality of salient region is too high and that

Algorithm 1 Perceptual Quality-Driven Rate Control
Scheme
Input:
Input video sequence;
Saliency map sequence;
Target bit-rate Ry;;
Output:
QP and A for each CTU.
Calculate the salient value Sp;. for each frame.
Calculate the target bits for the current frame Targetp;..
while i < N do
Calculate the weighting factor w for each CTU
according to Eq. (8).
Calculate the target bits for the salient region Ty, and
no-salient region T,y
Calculate the target bits and bpp for the current CTU.
Calculate A and QP for the current CTU.
i=i+1
end while

4 Bl > s

Y 2 3D

o L Sipd e o g
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Decoded Results

o

i

Enhancement Results

Fig. 8. Video enhancement network.

of non-salient region is too low, human eyes will feel uncom-
fortable at the boundary. To alleviate the mutation of coding
quality at the boundary between the salient and non-salient
regions, a time-varying and space-varying RNN for video
enhancement is designed to further improve the performance
of perceptual-driven rate control for video communication, as
illustrated in Fig. 8.

In the proposed enhancement module, both the space-
varying and time-varying features are captured by ST-LSTM,
which is built by connecting the temporal and spatial mem-
ories based on a gated structure in a cascade manner. By
adding more nonlinear layers in the periodic transition and
increasing the depth of the network structure from one state
to another, ST-LSTM has a stronger feature extraction ability
compared with convLSTM. An ST-LSTM cell contains a dual
memory, a temporal memory, and a spatial memory module.
The ST-LSTM of the k-layer is updated as follows.

T"=f0T [ +i00 (15)
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sk =];*@mnh(w*s’;*1) +itOo (16)

Df=0o"0 tanh(W * [Df, Sf]), 17)

where x, O and tanh represent the convolution, element-
wise multiplication and activation functions, respectively.
W denotes the convolution filters. The subscript ¢ represents
a time step, and k represents the k-th hidden layer stacked in
the causal LSTM network. The temporal memory depends on
its previous state, which is controlled by a forgetting gate f;,
an input gate i; and an input modulation gate O;. The spatial
memory Sf is determined by its previous layer state Sf_l. For
the bottom layer (k=1), the uppermost space memory at (t—1)
is allocated to Sf_l, which is significantly different from the
original LSTM. The final output is jointly determined by the
dual storage state.

Since a recursion depth along the spatial-temporal transi-
tion path is significantly increased, the cascade memory is
superior to the simple tandem structure of a spatial-temporal
LSTM [38]. Each pixel in the final generated frame will have
a larger input acceptance field at each time step, which pro-
vides the prediction model with greater modeling capabilities
for short-term video dynamic changes and sudden changes.

Due to the long transition, the temporal memory may forget
the appearance of outdated frames. Such a loop architecture is
still unresolved, especially for videos with periodic motion or
frequent occlusion. We need an information highway to learn
the frame-skip relationship. A gradient highway unit (GHU)
is utilized to prevent the rapid disappearance of long-term
gradients [38], [39]. The formulation of GHU is defined as
follows:

P = tanh(Wpd % DL+ Wy, *H,L]) (18)
0 = o (W D+ Wy + HL_,) (19)
H=PO00+1-0)0H_|, (20)

where W represents a convolution kernel, and P, denotes a
switch gate to learn the transformation between D; and the
hidden state Htl_ I Htl represents the input for the next layer.
MaxPool and Cony denote the MaxPooling and convolution
operation, respectively.

We use the Euclidean loss between the output /(x,y) and
the ground-truth I, (x, y) as the loss function:

L=1lI(x,y) — L(x,»I3, Q1)

IV. EXPERIMENTAL RESULTS
A. Experimental Condition and Evaluation Metrics

To verify the performance of the proposed method, we
have implemented it on the HEVC reference software HM
16.7. The experiments have been conducted a computing plat-
form with CPU@3.9G Hz and GPU@24G RAM. The BD-BR
and BD-PSNR results are obtained based on four QPs =
{22, 27, 32, 37}. The overall coding performance is measured
by APSNR:

APSNR = PSNRproposed — PSNRum16.7 22)

where PSNRpoposed and PSNRpp16.7 represent the PSNR
results of the proposed method and HM16.7.

