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Boundary-Aware Semantic Bird-Eye-View Map
Generation Based on Conditional Diffusion Models
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Abstract—Semantic bird-eye-view (BEV) map is an efficient
data representation for environment perception in autonomous
driving. In real driving scenarios, the collected sensory data
usually exhibit class imbalance. For example, road layouts are
often the majority classes and road objects are the minority. Such
imbalanced data could lead to inferior performance in BEV map
generation, particularly for minority objects due to insufficient
learning samples. This work attempts to mitigate this issue from
the perspective of network and loss function design. To this
end, a diffusion-guided semantic BEV map generation network
with a boundary-aware loss is proposed. The network learns the
underlying distribution of the data, including the relationship
between majority and minority classes. The boundary-aware loss
increases weighting for minority classes during training, making
the network focus on these classes. Experimental results on a
public dataset demonstrate our superiority over the state-of-
the-art methods, and our effectiveness in addressing the class
imbalance issue.

Index Terms—Semantic BEV map, class imbalance, semantic
scene understanding, autonomous driving.

I. INTRODUCTION

FFICIENT data representation is essential for self-driving

vehicles to perceive surrounding environments. The
semantic bird-eye-view (BEV) map stands out as a popular
choice in this area owing to its efficiency. It has attracted sig-
nificant attention in autonomous driving research communities.
Compared with the common front-view data representation,
the notable Characteristics of BEV are evident in the following
aspects: 1) its top-down perspective facilitates the seamless
integration of information from heterogeneous sensors, such
as cameras and LiDAR; 2) it functions as an intermediate data,
effectively bridging the disparity between the real world and
simulation environments through its semantic representation;
3) it eliminates distortions caused by perspective projection,
making it an inherently suitable option for downstream tasks
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that rely on grid-like data representation, such as trajectory
prediction [1], [2] and autonomous navigation [3], [4], [5].

Semantic BEV map generation involves both semantic
labeling and view transformation from front-view to top-down
view. For semantic labeling, correctly labeling road objects,
such as vehicles, pedestrians, and barriers, is important to
the safety of autonomous driving [6], [7]. However, in the
real collected sensory data from self-driving vehicles, such as
visual images, road objects usually have small sizes, while
road layouts, such as drivable areas, and walkways, usually
occupy a larger portion. Such a case leads to class imbalance,
which is a common issue in semantic scene understanding [8].
Fig. 1 demonstrates the pixel distribution between different
semantic classes in the nuScenes dataset [9], a well-known
public dataset for autonomous driving. The figure visualizes
the imbalance between road layouts and road objects. This data
imbalance issue could lead to inferior segmentation accuracy
for the minority objects due to insufficient learning samples.
Unfortunately, virtually all the existing semantic BEV map
generation methods focus on network design to improve the
overall segmentation performance across all classes, overlook-
ing this class imbalance issue.

The Transformer model has been widely used in BEV
perception [10], [11], [12]. These methods use BEV queries
to look up the BEV feature from the front-view information
via the cross-attention mechanism. The BEV queries are
randomly initialized as blank templates in the same format
as the required output (e.g., the detection boxes in the object
detection task or the BEV map in the semantic BEV map
generation task), and the target representation is gradually
learned from the source domain during training. However,
those methods also do not take the class imbalance problem
into consideration.

In the fields outside autonomous driving, there are some
attempts to solve this issue. These attempts can be generally
categorized into data-level methods and cost-sensitive meth-
ods. The former uses various data augmentation approaches
[13], [14], [15] to create new minority data. Besides data
augmentation, oversampling [16], [17] is also a commonly
used data-level method to enrich datasets. The latter [18], [19]
focuses on developing new loss functions, guiding the network
to learn from the minority classes.

In line with the latter category of methods, we try to solve
the class imbalance issue by introducing a boundary-aware
loss, which was initially introduced in our conference paper
[20]. The boundary-aware loss emphasizes minority classes
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Fig. 1. The statistics of the pixel number for each semantic category in the
nuScenes dataset. For our semantic BEV map generation task, we create the
semantic BEV ground truth for 7 classes, including the background (BG),
drivable area (DA), pedestrian crossing (PC), walkway (WW), barrier (Bar),
vehicle (Veh), and pedestrian (Ped).

during training, thereby improving the network sensitivity
to minority objects. However, experimental results indicate
that relying solely on the loss function to improve minority
class detection can compromise the accuracy of majority class
predictions. To mitigate this issue, we further refined the
network’s design to achieve a more balanced focus across
classes.

Recently, the diffusion model [21] has attracted great atten-
tion due to its ability to model the underlying data distribution.
The denoising process of the diffusion model can capture the
distribution of both majority and minority classes, benefiting
the detection of minority objects while having less impact
on the majority classes. In this work, we use the diffusion
model to initialize the BEV queries in the cross-attention
module of the Transformer, rather than use blank templates.
In such a way, the BEV queries learned by the diffusion
model could be seen as the prior information that encodes
the global scene understanding, making the queries stick to
physical principles. For example, pedestrians should appear on
top of roads rather than on top of a car. The road layouts should
be subject to certain changing rules instead of sudden changes
in shape. Thus, we propose a diffusion-guided semantic BEV
map generation network with boundary-aware loss. Our moti-
vation is to improve the segmentation performance for the
minority classes. This paper is an extension of our conference
paper [20]. Our code is open-sourced.! The contributions are
summarized as follows:

1) We design a novel diffusion-guided semantic BEV map
generation network.

