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Hand-Eye Calibration: 4-D Procrustes
Analysis Approach

Jin Wu , Member, IEEE, Yuxiang Sun , Miaomiao Wang , Student Member, IEEE,

and Ming Liu , Senior Member, IEEE

Abstract— We give a universal analytical solution to the
hand-eye calibration problem AX = X B with known matrices
A and B and unknown variable X , all in the set of special
Euclidean group SE(3). The developed method relies on the 4-D
Procrustes analysis. A unit-octonion representation is proposed
for the first time to solve such a Procrustes problem through
which an optimal closed-form eigendecomposition solution is
derived. By virtue of such a solution, the uncertainty description
of X , being a sophisticated problem previously, can be solved in
a simpler manner. The proposed approach is then verified using
simulations and real-world experimentations on an industrial
robotic arm. The results indicate that it owns better accuracy
and better description of uncertainty and consumes much less
computation time.

Index Terms— Hand-eye calibration, homogenous transforma-
tion, least squares, octonions, quaternions.

I. INTRODUCTION

THE main hand-eye calibration problem studied in this
paper is aimed to compute the unknown relative homo-

geneous transformation X between a robotic gripper and an
attached camera, whose poses are denoted as A and B,
respectively, such that AX = X B. Hand-eye calibration can
be solved via general solutions to the AX = X B problems
or through minimizing direct models established using repro-
jection errors [1]. However, the hand-eye problem AX = X B
is not restricted only to the manipulator-camera calibration.
Rather, it has been applied to multiple sensor calibration prob-
lems, including magnetic/inertial ones [2], camera/magnetic
ones [3], and other general models [4]. That is to say, the solu-
tion of AX = X B is more generalized and has broader
applications than the methods based on reprojection-error
minimization. The early study of the hand-eye calibration
problem can be dated back to 1980s when some researchers try
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to determine the gripper–camera transformation for accurate
robotic perception and reconstruction. During the past over
30 years, there have been a large variety of algorithms solving
the hand-eye problem AX = X B. Generally speaking, they
can be categorized into two groups. The first group consists
of those algorithms that calculate the rotation in the first
step and then compute the translation part in the second
step, while in the second group, algorithms compute the
rotation and translation simultaneously. There are quite a lot
of methods belonging to the very first group that we call them
as separated ones, including the representatives of rotation-
logarithm-based ones, such as Tsai and Lenz [5], Shiu and
Ahmad [6], Park and Martin [7], Horaud and Dornaika [8],
and quaternion-based one from Chou and Kamel [9]. The
simultaneous ones appear in the second group with the related
representatives of as follows.

1) Analytical Solutions: Quaternion-based method by
Lu and Chou [10], dual-quaternion-based one by
Daniilidis [11], Sylvester-equation-based one by Andr-
eff et al. [12], and dual-tensor-based one by Condurache
and Burlacu [13].

2) Numerical Solutions: Gradient/Newton methods
by Gwak et al. [14], linear-matrix-inequality
(LMI)-based one by Heller et al. [15], alternative-
linear-programming-based one by Zhao [16],
and pseudo-inverse-based one by Zhang [3] and
Zhang et al. [17].

Each kind of algorithms has its own pros and cons. The
separated ones cannot produce good enough results with those
cases when translation measurements are more accurate than
rotation. The simultaneous ones can achieve better optimiza-
tion performances but may consume a large quantity of time
when using numerical iterations. Some algorithms will also
suffer from their own ill-posed conditions in the presence
of some extreme data sets [18]. What is more, the uncer-
tainty description of X in a hand-eye problem AX = X B,
being an important but difficult problem, has always troubled
researchers until the first public general iterative solution
by Nguyen and Pham [19]. An intuitive overview of these
algorithms in the order of publication time can be found out
in Table I.

Until now, hand-eye calibration has accelerated the devel-
opment of robotics communities according to its various
usages in sensor calibration and motion sensing [20], [21].
Although it has been quite a long time since the first pro-
posal of hand-eye calibration, the studies around it are still
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TABLE I

COMPARISONS BETWEEN RELATED METHODS

very popular. There is still a remaining problem that no
algorithm can simultaneously estimate X in AX = X B
while preserving highly accurate uncertainty descriptions and
consuming extremely low computation time. These difficulties
are rather practical since in the hand-eye problem AX = X B,
the rotation and translation parts are tightly coupled with high
nonlinearity, which motivates Nguyen and Pham to derive the
first-order approximation of the error covariance propagation.
It is also the presented nonlinearity that makes the numerical
iterations much slower.

To overcome the current algorithmic shortcomings, in this
paper, we study a new 4-D Procrustes analysis tool for the
representation of homogeneous transformations. Understand-
ing the manifolds has become a popular way for modern
interior analysis of various data flows [22]. The geomet-
ric descriptions of these manifolds have always been vital,
which are usually addressed with the Procrustes analysis that
extracts the rigid, affine, or non-rigid geometric mappings
between the data sets [23], [24]. Early studies on Procrustes
analysis have been conducted since 1930s [25]–[27], and
later generalized solutions are applied to spacecraft attitude
determination [28], [29], image registration [30], [31], laser
scan matching using iterative closest points (ICP) [32], [33],
and so on. Motivated by these technological advances, this
paper has the following contributions.