In addition, the overall computational complexity is mea-
sured by AT:

Tproposea’ — Tumi6.7

AT = x 100%, (23)

Tumie
where T)roposed and Thpr16.7 represent the coding time of the
proposed method and HM16.7, respectively.

In video communication, RC aims to achieve the most accu-
rate bit rate as required. Therefore, the bit rate error is an
important evaluation index, which is represented by bit-rate
error (BRE)(%), and defined by

|TBR — ABR|

BRE = x 100%, 24)

where TBR and ABR represent the target and actual bits,
respectively.

B. Coding Performance on Conventional Dataset

1) Comparison With Standard HEVC Algorithm: Table II
provides the overall BD-BR and BD-PSNR results of our
method compared with HEVC. Class A to Class E are the
standard test sequences recommended by JCT-VC, while Class
F and Class G are built by ourselves. The proposed method
obtains an average quality increment by 1.50 dB in the salient
regions and a decrease by 0.30 dB in the no-salient regions.
Generally, human eyes pay more attention to the salient
regions, while the remaining areas attract less attention. The
PSNR improvement in salient regions enhances the visual
experience. As for the rate control, the actual bit rate is almost
equal to the target bit rate, which means that the visual percep-
tion quality can be significantly improved without increasing
the bandwidth burden.

2) R-D Curve Performance: To show the overall R-D
performance, we also provide the R-D curves as illustrated
in Fig. 9. It can be seen that the proposed method obtains a
higher PSNR value on the salient regions from the low bit-rate
to the high bit-rate compared with HM16.7. This improvement
is achieved at the cost of reducing the quality of non-salient
regions. Experimental results demonstrate that our method can
improve the perceptual video quality without increasing the
bandwidth burden.

3) Comparison With Other Perceptual Quality-Based
Methods: In this section, we also compare the proposed algo-
rithm with recent perceptual quality-based coding algorithms
in terms of BD-BR and BD-PSNR. It can be seen from
Table III that our method obtains the average BD-BR and BD-
PSNR results for the salient regions are —21.22% and 1.30 dB,
respectively. The performance of the proposed quality control
scheme outperforms other competing algorithms in the salient
regions. The main reason can be that the proposed scheme
takes into account the visual characteristics of the human eyes,
which allocates the bit-rate more reasonably.

C. Coding Performance on the Eye-Tracking Dataset

Apart from the conventional video dataset, we also verify
the coding performance of the proposed scheme on the eye-
tracking dataset [40], [41]. Experimental results are evaluated
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TABLE I