2) We design the boundary-aware loss to mitigate the
impact of the class imbalance problem.

3) We compare our network with the state of the arts to
demonstrate our superiority.

The remainder of this paper is structured as follows: Sec-
tion II reviews the related work. Section III delves into the

1 https://github.com/lab-sun/Boundary-aware-BEV
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details of our network. Section IV showcases our experiment
results. The last section summarizes our work and suggests
potential directions for future research.

II. RELATED WORK
A. Semantic Segmentation Networks

Semantic segmentation aims to classify each pixel in an
image into individual classes [22], [23], [24]. U-Net [25]
introduced the skip connection to the encoder-decoder struc-
ture, enabling the information interaction between up- and
down-sampling. U-Net++ [26], and U-Net3+ [27] are the
U-Net-based methods, attempting to create new information
fusion manners for the skip connections. The DeepLab family
[28], [29], [30] employed the atrous convolution to obtain the
different receptive field ranges by setting the various dilation
rates. Nowadays, the Transformer model [31] has become
prevalent due to its remarkable ability to extract attention.
Zheng et al. [32] proposed a SETR network, extending
the ViT [33] into semantic segmentation. Chen et al. [34]
designed a hybrid model for semantic segmentation, com-
bining convolution operations and self-attention mechanisms.
Leveraging extensive training on large-scale datasets, the SAM
[35] attained a high-level generalization in segmentation tasks
across diverse domains. MASA [36] utilized the powerful
segmentation capabilities of SAM to effectively accomplish
cross-frame segmentation of identical objects.

B. Semantic BEV Map Generation

The semantic BEV map finds extensive applications in a
variety of practical scenarios [37], [38], establishing its sig-
nificance within the perception domain. Generating semantic
BEV maps differs from semantic segmentation as it conducts
both view transformation and semantic prediction. Lu et al.
[39] first introduced semantic BEV map generation into driv-
ing scenarios via a convolutional variational encoder-decoder
structure. Monolayout [40] utilized the adversarial learning
framework to respectively predict the static and dynamic
semantics. LSS [41] designed a depth prediction mechanism
to lift the 2D feature to the 3D space during the view transfor-
mation. Also based on the idea of depth prediction, BEVDepth
[42] used a network to predict depth with the additional depth
supervision. Yang et al. [43] used a cross-attention module in
the semantic BEV map generation to look up the BEV feature
from the front-view image. BEVFormer [12] introduced the
Transformer framework to perform the BEV perception. S2G2
[44] employed the semi-supervised framework to alleviate
dependence on labeled data. Additionally, there exists research
[45] aimed at forecasting the future driving environment using
semantic BEV maps.

C. Class Imbalance Learning

Long-tailed distribution is a common issue in deep learning.
This could hinder the learning capacity for minority classes.
Many methods have been proposed to address this issue. Some
methods [14], [15], [16] explored the data-level solution by
enriching data diversity or oversampling the minority classes
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Fig. 2. The architecture of our proposed network. The front-view RGB image is taken as a condition to guide the diffusion module after passing through
the feature extractor. The compressed BEV ground truth is corrupted with stochastic noise iteratively to get a pure Gaussian noise. The denoising process
recovers the latent BEV feature map structure step-by-step with a U-Net structure, during which the underlying pattern of the data distribution can be learned.
Then, we use this recovered BEV feature map to initialize the BEV queries in the cross-attention mechanism instead of the blank query templates to get the
BEV feature map, fpry. The semantic BEV map is generated after feeding fpry to the semantic decoder. The boundary-aware loss and diffusion loss are
employed to train this network. Note that the procedures shown in the yellow background are implemented only in the training phase, while those highlighted

in green represent the inference steps. The figure is best viewed in color.

to re-balance the data. Ebenuwa et al. [46] tackled this issue by
introducing a new attribute selection technique, variance rank-
ing, to address class imbalance problems. The cost-sensitive
approaches, like [18] and [19], designed proper loss functions
to guide the network training by assigning larger weights
to minority classes, thereby addressing the class imbalance
issue.

D. Diffusion Model

Recently, the diffusion model has been well-studied as
a powerful generative model, which learns to simulate and
generate the underlying data distribution of the training set
by iteratively applying a denoising process. Diffusion is a
well-known concept in non-equilibrium statistical physics,
which was first introduced into the deep-learning field by
Sohl-Dickstein et al. [47]. Ho et al. [21] proposed Denoising
Diffusion Probabilistic Models (DDPM), laying the foundation
for image generation. During the diffusion phase, the original
image is corrupted with random noise step-by-step until it
becomes a white Gaussian noise. Then, a neural network is
trained to predict the noise added in each step to recover the
structure of the input image. According to whether a prompt
is provided to guide the generation process, the diffusion
model can be divided into conditional and unconditional ones.
The unconditional diffusion [48], [49], [50] randomly samples
from the learned data distribution as the generation, while
the conditional ones [51], [52], [53] take the text or images
as the control of the generation to obtain an image of the
specified content. Since the diffusion and denoising processes
are implemented in the original image size, it takes a long time
to sample an image by simulating a Markov chain for many
steps. To accelerate sampling, the Latent Diffusion Model [54]

was proposed by compressing the original image into the
smaller latent space with an auto-encoder.