1) We show some analytical results to the 4-D Procrustes
analysis in Section III and apply them to the solution of
hand-eye calibration problem detailed in Section II.

2) Since all variables are directly propagated into final
results, the solving process is quite simple and com-
putationally efficient.

3) Also, as the proposed solution is in the form of the
spectrum decomposition of a 4 × 4 matrix, the closed-
form probabilistic information is given precisely and
flexibly for the first time using some recent results in
automatic control.

Finally, via simulations and real-world robotic experiments
in Section IV, the proposed method is evaluated to own
better potential accuracy, computational loads, and uncertainty
descriptions. Detailed comparisons are also shown to reveal
the sensitivity of the proposed method subject to input noise
and different parameter values.

II. PROBLEM FORMULATION

We start this section by first defining some important
notations in this paper that are mostly inherited from [34].
The n-dimensional real Euclidean space is represented by R

n ,
which further generates the matrix space R

m×n containing all
real matrices with m rows and n columns. All n-dimensional
rotation matrices belong to the special orthogonal group
SO(n) := {R ∈ R

n×n |RT R = I, det(R) = 1}, where
I denotes the identity matrix with proper size. The special
Euclidean space is composed of a rotation matrix R and a
translational vector t , such that

SE(n) :=
�

T =
�

R t
0 1

�
|R ∈ SO(n), t ∈ R

n
�

(1)

with 0 denoting the zeros matrix with adequate dimensions.
The Euclidean norm of a given squared matrix X will be
defined with �X� = (tr(XT X))1/2, where tr denotes the
matrix trace. The vectorization of an arbitrary matrix X is
defined as vec(X), and ⊗ represents the kronecker product
between two matrices. For a given arbitrary matrix X , X† is
called its Moore–Penrose generalized inverse. Any rotation R
on SO(3) has its corresponding logarithm given by

log(R) = φ

2 sin φ
(R − RT ) (2)

in which 1 + 2 cos φ = tr(R). Given a 3-D vector x =
(x1, x2, x3)

T , its associated skew-symmetric matrix is

[x]× =
⎛
⎝ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎞
⎠ (3)

satisfying x× y = [x]× y = −[ y]×x, where y is also an arbi-
trary 3-D vector. The inverse map from the skew-symmetric
matrix to the 3-D vector is denoted as [x]∧× = x.

Now, let us describe the main problem in this paper. Given
two measurement sets

A = {Ai |Ai ∈ SE(3), i = 1, 2, . . . , N }
B = {Bi |Bi ∈ SE(3), i = 1, 2, · · · , N } (4)

consider the hand-eye calibration least square

arg min
X∈SE(3)

J =
N


i=1

�Ai X − X Bi�2 (5)
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Fig. 1. Relationship between various homogeneous transformations for gripper–camera hand-eye calibration.

where Ai and Bi come to the reality using poses in two
successive measurements (also see [11, Fig. 1])

Ai = TAi+1 T−1
Ai

Bi = T−1
Bi+1

TBi (6)

with TAi being the i th camera pose with respect to the standard
objects in a world frame and

TBi = TBi,3 TBi,2 TBi,1 (7)

are gripper poses with respect to the robotic base, in which
TBi,1 , TBi,2 , and TBi,3 are the transformations between joints
of robotic arms. The relationship between these homogeneous
transformations can be found out in Fig. 1. The task for us in
the remainder of this paper is to give a closed-form solution
of X considering rotation and translation simultaneously and,
moreover, derive the uncertainty description of X .

Let us write A and B into

A =
�

RA tA
0 1

�
, B =

�
RB tB
0 1

�
. (8)

Then, one easily obtains�
RA RX = RX RB

RAtX + tA = RX tB + tX
. (9)

The method by Park and Martin [7] first computes RX from
the first equation of (9) and then solves tX by inserting RX
into the second sub-equation. The Park’s step for computing
RX is tantamount to the following optimization:

arg min
RX∈SO(3)

N

i=1

�RX ai − bi�2 (10)

with

ai = [log(RAi )]∧
bi = [log(RBi )]∧. (11)

Note that (10) is in fact a rigid 3-D registration problem,
which can be solved instantly with singular value decom-
position (SVD) or eigendecomposition [29], [32]. However,
the solution of Park and Martin does not take the translation
into account for RX , while the accuracy of RX is actually
affected by tX . Therefore, there are some other methods trying
to compute RX and tX simultaneously [11], [12]. While these
methods fix the remaining problem of Park and Martin, they
may not achieve global minimum, as the optimization

arg min
RX∈SO(3),tX∈R3

N

i=1

� �RX ai − bi�2
+�RX tB + tX − RAtX − tA�2

�
(12)

is not always convex. Hence, the iterative numerical methods
are proposed to achieve the globally optimal estimates of
RX and tX , including solvers in [3], [14], [16], and [17].
In Section III, we show a new analytical perspective for
hand-eye calibration problem AX = X B using the proposed
4-D Procrustes analysis.