CODING PERFORMANCE OF THE SALIENT AND NON-SALIENT REGIONS COMPARED WITH HM 16.7 UNDER THE SAME BIT-RATE

361

Class Sequence Target Bitrate Actual Bitrate BRE A PSNR (dB) Coding Time
(kbps) (kbps) (%) whole  non-salient salient AT (%)
A PeopleOnStreet 68820 68824 0.0058 | -0.1771 -0.1916 1.3821 -2.73
[2560 x 1600] Traffic 64708 64710 0.0031 | -0.2071 -0.2184 1.4436 -3.31
BasketballDrive 15589 15591 0.0128 | -0.2119 -0.2220 0.7762 -3.87
B BQTerrace 44340 44340 0 -0.1829 -0.2033 1.4472 -4.45
[1920 x 1024] Cactus 31160 31162 0.0064 | -0.1391 -0.1536 1.0822 -2.35
ParkScene 35638 35638 0 -0.1390 -0.1543 1.6485 -1.19
BasketballDrill 6647 6650 0.0451 | -0.1785 -0.1915 1.3692 -1.96
C BQMall 9365 9370 0.0533 | -0.2050 -0.2383 1.9049 -3.85
[832 x 448] PartyScene 20215 20219 0.0197 | -0.2368 -0.2523 1.9473 -5.32
RaceHorses 11100 11110 0.0900 | -0.1266 -0.1407 1.8465 -2.06
BasketballPass 1508 1509 0.0663 | -0.0257 -0.1178 1.6039 -2.07
D BlowingBubbles 2595 2597 0.0770 | -0.0990 -0.1282 1.3843 -2.95
[384 x 192] BQSquare 4483 4484 0.0223 | -0.0994 -0.1849 1.8288 -1.56
RaceHorses 2573 2575 0.0777 | -0.1277 -0.1765 1.6877 -6.34
FourPeople 11315 11317 0.0176 | -0.3170 -0.3390 0.8580 -3.49
Johnny 6255 6257 0.0319 | -0.2822 -0.2958 0.8084 -5.62
E Kristen 7970 7972 0.0250 | -0.3131 -0.3431 0.9652 -3.54
[1280 x 704] Vidyol 7136 7138 0.0280 | -0.2770 -0.3065 1.2890 -4.96
Vidyo3 8257 8258 0.0121 | -0.2759 -0.3130 1.2067 -5.64
Host 4252 4253 0.0235 | -0.3142 -0.3804 2.0059 -3.34
F Broadcaster 4933 4932 0.0202 | -0.3711 0.3847 1.8509 -2.92
[1280 x 704] VirtualConference3 4109 4110 0.0243 | -0.5303 -0.7098 1.1580 -0.61
VirtualConference4 5782 5784 0.0345 | -0.4235 -0.5848 1.4660 -3.48
Pair figure-skating 2516 2522 0.2384 | -0.4918 -0.8952 1.2600 -6.20
G Artistic gymnastics 8252 8250 0.0242 | -0.2358 -0.3965 2.5977 -0.57
[1280 x 704] Men’s figure-skating 2642 2648 0.2271 | -0.1863 -0.3215 1.8061 -6.76
Women'’s figure-skating 3704 3708 0.1079 | -0.3203 -0.4239 1.9357 -3.42
Average 14661 14664 0.0447 | -0.2406 -0.3023 1.5023 -3.48
50 T T T T T T T 48 T T T T T T T T T 48 T T T T T T T T T
48 — 46 | b 46 —
46 x . 44 1 » . s |
o = |\ 7 o
D44t 4 D42t 1 2l ]
14 x x
52 “5¢-HEVC_whole 1 G4or “5-HEVC_whole 18 w0 T3¢ -HEVC_whole i
o -3¢ -HEVC_salient o -%-HEVC _salient o -3¢ -HEVC_salient
40 - -3 -HEVC_non-salient 38 - -3 -HEVC_non-salient -3 -HEVC_non-salient
— Proposed_whole — Proposed_whole 38 - — Proposed_whole | ]
38 |- —>— Proposed_salient = 36 - —%— Proposed_salient q ——Proposed_salient
—x— Proposed_non-salient —x— Proposed_non-salien 36 —x— Proposed_non-salien -
% 25000 50000 75000 100000 125000 150000 175000 200000 # 6000 9000 12000 15000 18000 21000 24000 27000 30000 2500 5000 7500 10000 12500 15000 17500 20000 22500
Bitrate (KB/s) Bitrate (KB/s) Bitrate (KB/s)
(a) (b) (©)
48 — T T T T T T T T T 48 T T T T T T T T 48 T T T T T T T
er T et 1 4b .
44+ N
44 1 §
@42 1@ oM 1
i Sl 1=z
o 40 1 x Z .l
% 38 [5%-HEVC whole | 5 a0 L ~5¢-HEVC_whole i 5 ~5¢-HEVC_whole
o= r -5 -HEVC_salient 1o -~ HEVC_salient o - -HEVC_salient
361 -5~ HEVC_non-salient | | sl ->¢- HEVC_non-salient | | 40 -5¢-HEVC_non-salient ||
. s Proposed_whole > Proposed_whole % Proposed_whole
34l - —s— Proposed_salient | —— Proposed_salient —— Proposed_salient
P —— Proposed._non-salient 36 —x— Proposed_non-salient - B s Proposed_non-salien{ |

800 1200 1600 2000 2400 2800

3200 3600 4000 4400

Bitrate (KB/s)

(C)

6000 9000 12000 15000 18000 21000 24000 27000 30000
Bitrate (KB/s)

(e)

2500 5000 7500

10000 12500 15000 17500 20000
Bitrate (KB/s)

®

Fig. 9. R-D curves of six video sequences: (a) Traffic, (b) RaceHorses, (c) BasketballDrill, (d) BasketballPass, (e) FourPeople, and (f) Johnny.

in terms of BD-PSNR and BD-EWPSNR. EWPSNR takes into

account human perceptual information, which is defined as

follows:

EWPSNR =:1(nog10(

2552

EWHWSE)’

EWMSE =

where EWMSE is defined by
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TABLE III
CODING PERFORMANCE COMPARISON WITH THE HADIZADEH’S AND ZHU’S METHODS IN TERMS OF BD-BR AND BD-PSNR

Hadizadeh et al. [16] Zhu et al. [17] Perceptual-based Method
Sequence Whole Image Salient Region Whole Image Salient Region Whole Image Salient Region
BD-BR BD-PSNR BD-BR BD-PSNR |BD-BR BD-PSNR BD-BR BD-PSNR |BD-BR BD-PSNR BD-BR BD-PSNR
(%) (dB) (%) (dB) (%) (dB) (%) (dB) (%) (dB) (%) (dB)
PeopleOnStreet | 5.94 -0.21 -1.36 0.61 12.27 -0.63 -7.61 0.51 9.03 -0.42 -18.28 1.19
Traffic 14.74 -0.89 -3.08 0.19 13.77 -0.76 -10.07 0.69 -0.43 0.02 -27.12 1.63
BasketballDrive| 16.51 -0.68 -3.71 0.25 19.76 -0.78 -11.14 0.53 7.91 -0.20 -22.69 1.18
Kimono 8.56 -0.39 -11.57 0.22 8.78 -0.43 -10.10 0.50 2.89 -0.10 -19.75 0.42
BasketballDrill | 10.38 -0.61 -9.28 0.31 13.03 -0.62 -3.12 0.57 5.76 -0.24 -24.72 1.46
RaceHorses 5.61 -0.48 -6.89 0.60 14.66 -0.40 -13.93 0.65 2.69 -0.15 -29.34 1.87
BasketballPass | 6.01 -0.32 -4.62 0.33 15.91 -0.56 -6.22 0.43 1.58 -0.08 -22.02 1.67
BQSquare 5.84 -0.49 -4.18 0.59 6.96 -0.18 -13.02 0.64 2.02 -0.15 -18.26 1.85
FourPeople 12.67 -0.83 -3.63 0.53 14.32 -0.83 -12.29 0.76 5.36 -0.29 -13.09 0.87
Johnny 15.87 -0.77 -6.82 0.70 11.69 -0.55 -9.47 0.50 6.33 -0.25 -16.91 0.89
Average 10.21 -0.56 -6.11 0.43 12.83 -0.57 -11.56 0.59 4.31 -0.19 -21.22 1.30
TABLE IV

PERFORMANCE OF THE PROPOSED ALGORITHM VERSUS THE HADIZADEH’S AND ZHU’S METHODS ON THE EYE-TRACKING DATASET

Zhu et al. [17]

Test Sequence BD-PSNR BD-EWPSNR

BD-PSNR BD-EWPSNR

Hadizadeh et al. [16] Perceptual-based Method

BD-PSNR BD-EWPSNR

(dB) (dB) (dB) (dB) (dB) (dB)
Bus -0.39 0.47 -0.61 0.24 -0.42 0.44
City -0.24 0.64 -0.45 0.16 -0.16 1.27
Crew -0.15 0.33 -0.34 0.02 -0.34 1.79
Stefan -0.16 0.72 -0.5 0.42 -0.46 0.85
Harbor -0.19 0.44 -0.34 0.32 -0.33 1.03
Soccer -0.47 0.11 -0.56 -0.03 -0.42 1.41
Tempete -0.26 0.59 -0.47 0.28 -0.49 0.32
Foreman -0.26 0.50 -0.51 0.08 -0.25 0.70
Hall Monitor -0.05 0.39 -2.64 -1.66 -0.20 0.65
Flower Garden -0.17 0.50 -0.24 0.52 -0.50 0.58
Mobile Calendar -0.19 0.73 -0.43 0.54 -0.72 0.81
Mother Daughter -0.39 -0.14 -0.54 -0.31 -0.46 0.52
Average -0.24 0.44 -0.64 0.05 -0.40 0.80

TABLE V

where w, , represents the perceived weight at the pixel position
of (x,y), and F;)y and Fy , denote the pixel values before and
after encoding.