III. THE PROPOSED NETWORK
A. The Overall Architecture

To reduce the impact caused by the class-imbalanced
training data on the network performance, we propose a
diffusion-guided semantic BEV map generation network with
a boundary-aware loss function. The overall architecture of the
proposed network is illustrated in Fig. 2. During the training
phase, the network takes as input the front-view images and
the corresponding BEV ground truth. The two types of inputs
are fed into a feature extractor and a feature compressor,
respectively. The former extracts the environment information
from the natural driving surroundings, while the latter maps
the high-dimensional BEV labels into the latent space to
accelerate the diffusion sampling. The diffusion process adds
the stochastic noise to the latent BEV feature, zp, step by
step until a pure Gaussian noise is obtained. Note that the
diffusion process is only applied during training but not
during inference. Subsequently, U-Net is employed to remove
the added noise iteratively under the guidance of the front-
view feature map, f.. This denoising process can recover the
original BEV features from the pure Gaussian noise. This
recovered BEV feature includes the prior information on the
various classes’ distribution patterns learned from the diffusion
process. Thus, we take the recovered BEV feature map as
the BEV query to look up the related information from the
front-view feature maps in a cross-attention module, which
initializes the query with the prior underlying distribution
of the data. After the semantic decoder, the BEV feature,
Jfsev, 1s decoded into the semantic BEV map. In contrast to
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certain diffusion-based segmentation methods, the proposed
method leverages the inherent strengths of diffusion models,
particularly their capacity to effectively capture the underlying
patterns of data distributions, which specifically addresses the
class imbalance problem.

The whole network is end-to-end trainable by punishing
boundary-aware and diffusion losses. The boundary-aware loss
focuses on the detection performance of the minority classes.
The diffusion loss reduces the disparity between the noise
added during the diffusion process and the noise predicted
during the denoising process.

B. The Feature Extractor for the Diffusion Condition

Our network aims to generate a corresponding semantic
BEV map from a given front-view RGB image, leveraging
the powerful generative capabilities of the diffusion model.
Since the diffusion model could generate an arbitrary random
sample that conforms to the distribution pattern of the training
dataset, our task requires guidance to control the generation
process to get a semantic BEV map that aligns with the front-
view image. Therefore, we use the feature map extracted from
the front-view RGB image as the condition for the diffusion
model. In this context, it is expected that both global and local
environment information included in the front-view image is
accurately represented, thereby providing high-quality condi-
tions for the diffusion model.

We employ a pre-trained CNN model, DeepLab V3+ [30],
as our feature extractor. The ASPP module in DeepLab V3+
enables multi-scale feature extraction by using various dilation
rates, capturing the information at various scales. The front-
view RGB image Iry € R3>*#*W 5 provided to the feature
extractor G to get the diffusion condition, f:

Je = GEy). (1)

C. The Diffusion-Guided BEV Queries

1) The Feature Compressor: We integrate the diffusion
model with the cross-attention mechanism to make the BEV
queries encode the prior information of the dataset. In this
way, the distribution patterns of the majority and minority
classes could be captured by the BEV queries. The structure of
the data distribution is disrupted through the iterative forward
diffusion process, during which random noise is added to the
original image. Then, a reverse denoising network is trained to
restore the data structure from the Gaussian noise. The reverse
step is performed at the original image scale and repeated for
T timesteps to predict the noise added at each step of the
forward process, leading to a low sampling rate. However,
the BEV label is composed of several semantic areas without
complicated details, allowing a compact representation to hold
all the information. To speed up the sampling, we first shrink
the BEV label to a small size with the feature compressor and
implement the diffusion model on the latent space instead of
pixel space.

A variational auto-encoder model [55] is used to trim off
redundant pixel-level information. We pre-train this model
by first encoding the BEV label ypgy into the latent space
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and then decoding the latent into the original space. In
our proposed network, only the encoder, H, is preserved
to provide the diffusion process with a reliable compact
representation, zo:

20 = H(yBev). 2

2) The Conditional Diffusion: A diffusion model comprises
two key processes: the forward diffusion process and the
reverse denoising process, both of which can be conceptu-
alized as Markov chains. The forward process begins with
clear input data and progressively corrupts the data by adding
random noise over 7 timesteps, where each step depends on
the noisy sample from the preceding step. This gradual addi-
tion of noise transforms the original complex data distribution
into a simplified isotropic distribution. Conversely, the reverse
process seeks to reconstruct the original data distribution by
iteratively removing the noise. Guided by a parameterized
model, it learns to reverse the forward steps, withdrawing
the added noise at each stage until the original structure is
restored. Intuitively, the forward process can be understood
as a controlled mechanism that incrementally disperses the
data into a simpler representation, while the reverse process
functions as a stepwise recovery system, restoring the intricate
details of the initial pattern.