III. 4-D PROCRUSTES ANALYSIS

The whole results in this section are proposed for the first
time solving specific 4-D Procrustes analysis problems. The
developed approach is, therefore, named the 4DPA method for
simplicity in the later contents.

A. Some New Analytical Results

Problem 1: Let {U} = {ui ∈ R
4} and {V} = {vi ∈

R
4}, where i = 1, 2, . . . , N, N ≥ 3, be the two point sets

in which the correspondences are well matched, such that
ui corresponds exactly to vi . Find the 4-D rotation R and
translation vector t , such that

arg min
R∈SO(4),t∈R4

N

i=1

�Rui + t − vi�2. (13)
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Solution: Problem 1 is actually a 4-D registration problem
that can be easily solved via the SVD

R = Udiag[1, 1, 1, det(UV )]V T

t = v̄ − Rū (14)

with

U SV T = H

H =
N


i=1

(ui − ū)(vi − v̄)T

ū = 1

N

N

i=1

ui , v̄ = 1

N

N

i=1

vi (15)

where S = diag(s1, s2, s3, s4) is the diagonal matrix containing
all singular values of H . However, SVD cannot reflect the
interior geometry of SO(4), and such geometric information
of special orthogonal groups will be very helpful for fur-
ther proofs [35], [36]. The 4-D rotation can be characterized
with two unitary quaternions qL = (a, b, c, d)T and qR =
(p, q, r, s)T by [37]

R = RL(qL)RR(qR) (16)

with

RL(qL) =

⎛
⎜⎜⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎠

RR(qR) =

⎛
⎜⎜⎝

p −q −r −s
q p s −r
r −s p q
s r −q p

⎞
⎟⎟⎠ (17)

being the left and right matrices. Interestingly, such RL(qL)
and RR(qR) are actually matrix expressions for quaternion
products from left- and right-hand sides, respectively. Rising
from 3-D spaces, the 4-D rotation is much more sophisticated
because the 4-D cross product is not as unique as that in the
3-D case [38]. Therefore, methods previously relying on the
3-D skew-symmetric matrices are no longer extendable for
4-D registration. The parameterization of R ∈ SO(4) by (16)
can also be unified with the unit octonion given by

σ = 1√
2

�
qT

L , qT
R

�T ∈ R
8. (18)

Our task here is to derive the closed-form solution of such σ

and therefore compute R and t . Using the analytical form
in (16), we can rewrite the rotation matrix R into R =
(c1, c2, c3, c4), with c1, c2, c3, and c4 standing for the four

columns of R, respectively. For each column, the algebraic
factorization can be performed via

c1 = P1(σ )σ

c2 = P2(σ )σ

c3 = P3(σ )σ

c4 = P4(σ )σ (20)

where P1(σ ), P2(σ ), P3(σ ), P4(σ ) ∈ R
4×8 are given in

Appendix A. These matrices, however, are subjected to the
following equalities:

P1(σ )PT
1 (σ )

= P2(σ )PT
2 (σ )

= P3(σ )PT
3 (σ ) = P4(σ )PT

4 (σ )

= 1

2
(a2 + b2 + c2 + d2 + p2 + q2 + r2 + s2)I

= I . (21)

Then, following the step of [39], one can obtain that ideally:
PT

1 (σ )H1 + PT
2 (σ )H2 + PT

3 (σ )H3 + PT
4 (σ )H4 = σ (22)

where H1, H2, H3, and H4 are the four rows of the matrix H ,
such that

H = �HT
1 , HT

2 , HT
3 , HT

4

�T
. (23)

Evaluating the left part of (22), an eigenvalue problem is
derived to [39]

Wσ = λW ,maxσ . (24)

The optimal eigenvector σ is associated with the maximum
eigenvalue λW ,max of W , with W being an 8×8 matrix in the
form of

W =
�

0 K
K T 0

�
(25)

where K is shown in (19), as shown at the bottom of this
page. This indicates that λW ,max subjects to

det(λW ,max I −W)

= det(λW ,max I) det

�
λW ,max I − 1

λW ,max
K T K

�

= det
�
λ2

W ,max I − K T K
�

(26)

where the details are shown in Appendix A. In other words,
λ2

W ,max is the eigenvalue of the 4 × 4 matrix K T K . As the
symbolic solutions to the generalized quartic equations have
been detailed in [40], the computation of the eigenvalues of
W will be very simple. When σ is computed, it also gives R
and, thus, will produce t according to (14).

K =

⎛
⎜⎜⎝

H11 + H22 + H33 + H44 H12 − H21 − H34 + H43 H13 + H24 − H31 − H42 H14 − H23 + H32 − H41
H12 − H21 + H34 − H43 H33 − H22 − H11 + H44 H14 − H23 − H32 + H41 −H13 − H24 − H31 − H42
H13 − H24 − H31 + H42 −H14 − H23 − H32 − H41 H22 − H11 − H33 + H44 H12 + H21 − H34 − H43
H14 + H23 − H32 − H41 H13 − H24 + H31 − H42 −H12 − H21 − H34 − H43 H22 − H11 + H33 − H44

⎞
⎟⎟⎠
(19)
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Sub-Problem 1: Given an improper rotation matrix R̃ which
is not strictly on SO(4), find the optimal rotation R ∈ SO(4)
to orthonormalize R̃.