Table IV provides the BD-PSNR and BD-EWPSNR results.
As seen, the proposed method obtains the EWPSNR gain
by 0.80 dB compared with HEVC, 0.75 dB compared with
Hadizadeh’s method, and 0.36 dB compared with Zhu’s
method.

D. Subjective Visual Quality

To demonstrate the subjective performance, Fig. 10 and
Fig. 11 provide several reconstructed frames encoded by HM
16.7 and the proposed method. The experimental results show
that the proposed method greatly improves the quality of
salient regions. For instance, the proposed method preserves
more details on the human faces than HM 16.7. Also, our
method has higher coding quality on moving objects. It indi-
cates that the proposed perceptual quality control method can
effectively improve the coding quality for salient regions at
the same bandwidth.

E. Computational Complexity

Table V provides the average computational complexity in
terms of the running time (Sec.) and the frame per second

AVERAGE COMPUTATIONAL COMPLEXITY IN TERMS OF THE RUNNING
TIME (SEC.) AND THE FRAME PER SECOND (FPS).

Video Resolution Static Saliency Dynamic Saliency Enhancement

Time FPS Time FPS Time FPS

1920 x 1024 0249 4.02 1.168 0.86 2.047 0.49
1280 x 704 0.156 641  0.405 2.47 0.935 1.07
832 x 448 0.124  8.06  0.185 5.41 0.400 2.50

384 x 192 0.096 10.42 0.058 17.24 0.086 11.63

(FPS) in predicting a saliency map. As seen, the proposed
saliency detection method may not directly satisfy some real-
time applications (e.g., video conference or online classroom).
However, some optimization methods can be used to solve this
problem: 1) Due to the fact that video frames are very similar
to each other in a short period of time, several adjacent frames
can share the same saliency map to save the computing time.
2) Since specific saliency values are not that sensitive in per-
ceptual quality control, one can reduce the image resolution of
the input video frame when predicting the saliency guidance.
3) Some model optimization approaches can be further used to
reduce the computational complexity of deep models, includ-
ing knowledge distillation, weight quantization, pruning, and
network structure optimization.
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(d) PartyScene

Fig. 10. Qualitative demonstration for the comparison of subjective coding performance between proposed method and HEVC on static videos.

However, it is worth noting that our method can still be used coding have been run in parallel on a GPU and a CPU, sep-
to compress a raw video in an offline manner. Furthermore, arately. They communicate through a shared folder. As for
in the experiments, the salient region extraction and video each frame, saliency detection takes less computation time

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 30,2022 at 03:01:35 UTC from IEEE Xplore. Restrictions apply.



364 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 4, NOVEMBER 2022

HEVE [31]
57112 bits

HEVC [31]
41928 bits

Perceptual-based
56846 hits

Perceptual-hased—="-*"
41792 bits

(b) Pair figure-skating

Perceptual-has ﬂl
10160 bits . \‘

(¢) Rollercoaster

Fig. 11.

than encoding, and hence saliency detection will not increase
the overall running time as illustrated in Table II.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a deep-learned perceptual quality
control method for intelligent consumer electronic video dis-
play and transmission. Specifically, we develop a multi-scale
saliency extraction network to extract the saliency regions
for static videos, while exploring an LSTM-based network
to extract the moving objects for dynamic videos. Based on
the static and dynamic saliency guidance, we further design
a three-level rate control scheme: more bits are allocated
to the salient regions to preserve higher visual quality, and
fewer bits are allocated to the non-salient regions to save
more bits. This strategy can significantly improve the human
visual experience without increasing bandwidth. To avoid

Qualitative comparisons of the subjective performance between the proposed method and HEVC on moving objects.

the perceptual quality degradation caused by the difference
between the salient and no-salient regions, we also propose
an effective video enhancement module. Subjective and objec-
tive experiments validate the effectiveness of the proposed
method in ensuring the perceptual video quality under a target
bit-rate.

Video compression is currently tightly linked with consumer
electronic video display and transmission. Currently, most
intelligent-terminal products are equipped with video commu-
nication modules, such as smartphone, surveillance, laptop,
drone, etc. Perceptual quality control can ensure the quality of
video service without increasing the transmission bandwidth.
For various video-based applications of consumer electronics,
the proposed method can be deployed both on the server side
and the client side. Therefore, we believe that our method can
be useful for many video-based applications serving a large
number of consumers.
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