In our case, the BEV latent tensor follows a certain dis-
tribution, zyp ~ g(z). In the forward diffusion process, a small
amount of Gaussian noise incrementally added to the latent
sample in each timestep is determined by a predefined variance
schedule, 3, € (0, 1), yielding a series of noisy samples zo, zi,
e zre

T
q(zirlo) = [ [ atla), 3)

=1
q(z4|zi-1) = N(Zz; v 1 = Bizi-1, BD. 4

The diffusion process g gradually converts the complex
distribution (the data, zo) to the sample Gaussian distribution
(the pure Gaussian noise, zr). Since this process is subject to
the Markov chain and variance schedule S, is known, the noisy
sample can be calculated at arbitrary step #:

9(zlz0) = N(zi; Vauzo, (1 — @,)l), 5
7= Vazo + V1 - e, (6)

where @, = 1 -8, and & = [[_,@. Eq. 6 is the re-
parameterized form to get z;, where € ~ N(0,I). At T step,
zr ~ N(0,1), becomes the isotropic Gaussian distribution.

The denoising process reverses the previously mentioned
operation by training a neural network py to approximate
the conditional probabilities g(z,-1|z;, fc), conditioning on the
front-view feature, f.:

T
po(zo:lfe) = p(zr) npe)(zt-ﬂzt,fc), @)

t=1

pﬁ(Zt—l |Zt7 f‘C) = N(thl;ﬂ(?(ztv 8 fc‘)’ 20(2[, Z, f;‘)) (8)

We follow [21], and set Zy(z, 1, f.) = 0',21 as an untrained
constants, where o> = 3. uy is learned by the parameterized

model 6. Because the back-propagation cannot be performed
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on the random sampling process, the re-parameterization oper-
ation is introduced to sample z,_; from py(z:—1lz;, f2):

-1 =

= (z, - et fc)) fom ©
where n ~ N(0,1), and e(z, ¢, f.) represents the U-Net we
used in the denoising process, which predicts the noise added
at the ¢ step, given the noisy sample z;, the time embedding
t, and the front-view condition f. as input. To supervise
this conditional diffusion model, we minimize the distance
between the noise added in the forward diffusion process and
the predicted noise from the U-Net in the reverse denoising
process at each time step:

Liss = Exyea[le = (Nazo + V1=aet, L] (10)

The forward diffusion and reverse denoising processes are
displayed in Fig. 2. Note that the diffusion process is not
implemented in the inference phase, instead, we use a random
noise sampled from the Gaussian distribution as input during
inference.

3) The Cross-Attention Module: The transformation from
the front view to the bird-eye view can be interpreted as a
perspective translation. To facilitate this process, the cross-
attention mechanism is employed, enabling the model to
selectively focus on specific regions of the front-view data
that are relevant to the BEV perspective through a query-based
operation. Consequently, the use of an appropriately initialized
query tensor can significantly enhance the effectiveness of the
view transformation. The diffusion model reveals underlying
patterns across various semantic classes through its noise cor-
ruption and denoising steps. Within the cross-attention module,
samples derived from the learned data distribution serve as ini-
tializations for the BEV queries, facilitating the model’s ability
to capture relationships among semantic classes, particularly
between majority and minority classes.

As displayed in Fig. 2, the key and value vectors are
calculated from the front-view feature map f,, and the BEV
queries are initialized with the BEV feature zyp sampled from
the learned data distribution:

0 = Wozo,
K =W/,
V=Wyf, (11)

where Wqo, Wk, Wy are the trainable weight matrices. The
cross-attention module establishes the matching relationship
between the BEV and the front-view features through the
query operation, which is measured by the attention score:

KT
0 ) V.
Vd
where d is the dimension of the BEV queries.
After the cross-attention module, the BEV feature map fgzgy
encodes the information from both the front-view and BEV.

Then, the semantic decoder up-samples the BEV feature to
generate the semantic BEV map.

feev = Softmax ( (12)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

Fig. 3. The visualization of the boundary-aware loss. (a) is the input front-
view image. () is the corresponding ground truth. (¢) is the binary mask for
the minority objects that appear in the image. (d) is the extracted edges of
the minority objects. (e) is the boundary-aware score. Note that the brighter
color represents the higher score. The figure is best viewed in color.

D. The Boundary-Aware Loss

Due to the data scarcity of minority classes (e.g., pedestri-
ans), semantic BEV map generation networks may not perform
well in detecting these objects. So, besides the network design,
a boundary-aware loss is introduced in this work to address
this issue. This loss is expected to guide the network to
learning process and improve its ability to accurately detect
minority classes during training phase.

Fig. 1 shows the statistics on the number of pixels of
each class in our used dataset, which includes 7 semantic
classes. We group the background (BG), drivable area (DA),
pedestrian crossing (PC), and walkway (WW) into the majority
classes, and the barriers (Bar), vehicle (Veh), and pedestrian
(Ped) into the minority classes. To stress the minority classes,
it is intuitive to increase the weight of these objects in
loss calculation during training. Given that the loss function
measures the difference between the predicted output of the
proposed network and the ground truth, assigning higher loss
weights to minority classes can guide the network toward
better performance in detecting these classes through the
iterative backpropagation and weight adjustments.