Solution: This is the orthonormalization problem and can be
solved by replacing H as R in (15), as indicated in [41]–[43].

Problem 2: Let {E} = {Ei ∈ SO(4)} and {Z} = {Zi ∈
SO(4)}, where i = 1, 2, . . . , N , be the two matrix sets in
which Ei corresponds exactly to Zi . Find the 4-D rotation R,
such that

arg min
R∈SO(4)

N

i=1

�Ei R − RZi�2. (27)

Solution: First, we provide some properties on this problem.
Problem 2 is very different with (10) because for rotation on
SO(4), the exponential map indicates a 6×6 skew-symmetric
matrix. Therefore, the previous 3-D registration method cannot
be extended to the 4-D case. In the solution to Problem 1,
we reveal some identities of unit octonion for the represen-
tation of rotation on SO(4). Note that this is very similar to
the previous quaternion decomposition from rotation (QDR)
that has been used for solving AR = R B, where A, B, R ∈
SO(3) [44]. Then, we are going to extend the QDR to the
octonion decomposition from rotation (ODR) for the solution
of Problem 2.

Like (20), R ∈ SO(4) can also be decomposed from rows,
such that

R = �rT
1 , rT

2 , rT
3 , rT

4

�T
r1 = σ T Q1(σ )

r2 = σ T Q2(σ )

r3 = σ T Q3(σ )

r4 = σ T Q4(σ ) (28)

where Q1(σ ), Q2(σ ), Q3(σ ), and Q4(σ ) ∈ R
4×8 are shown

in Appendix A.
Invoking this ODR, we are able to transform Ei R − RZi

into

Ei R − RZi = (Mi,1σ , Mi,2σ , Mi,3σ , Mi,4σ ) (29)

where i = 1, 2, . . . , N and

Mi,1 =

⎛
⎜⎜⎝

σ T G11,i

σ T G12,i

σ T G13,i

σ T G14,i

⎞
⎟⎟⎠ , Mi,2 =

⎛
⎜⎜⎝

σ T G21,i

σ T G22,i

σ T G23,i

σ T G24,i

⎞
⎟⎟⎠

Mi,3 =

⎛
⎜⎜⎝

σ T G31,i

σ T G32,i

σ T G33,i

σ T G34,i

⎞
⎟⎟⎠ , Mi,4 =

⎛
⎜⎜⎝

σ T G41,i

σ T G42,i

σ T G43,i

σ T G44,i

⎞
⎟⎟⎠ (30)

in which each G j k,i , j, k = 1, 2, 3, 4 takes the form

G j k,i =
�

0 J j k,i

J T
jk,i 0

�
(31)

with parameter matrices J j k,i ∈ R
4×8 given in Appen-

dix A. Afterward, the optimal octonion can be sought

by

arg min
R∈SO(4)

N

i=1

�Ei R − RZi�2

= arg min
σ T σ=1

N

i=1

σ T

⎛
⎝ 4


j=1

4

k=1

G2
j k,i

⎞
⎠ σ

= arg min
σ T σ=1

σ T Fσ (32)

where

F =
N


i=1

4

j=1

4

k=1

G2
j k,i

=
N


i=1

4

j=1

4

k=1

�
J j k,i J T

jk,i 0
0 J T

jk,i J j k,i

�
. (33)

Equation (32) indicates that σ is the eigenvector belonging to
the minimum eigenvalue of F, such that

Fσ = λF,minσ . (34)

Since J j k,i J T
jk,i and J T

jk,i J j k,i have quite the same spectrum
distribution, (33) also implies that there are two different
minimum eigenvalues for F with their associated eigenvectors
representing qL and qR, respectively. That is to say, qL and
qR are the eigenvectors of F11 and F22, such that

F11 =
N


i=1

4

j=1

4

k=1

J j k,i J T
jk,i

F22 =
N


i=1

4

j=1

4

k=1

J T
jk,i J j k,i

F =
�

F11 0
0 F22

�
(35)

associated with their minimum eigenvalues, respectively. Then,
inserting the computed qL and qR values into (16) gives the
optimal R ∈ SO(4) for Problem 2.