To implement this loss function, we begin by processing the
semantic BEV label. The one-hot encoded label is transformed
into a single-channel image where each pixel is assigned its
corresponding class ID. Then, the objects belonging to the
minority classes are gathered onto a binary mask M € R,
distinguishing from the background and other classes:

B V(u,v) =0,
© ) V@,v) =255,

Vu,v)y<T

Vu,v) > T, (13)

where V(u,v) is the pixel value of the single-channel label.
T is the threshold to pick up the minority classes. Fig. 4 (c)
displays the binary mask M. Subsequently, the object edges
are extracted using the Canny edge detection [56] (shown in
Fig. 4 (d)). The last step is to calculate the Euclidean distance
from each pixel to the nearest edge as the boundary-aware
score S. Note that the smaller the pixel distance, the higher its
score. The visualization of this score is displayed in Fig. 4 (e),
where the brighter parts indicate the higher boundary-aware
scores.

This boundary-aware score is applied to the Mean Squared
Error (MSE) loss calculation. We assign the score to each pixel
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Fig. 4. The bar charts for the impacts of the boundary intensity factor (y) on the mloU and mAP. The performance of the majority, minority, and overall
classes are reported separately. The x-axis represents various y values, while the upper y-axis denotes the mloU scale and the lower y-axis represents the
mAP scale. Certain areas of the y-axis are magnified to enhance the visibility of differences. The figure is best viewed in color.

to enhance the network’s attention to the minority objects:

H W
Lbaund = Z Z(S u’v)y(yggV - pll?;?V)z’ (14)

u=1 v=1
where yj, and pj, stand for the pixel (u,v) in the semantic
BEV label and the predicted map, respectively. S*V is the
boundary-aware score for the pixel (u,v) and v is a hyperpa-
rameter to control the boundary intensity. During training, the
Focal loss [57] is employed to supervise the segmentation. The
total loss of the proposed network is calculated as follows:

L = Loy + 6Lpouna + ALgify, (15)

where § and A are the weight parameters to balance different
loss functions. They are both set to 1 in our experiments.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. The Dataset and Training Details

We use the public dataset, nuScenes [9], to train and test the
performance of the proposed network. The dataset is collected
from different regions of Singapore and Boston, with a total
of 850 sequences of annotated scenes. The annotation data
includes 3D object bounding boxes, HD maps, scene semantic
information, and camera matrices. We project the 3D bounding
boxes onto the HD map to create the semantic BEV labels
for training. Note that due to the limitations of the flat plane
assumption, some semantic BEV labels may not be generated
correctly. After excluding scenes containing incorrect labels,
we randomly divide the entire dataset into 548 training sets,
150 validation sets, and 148 testing sets. The size of the input
image is 256 x 512 and the semantic BEV labels contain
150 150 semantic grids, each with a resolution of 0.2x0.2 m2.

The proposed network is implemented on NVIDIA RTX
3090 with 24GB GPU memory. The learning rate for the
diffusion module and the rest of the network is initialized to
1 x 107 and 1 x 1073, respectively. The warmup strategy is
applied to the adjustment of the learning rates. The weight
decay is set to 1 x 10~'. We train our proposed network for
200 epochs. The total time steps for the diffusion sampling
process is 1000. The hyperparameter y controls the intensity

TABLE I

THE RESULTS (%) OF THE ABLATION STUDY ON THE DIFFUSION
TIMESTEPS. THE TIMESTEPS CONTROL THE NOISE LEVEL IN EACH
FORWARD AND INVERSE STEP. WE ASSESS THE NETWORK’S PER-
FORMANCE ACROSS THE 100, 500, 1000, AND 1500 TIMESTEPS,
REPORTING OUTCOMES FOR BOTH MAJORITY AND MINOR-

ITY CLASSES. THE BEST RESULTS ARE HIGHLIGHTED
IN BOLD FONT

X Majority Minority
timesteps mloU mAP
mloU mAP mloU mAP
100 49.77 67.58 11.42 27.29 33.33 50.31
500 50.00 64.82 11.64 25.63 33.56 49.77
1000 50.50 64.98 11.89 2747 33.95 50.52
1500 50.26 64.99 11.17 26.38 33.51 50.25

of the boundary-aware score during the loss calculation, which
is set to 1.5. The details of the hyperparameter selection are
discussed in the ablation study.

B. Ablation Study

We perform ablation studies to validate the effectiveness of
the proposed network and to optimize parameter selection. For
evaluation metrics, we use the mean Intersection over Union
(mlIoU) and mean Average Precision (mAP).

1) Ablation on the Diffusion Process: The diffusion module
incrementally introduces the random noise to the original data
over T time steps during the forward process, until the data is
transformed to pure Gaussian noise. Then, the reverse process
eliminates the noise, step by step, to reconstruct the original
data. The time step T determines the amount of noise added
in the forward steps and removed in the reverse steps, thereby
impacting the overall diffusion process. Thus, we conduct
an ablation study to evaluate the network performance under
varying diffusion time steps. The time step is respectively set
to 100, 500, 1000, and 1500.