Sub-Problem 2: Let {E} = {Ei ∈ SO(4)} and {Z} = {Zi ∈
SO(4)}, where i = 1, 2, . . . , N , be the two sequential matrix
sets in which Ei does not exactly correspond to Zi . Find the
4-D rotation R

arg min
R∈SO(4)

N

i=1

�Ei R − RZi�2 (36)

provided that {E} and {Z} are sampled asynchronously.
Solution: In this problem, {E} and {Z} are the asyn-

chronously sampled measurements with different timestamps.
First, we need to interpolate the rotations for smooth con-
sensus. Suppose that we have two successive homogeneous
transformations Ei and Ei+1 with timestamps of τE,i and
τE,i+1, respectively. There exists a measurement of Zi with a
timestamp of τZ,i ∈ [τE,i , τE,i+1]. Then, the linear interpola-
tion Ei,i+1 on SO(4) can be found out by

arg max
Ei,i+1∈SO(4)

tr

�
w
�

Ei ET
i,i+1 − I

�T �Ei ET
i,i+1 − I

�
+ (1−w)

�
Ei,i+1 ET

i+1 − I
�T �Ei,i+1 ET

i+1− I
�
�

⇒ arg max
Ei,i+1∈SO(4)

tr{Ei,i+1[wEi + (1−w)Ei+1]T } (37)
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where w is the timestamp weight between Ei and Ei,i+1 , such
that

w = τE,i+1 − τZ,i

τE,i+1 − τE,i
. (38)

Then, the interpolation can be solved using the solution to
Problem 1 by letting H = [wEi + (1− w)Ei+1]T . After the
interpolation, a new interpolated set {Ẽ} can be established that
well corresponds to {Z} and R can be solved via the solution
to Problem 2.

B. Uncertainty Descriptions

In this section, we use x̂ for representing the true value
of the noise-disturbed vector x. The expectation is denoted
using 	· · · 
 [29], [45]. All the errors in this section are
assumed to be zero-mean, which can be found out in [29].
As all the solutions provided in Section III-A are all in
the spectrum-decomposition form, the errors of the derived
quaternions can be given by the perturbation theory [46]. In a
recent error analysis for the attitude determination from vector
observations by Chang et al. [47], the first-order error of the
estimated deterministic quaternion q is

δq = [qT ⊗ (λmax I − M)†]δm (39)

provided that m = vec(M), λmax being the maximum eigen-
value of the real symmetric matrix M

Mq = λmaxq. (40)

The above-mentioned quaternion error is presented,
given the assumption that δq is multiplicative, such
that

q̂ = δq � q (41)

where � denotes the quaternion product. The following con-
tents will discuss the covariance expressions for this type of
quaternion error.

Using (39), we have the following quaternion error
covariance:

�δq

= 	δqδqT 

= 	[qT ⊗ (λmax I−M)†]δmδmT [qT ⊗ (λmax I−M)†]T 

= [qT ⊗ (λmax I − M)†]�δm

× [qT ⊗ (λmax I − M)†]T (42)

in which

�δm = ∂m
∂b

�b

�
∂m
∂b

�T

(43)

where b denotes all input variables contributed to the final
form of M . Let us take the solution to Problem 2 for example.
For qL , we have

F11qL = λF,minqL = λF11,minqL (44)

which yields that

M = −F11, λmax = −λF11,min

m = −vec(F11)

∂m
∂b
= − 1

N

N

i=1

4

j=1

4

k=1

∂vec
�

J j k,i J T
jk,i

�
∂b

b = [vec(Ei )
T , vec(Zi)

T ]T (45)

where we assume that b for every pair of {Ei , Zi} have
the same probabilistic distribution. The computation of
(∂(J j k,i J T

jk,i )/∂b) can be intuitively conducted using analyti-
cal forms of matrices in Appendix A, and this part of work is
left for the audience of this paper. The covariance of qR can,
therefore, be computed by replacing F11 with F22 in (45).
The cross-covariance between qL and qR can also be given as
follows:

�δqLδqR =
�
δqLδqT

R

�
=
� �

qT
L ⊗ (F11 − λF11,min I)†

�
δmL

δmT
R

�
qT

R ⊗ (F22, λF22,min I)†
�T
�

= �qT
L ⊗ (F11 − λF11,min I)†��δmL δmR�

qT
R ⊗ (F22, λF22,min I)†�T (46)

in which mL = vec(F11), mR = vec(F22), and �δmL δmR is
given by

�δmL δmR =
∂mL

∂b
�b

�
∂mR

∂b

�T

. (47)

Eventually, the covariance of the octonion σ will be

�σ =
�

�δqL �δqLδqR

�δqRδqL �δqR

�
. (48)

C. Solving AX = X B From SO(4) Perspective

The SO(4) parameterization of SE(3) is presented by
Thomas [37] that

T =
�

R t
0 1

�
F1←→
F−1

1

RT ,SO(4) =
�

R εt
εtT R 1

�
(49)

in which ε denotes the dual unit that enables ε2 = 0. The
right part of (49) is on SO(4), and a practical method for
approaching the corresponding homogeneous transformation
is that we can choose very tiny numbers for ε = 1/d , where
d � 1 is a positive scaling factor to generate real-number
approximation of RT ,SO(4)

RT ,SO(4) ≈
�

R 1
d t

1
d tT R 1

�
. (50)

It is also noted that the mapping in (49) is not
unique. For instance, the following mapping also holds for
RT

T ,SO(4) RT ,SO(4) = RT ,SO(4) RT
T ,SO(4) = I when d � 1:

T =
�

R t
0 1

�
F2←→
F−1

2

RT ,SO(4) =
�

R εt
−εtT R 1

�
. (51)

The convenience of such mapping from SE(3) to SO(4) is
that some nonlinear equations on SE(3) can be turned to
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linear ones on SO(4). Choosing a scaling factor d makes
an approximation of homogeneous transformation on SO(4).
Then, the conventional hand-eye calibration problem AX =
X B can be shifted to

arg min
X∈SE(3)

J =
N


i=1

�Ai X − X Bi�2

⇒ arg min
RX,SO(4)∈SO(4)

J

=
N


i=1

�RAi ,SO(4) RX,SO(4) − RX,SO(4) RBi ,SO(4)�2

(52)

which can be instantly solved via the solution to Problem 2.
With asynchronously sampled measurements, the problem
can be refined with solution to Sub-Problem 2. While the
uncertainty descriptions of σ related to RX,SO(4) are shown
in Section III-B, we would reveal what the covariances of
the rotation and translation look like. Suppose that, now,
we have obtained the covariance of σ in (48) for RX,SO(4).
The covariances between the columns of the rotation matrix
and the cross-covariances between the columns of rotation and
translation are considered. Recalling (20), one finds out that
the covariance between the i th column and j th column of
RX,SO(4) is calculated by

�δci δc j

= 	[Pi (δσ )σ + Pi (σ )δσ ][Pj (δσ )σ + Pj (σ )δσ ]T 


=
�

Pi (δσ )σσ T PT
j (δσ )+ Pi (σ )δσδσ T PT

j (σ )

+ Pi (δσ )σδσ T PT
j (σ )+ Pi (σ )δσσ T PT

j (δσ )

�

=
�

Yi (σ )δσδσ T Y T
j (σ )+ Pi (σ )δσδσ T PT

j (σ )

+Yi(σ )δσδσ T PT
j (σ )+ Pi (σ )δσδσ T Y T

j (σ )

�

= Yi (σ )�σ Y T
j (σ )+ Pi (σ )�σ PT

j (σ )

+Yi (σ )�σ PT
j (σ )+ Pi (σ )�σ Y T

j (σ ) (53)

where Pi (δσ )σ = Yi (σ )δσ and Yi (σ ) is a linear mapping of
σ , which can be evaluated by symbolic computations. For the
current 4-D Procrustes analysis, interestingly, we have

Yi (σ ) = Pi (σ ). (54)

Therefore, (53) can be interpreted as

�δci δc j = 4 Pi (σ )�σ PT
j (σ ). (55)

In particular, the rotation–translation cross-covariances will be
described by taking the first three rows and three columns of
covariance matrices of d ·�δc1δc4 , d ·�δc2δc4 , d ·�δc3δc4 , respec-
tively. More specifically, if we need to obtain the covariance
of RX,SO(4), one arrives at

�RX,SO(4) =
�
δRX,SO(4)δRT

X,SO(4)

�
=

4

i=1

[Yi (σ )+ Pi (σ )]�σ [Yi (σ )+ Pi (σ )]T

= 4
4


i=1

Pi (σ )�σ PT
i (σ ) (56)

where

δRX,SO(4)

=
�

δ P1(σ )σ + P1(σ )δσ , δ P2(σ )σ + P2(σ )δσ ,
δ P3(σ )σ + P3(σ )δσ , δ P4(σ )σ + P4(σ )δσ

�

=
� [Y1(σ )+ P1(σ )]δσ , [Y2(σ )+ P2(σ )]δσ ,
[Y3(σ )+ P3(σ )]δσ , [Y4(σ )+ P4(σ )]δσ

�
. (57)

The covariance of RX then equals to

�RX = �RX,SO(4) (1:3, 1:3) (58)

where (1:3, 1:3) denotes the block containing first three rows
and columns. Finally, the covariance of tX is given by

�tX = d2�δc4δc4(1:3, 1:3). (59)

D. Discussion

The presented SO(4) algorithm for hand-eye calibration has
the following advantages.

1) It can simultaneously solve rotation and translation in X
for hand-eye calibration problem AX = X B and thus
own comparable accuracy and robustness with previous
representatives.

2) All the items from A and B are directly propagated
to the final forms of eigendecomposition without any
pre-processing techniques, e.g., quaternion conversion
from rotation, rotation logarithm remaining in the pre-
vious studies.

3) According to the direct propagation of variables to the
final result, the computation speed is extremely fast.

4) The uncertainty descriptions can be obtained easily with
the given analytical results.

However, the proposed method also owns its drawback, that
is, the accuracy of the final computed X is actually affected
by the scaling factor d . Here, one can find out that d is
actually a factor that scales the translation part to a small
vector. However, this does not mean that larger d will lead
to better performance since very large d may reduce the
significant digits of a fixed word-length floating-point number.
Therefore, d can be empirically determined according to
the scale of translation vector and the required accuracy of
floating-number processing. For instance, for a 32-bit com-
puter, one single-precision floating-point number requires 4
bytes for storage, then d = 1 × 105 ∼ 1 × 106 ≈ 216 ∼ 220

will be redundant enough, guaranteeing the accuracy of at least
220−32 m = 2−12 m = 2.44 × 10−04 m, which is enough
for most optical systems with measurement ranges of 10 m.
How to choose the most appropriate d value dynamically
and optimally will be a difficult but significant task in later
works. The algorithmic procedures of the proposed method
are described in Algorithm 1 for intuitive implementation.
Engineers can also turn to the links in the Acknowledgment
section for some MATLAB codes.