Since this work aims to mitigate the impacts of class
imbalance, we focus on the network performance across both
minority and majority classes. The results shown in Tab. I,
report the performance of these classes in terms of mloU and
mAP. The data in the table indicates that both excessively
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TABLE I

THE RESULTS (%) OF THE ABLATION STUDY ON THE SIZE OF THE
LATENT FEATURE. TO ACCELERATE THE SAMPLING RATE, THE DIF-
FUSION PROCESS Is CONDUCTED IN THE LATENT SPACE. WE
ASSESS THE NETWORK’S PERFORMANCE TO DETERMINE THE
OPTIMAL LATENT FEATURE SIZE AMONG THE RESOLUTION
OF 64 x 64, 32 x 32, AND 16 x 16. THE OUTCOMES
ARE MEASURED USING MIOU AND MAP FOR BOTH
MAJORITY AND MINORITY CLASSES, WITH THE
BEST RESULTS HIGHLIGHTED IN BOLD FONT

. Majority Minority
Resolution mloU mAP
mloU mAP mloU mAP
64 x 64 49.27 66.86 11.14 23.80 32.93 48.40
32 x 32 50.50 64.98 11.89 27.47 33.95 50.52
16 x 16 39.72 60.49 4.62 10.82 24.68 39.20

small and large time steps degrade the generation performance
of the proposed network. The optimal performance is achieved
when the diffusion process is divided into 1,000 steps. One
possible explanation for this is that the small number of time
steps leads to less gradual noise addition, causing turbulence
during the distribution transition (from the original data dis-
tribution to a Gaussian one or vice versa). Conversely, using
larger time steps requires more thorough training and increases
the duration of the reverse process. To trade off the network
accuracy and time efficiency, we opt for 1,000 as the time
step.

2) Ablation on the Latent Feature: To increase the sampling
speed in the reverse denoising process, we implement the
diffusion model in the latent space rather than the pixel space.
Using a feature compressor, the semantic BEV label is reduced
from the resolution of 150 x 150 to a smaller size. It is crucial
to determine an appropriate latent feature size that retains
the primary components of the semantic BEV labels. In this
ablation study, we compare the performance of the diffusion
process with different latent feature sizes. The various latent
feature sizes can be obtained by adjusting the number of
downsampling layers in the feature compressor. Specifically,
the diffusion process is performed on latent features with the
resolutions of 64 x 64, 32 x 32, and 16 x 16.

The ablation results are displayed in Tab. II, indicating that
the network performs best when the semantic BEV labels are
compressed to the resolution of 32 x 32. From the table, we
can infer that the smaller latent features do not provide suffi-
cient semantic information due to the high compression ratio,
resulting in inferior performance. However, it is also observed
that the outcomes with a bigger latent feature (64 x 64) are
not as good as those with the resolution of 32 x 32. This result
can probably be attributed to the feature compressor’s ability
to extract the primary components, effectively summarizing
the necessary semantic BEV information as a pre-processing
step for the subsequent diffusion module.

3) Ablation on the Condition Fusion: In this work, we
aim to generate the semantic BEV map from the given front-
view input. However, the diffusion process, which directly
samples random data from the learned data distribution, fails
to establish the corresponding relationship between the BEV
and the front view. To address this, the front-view image
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TABLE III

THE RESULTS (%) OF THE ABLATION STUDY ON THE VARIOUS CONDITION
FUSION METHODS. WE ASSESS THE PERFORMANCE OF THREE COM-
MONLY USED FUSION METHODS IN THIS EXPERIMENT. ‘ADD’,
‘ATT’, AND ‘CAT’ IN THE TABLE ARE ABBREVIATIONS FOR
ELEMENT-WISE ADDITION, ATTENTION-BASED, AND FEA-

TURE CONCATENATION METHODS, RESPECTIVELY. THE
OUTCOMES ARE MEASURED USING MIOU AND MAP
FOR BOTH MAJORITY AND MINORITY CLASSES,

WITH THE BEST RESULTS HIGHLIGHTED IN

BoLD FONT
. Majority Minority
Fusion Methods mloU mAP
mloU mAP mloU mAP

add 44.86 59.73 9.91 27.71 29.88 46.01

att 49.89 68.75 11.63 28.60 33.49 51.55

cat 50.50 67.80 11.89 27.47 33.95 50.52
TABLE IV

THE RESULTS (%) OF THE ABLATION STUDY ON THE LoOSS FUNC-
TION USED IN THE TRAINING. WE ASSESS THE PERFORMANCE
OF THE COMMONLY USED L0SS FUNCTION FOR THE CLASS
IMBALANCED PROBLEM IN THIS EXPERIMENT. ‘CE’, ‘FOCAL’,
‘DICE’, AND ‘BA’ IN THE TABLE ARE ABBREVIATIONS
FOR CROSS-ENTROPY LOSS, FOCAL LOSS, DICE LoSS,