IV. EXPERIMENTAL RESULTS

A. Experiments on a Robotic Arm

The first category of experiments is conducted for
a gripper–camera hand-eye calibration shown in Fig. 1.
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Algorithm 1 Proposed 4DPA Method for Hand-Eye Calibra-
tion
Parameter: Empirical value of d .
Require:

1) Get N measurements of Ai , Bi in {A} and {B} respec-
tively. If they are not synchronously measured, get the
most appropriate interpolated sets using solution to Sub-
Problem 2.

2) Select a scaling factor d empirically for SE(3)− SO(4)
mapping.

Step 1: Convert measurements in {A} and {B} to rotations on
SO(4) via (51).
Step 2: Solve the hand-eye calibration problem AX = X B
via the solution to Problem 2. Remap the calculated SO(4)
solution to SE(3) using (51).
Step 3: Obtain the covariance of the octonion σ related to X .
Compute the rotation-rotation and rotation-translation cross-
covariances via (55).

Fig. 2. Gripper–camera hand-eye calibration experiment.

The data set is generated using a UR10 robotic arm
and an Intel Realsense D435i camera attached firmly
to the end-effector (gripper) of the robotic arm (see
Fig. 2).

The UR10 robotic arm can give accurate outputs of homoge-
neous transformations of various joints relative to its base. The
D435i camera contains color, depth, and fisheye sub-cameras
along with an inertial measurement unit (IMU). In this section,
the transformation of the end-effector TBi of the robotic arm is
computed using those transformations from all joints via (7).
We only pick up the color images from D435i to obtain
the transformation of the camera with respect to the 12 × 9
chessboard. Note that in Fig. 1, the standard objects can be
arbitrary ones with certain pre-known models, e.g., point cloud
model and computer-aided design (CAD) model. The D435i is
factory-calibrated for its intrinsic parameters, and we construct
the following projection model for the utilized camera:

lcam, j =
�

lcam,1, j

lcam,2, j

�
⎛
⎝ lcam,1, j

lcam,2, j

1

⎞
⎠ = O

�
Lcam,1, j

Lcam,3, j
,

Lcam,2, j

Lcam,3, j
, 1

�T

(60)

where lcam, j denotes the j th measured feature points (corner)
of the chessboard in the camera imaging frame, O is the
matrix accounting for the intrinsic parameters of the camera,
and Lcam, j = (Lcam,1, j , Lcam,2, j , Lcam,3, j )

T is the projected
j th feature point in the camera ego-motion frame. To obtain
the i th pose between the camera and the chessboard, we can
relate the standard point coordinates of the chessboard Lchess,j
for j = 1, 2, . . . in the world frame from a certain model with
that in the camera frame by

Lchess, j = TAi Lcam, j . (61)

By minimizing the projection errors from (61), TAi will
be obtained with nonlinear optimization techniques, e.g.,
the Perspective-n-Point algorithm [48], [49]. In our experi-
ment, the scale-invariant feature transform (SIFT) is invoked
for the extraction of the corner points of the chessboard [50].
We use several data sets captured from our platform to produce
comparisons with representatives, including classical ones of
Tsai and Lenz [5], Park and Martin [7], Chou and Kamel [9],
Daniilidis [11], and Andreff et al. [12] and recent ones of
Heller et al. [15], Zhao [16], and Zhang et al. [17]. The error
of the hand-eye calibration is defined as follows:

Error = 1

N

��� N

i=1

�Ai X − X Bi�2 (62)

where Ai and Bi are detailed in (6). All the timing statistics,
computation and visualization are carried out on a MacBook
Pro 2017 with i7-3.5-GHz CPU along with the MATLAB
r2018a software. All the algorithms are implemented using
the least coding resources. We employ YALMIP to solve the
LMI dqhec optimization in the method of Heller et al. [15].
For Zhao’s method [16], we invoke the fmincon function in
MATLAB for numerical solution.

The robotic arm is rigidly installed on the testing table
and is operated smoothly and periodically to capture the
images of the chessboard from various directions. Using the
above-described mechanisms, we form the series of {A}, {B}.
We select d = 104 as a scaling factor for evaluation in
this section, as the translational components are all within
[−2, 2] m, and in such a range, the camera has the empirical
positioning accuracy of about 0.05 ∼ 0.2 m. We choose the
F2 mapping in (51) for conversion from SE(3) to SO(4) since
in real applications, it obtains much more accurate hand-eye
calibration results than the F1 mapping (49) presented in [37].
The scalar thresholds for the other numerical methods are all
set to 1× 10−15 to guarantee the accuracy. We conduct eight
groups of the experiments using the experimental platform.
The errors and computation timespans are processed 100 times
for averaged performance evaluation, which are provided
in Tables II and III. The least errors are marked using the
green color, and the best ones for computation time are tagged
in blue. The statistics of the proposed method are marked bold
in Tables II and III for emphasis. The digits after the case serial
numbers indicate the sample counts for the studied case.