AND BOUNDARY-AWARE LOSS, RESPECTIVELY. THE
OUTCOMES ARE MEASURED USING MIOU AND
MAP FOR BOTH MAJORITY AND MINOR-

ITY CLASSES, WITH THE BEST RESULTS
HIGHLIGHTED IN BOLD FONT

. Majority Minority
Loss Function mloU mAP
mloU mAP mloU mAP
CE 48.95 65.57 10.55 16.35 32.49 44.48
Focal 50.41 67.43 10.88 26.84 33.47 50.03
Dice 49.27 66.86 11.14 23.80 32.93 48.40
BA 50.50 67.80 11.89 27.47 33.95 50.52

is employed as the condition to guide the diffusion learning
and sampling. In our network, the front-view feature is fused
with the latent semantic BEV feature before the forward
diffusion process. The commonly used fusing methods include
feature addition, concatenation, and attention mechanisms.
These fusion methods could influence the effectiveness of
guidance from the front-view image. Therefore, we explore the
optimal fusion strategy to provide the most effective guidance
information to the diffusion process.

To conduct this ablation study, we adjust the size and
number of channels of the convolutional kernels to unify the
dimensions of the hybrid features obtained through different
fusion methods. For the attention-based fusion method, we
calculate the cross-attention between the latent BEV feature
and the conditional front-view feature. Note that the additional
learning parameters are introduced by the attention calculation.

The results can be found in Tab. III, according to which,
the attention-based fusion method performs well in terms of
mAP, while the direct concatenation counterpart achieves the
highest mloU. The inferior performance of the element-wise
additional may be attributed to the corruption of both the
latent BEV feature and the front-view condition. To avoid
introducing additional learning parameters during the training
phase, we utilize the direct concatenation method to fuse the
conditional and latent features.
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TABLE V

THE COMPARATIVE RESULTS (%) COMPARED WITH THE STATE-OF-THE-ART METHODS. THIS STUDY AIMS TO IMPROVE THE SEGMENTATION
PERFORMANCE OF THE MINORITY CLASSES. PARTICULAR ATTENTION SHOULD BE GIVEN TO MINORITY OBJECTS, INCLUDING BARRIERS,
VEHICLES, AND PEDESTRIANS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

Background Drivable Area Ped. Crossing WalkWay Barrier Vehicle Pedestrain
Methods U AP IoU AP IoU AP IoU AP IoU AP LU AP LU Ap MU mAP
CVT 63.00 7391 70.88 8432 23.19 4470 39.73 5543 827 3384 18.02 39.77 0.00 0.00 31.87 4742
VED 56.32 7199 6736 7440 2731 59.74 33,57 6022  0.00 0.00 3.60 53.80 0.00 0.00 2688 45.74
MonoLayout  53.84 6443 6258  78.15 2.82 1697 2699 4388 0.82 1.58 8.60 2356 0.00 000 2213 32.65
LSS 56.65 7330 67.88 7836 33.17 5129 3530 5229 1488 4390 12.67 3566 027 1.08 3154 4798
VPN 66.58 7643 7321 8438 2678 6049 4432 63.56 3.33 2825 16.07 3949 0.00 0.00 32.18 49.78
BEVFormer  50.73 66.72 6345 74.05 17.11 4339 2650 4523 550 21.70 14.17 3756 0.02 020 2535 41.26
BEVDepth 63.85 77.87 7553 8148 36.71 63.68 2390 4738  0.00 0.00 0.41 16.74 0.00 0.00 28.63 47.86
MatrixVT 5407 6137 6371 8020 24.67 57.41 27.67 4833 6.76 33.12 6.13 33.67 0.00 0.00 26.14 4487
Ours-pre 5844 6985 6775 8196 36.64 60.19 3597 5423 16.12 54.57 1821 2747 076 321 3284 50.21
Ours 60.63 76.27 7199 8292 27.79 5555 4034 5647 1624 4438 20.19 3621 049 1.83 3395 50.52

4) Ablation on the Boundary Intensity: The boundary-
aware loss increases the weight assigned to minority objects
during loss calculation, thereby addressing the class imbalance
issue. As outlined in Eq. 14, a boundary intensity factor,
denoted as v, is utilized to modulate the extent to which the
edge information of minority objects influences the training
process of the network. An increase in y enables the network to
focus more on minority objects when computing the distance
between the predicted output and the ground truth. To deter-
mine an optimal value for vy, we evaluate the network accuracy
for y values within the set of [0, 0.5,0.75,1.0, 1.5, 3.0].

The results are presented in Fig. 4, where the performance
of the majority and minority classes is reported separately. The
x-axis represents different y values. The upper y-axis denotes
the scale of mloU. The lower y-axis indicates mAP. Note that
certain areas of the y-axis have been magnified to better view
the differences. The bar charts illustrate that changes in the y
predominantly affect the performance of the minority classes.
The fluctuations in most classes are not significant. During
network training, we set y to 1.5, as this value leads to the
highest mloU and a competitive mAP for both minority classes
and the overall performance.

5) Ablation on the Loss Function: One approach to
addressing the challenge of class imbalance involves the
development of specialized loss functions. Widely used loss
functions like Focal Loss and Dice Loss have proven effec-
tive in alleviating this problem. Accordingly, we compared
the network utilizing these loss functions with the proposed
boundary-aware loss.

The experimental results are listed in Tab. IV. The Cross-
Entropy loss is introduced as the baseline for comparison. The
results demonstrate that the network incorporating the pro-
posed boundary-aware loss outperforms those employing other
loss functions. This outcome highlights the effectiveness of
the boundary-aware loss in balancing the network’s attention
between majority and minority classes.

C. Comparative Experiment

A comparative experiment is conducted between the pro-
posed network and the existing BEV methods, including

semantic BEV map generation networks and BEV detec-
tion networks. The semantic BEV map generation networks
include Variational Encoder-Decoder Networks (VED) [39],
MonoLayout [40], Lift split shot network (LSS) [41], View
Parsing Network (VPN) [58] and Cross-view Transformation
(CVT) [43]. The BEV detection networks include BEVFormer
[12], BEVdepth [42], and MatrixVT [59]. To achieve com-
parison, the detection heads of the BEV detection networks
are replaced with the semantic heads, while the original
structures of the semantic BEV map generation networks are
kept unchanged. We further assess the approach introduced
in our conference paper [20], which utilizes an LSS-based
model integrated with boundary-aware loss, to illustrate the
proposed network’s capability in enhancing segmentation
accuracy for both majority and minority classes in a balanced
fashion. This baseline method is referred to as Ours-pre.
This research focuses on enhancing the accuracy of minority
object detection. Accordingly, specific emphasis should be
placed on analyzing the segmentation outcomes for minority
classes, including barriers, vehicles, and pedestrians, within
the framework of this comparative evaluation.

1) The Quantitative Results: The comparative results of
the aforementioned networks are presented in Tab. V. For
a more detailed comparison, results are reported for each
semantic class. The first four classes represent the majority
classes, while the remaining classes belong to the minority
classes. Overall, our proposed network achieves the high-
est performance in both mloU and mAP across all classes.
VPN [58] and BEVDepth [42] perform better in generating
semantic BEV maps for the majority classes, but our net-
work performance is closely competitive. The slightly reduced
detection performance for majority classes may be attributed
to the enhanced detection of minority classes. In compari-
son, existing methods often misclassify minority classes as
majority classes, resulting in relatively higher performance
metrics for majority classes. Conversely, the proposed network
leverages a generative model to capture the underlying data
distribution, which generally necessitates larger datasets and
extended training durations to achieve convergence compared
to the discriminative models employed by the comparison
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Ground Truth

Input Ours

Ours-Pre

Fig. 5. Sample qualitative demonstrations for the semantic BEV map generation networks. Each row presents the outcomes from different networks tested with
identical inputs. The minority objects are marked with bounding boxes to attract attention. Due to space constraints, only the outputs from the top-performing
networks are displayed. The results demonstrate the superiority of our network. The figure is best viewed in color.

methods. Since all networks were trained under identical
experimental conditions, the generative model’s performance
may not be as fully optimized as the other methods. However,
our network exhibits a notable improvement in segmenting
minority classes. In comparison to our earlier work, denoted
as Ours-pre, the current model enhances the segmentation
performance for minority classes while preserving competitive
accuracy for majority classes.

2) Qualitative Demonstrations: Some sampled qualitative
demonstrations are shown in Fig. 5. Generally, compared to
the other networks, our network generates the most accu-
rate and clear semantic BEV maps, especially for minority
objects like pedestrians. The third and bottom rows illus-
trate driving scenarios in rainy weather or under low-light
conditions, where the proposed network can also success-
fully detect pedestrians. However, in cases where objects are
occluded, as depicted in the second row with pedestrians
positioned behind barriers, our network fails to detect them.
Also at night, the headlights of the vehicle impede the correct
detection.

V. CONCLUSION AND FUTURE WORK

We proposed here a diffusion-guided semantic BEV map
generation network with a boundary-aware loss, which aims
to address the class imbalance issue. Within our network, a
conditional diffusion module is utilized in the latent space

to learn the underlying data distribution for both majority
and minority classes. The BEV feature sampled from the
learned distribution then initializes the BEV query in the
cross-attention module, providing prior knowledge about data
distribution. Additionally, a boundary-aware loss is designed
to balance the network’s attention toward the minority classes
during training. This loss function increases the weight of
the minority classes in the loss calculation to guide the
network focus on the segmentation of those objects. Extensive
experimental results confirm the effectiveness of our designed
network and its superiority over the state of the arts, particu-
larly in segmenting minority classes.

In this work, we observed that complex driving envi-
ronments, such as rainy and low-lighting conditions, could
degrade the network performance. Exploring methods to
adapt the network’s capabilities from standard scenarios to
these specialized conditions represents a promising research
direction. Insights from domain shift [60] and knowledge
distillation [61] could provide valuable guidance in address-
ing this issue. Furthermore, future work will investigate the
integration of contrastive learning [62], [63], [64], [65] to
enhance the effectiveness of addressing class imbalance chal-
lenges. Building on advancements in inference acceleration
methods [66], further research on optimizing the inference
efficiency of diffusion-based techniques is also a critical area to
explore.
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