One can see that with growing sample counts, all the
methods obtain more accurate estimates of X . While with

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 06,2022 at 05:56:02 UTC from IEEE Xplore.  Restrictions apply. 



2974 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 6, JUNE 2020

TABLE II

COMPARISONS WITH CLASSICAL METHODS FOR GRIPPER–CAMERA HAND-EYE CALIBRATION

TABLE III

COMPARISONS WITH RECENT METHODS FOR GRIPPER–CAMERA HAND-EYE CALIBRATION

larger quantities of measurements, the processing speeds for
the algorithms become slower. However, among all methods,
despite they are analytical or iterative, the proposed SO(4)
method almost always gives the most accurate results within
the least computation time. The reason is that the proposed
4DPA computes the rotation and translation in X simultane-
ously and well optimizes the loss function J of the hand-eye
calibration problem. The proposed algorithm can obtain better
results than almost all other analytical and numerical ones,
except for the cases 1–3 using the method of Daniilidis. This
indicates that with a few samples, the accuracy of the proposed
4DPA is lower than that of the method of Daniilidis but is still
close. However, a few samples indicate relative low confidence
in calibration accuracy, and for cases with higher quantities
of measurements, the proposed 4DPA method is always the
best. This shows that the designed 4-D Procrustes analysis
for mapping from SE(3) to SO(4) is more efficient than
other tools, e.g., the mappings based on dual quaternion [11]
and Kronecker product [12]. Furthermore, our method uses
the eigendecomposition as the solution that is regarded as a
robust tool for engineering problems. Our method can reduce
the estimation error to about 3.06%–94.01% of original stats
compared with the classical algorithms and 0.39%–86.11%
compared with the recent numerical ones. The proposed
method is also free of pre-processing techniques such as
quaternion conversion in other algorithms. All the matrix
operations are simple and intuitive, which makes the compu-
tation very fast. Our method can lower the computation time
to about 9.98%–70.68% of original stats compared with the
classical analytical algorithms and 1.45%–28.58% compared
with the recent numerical ones. A synchronized sequence of
the camera–chessboard poses and end-effector poses is made
open-source (see the links in the Acknowledgment section).
Every researcher can freely download this data set and evaluate
the accuracy and computational efficiency. The advantages
of the developed method on both precision and computation
time will lead to very effective implementations of hand-eye
calibration for industrial applications in the future.

B. Error Sensitivity to the Noises and Different Parameters
of d

In this section, we study the sensitivity of the proposed
method subject to input measurement noises. We define the
noise corrupted models of rotations as

RA,i = R̂A,i + ErrorRXR1

RB,i = R̂B,i + ErrorRXR2 (63)

where R1 and R2 are the random matrices whose columns
subject to Gaussian distribution with covariances of I and
ErrorRX is a scalar accounting for the rotation error. Likewise,
the noise models of translations can be given by

tA,i = t̂A,i + ErrortXT1

tB,i = t̂B,i + ErrortXT2 (64)

with noise scale of ErrortX and T1 and T2 noise vectors
subject to normal distribution also with a covariance of I .
The perturbed rotations are orthonormalized after the addition
of the noises. Here, the Gaussian distribution is selected
by following the tradition in [19] since this assumption of
distribution covers most cases that we may encounter in the
real-world applications.

We take all the compared representatives from Section IV-A
to this part by adding three more ones of the proposed method
with different d values of d = 103, d = 105, and d = 106.
Then, we can see both the comparisons with the representa-
tives and observe the influence of the positive scaling factor d .
Several simulations are conducted where we generate data
sets of A,B with N = 1000, and the obtained results are
averaged for ten times. We independently evaluate the effect
of ErrorRX and ErrortX imposed on Error. The relationship
between ErrorRX and Error is shown in Fig. 3, while the
relationship between ErrortX and Error is shown in Fig. 4.
These relationships are demonstrated in the form of the log
plot. We can see that with increasing errors in rotation and
translation, the errors in the computed X value all arise to a
large extent. One can see in the magnified plot of Fig. 3 that
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Fig. 3. Sensitivity of errors subject to input rotation noises.

the optimization methods achieve the best accuracy, but the
proposed method can also obtain the comparable estimates.
It is shown that with various values of d , the performances of
the proposed method differ quite a lot. Fig. 4 indicates that
with d = 103, the evaluated errors on translation are the worst
among all compared ones. However, with a larger d value,
this situation has been significantly improved, generating the
magnified image in Fig. 4 that when d = 105 and d = 106,
the errors of the proposed method are quite close to the least
ones. As in Section IV-A, we have tested that the proposed
method has the fastest execution speed, it is shown that for
the studied cases, the developed method can be regarded as a
balancing one between the accuracy and computation speed.

C. Simulations on Uncertainty Descriptions

The uncertainty description of the hand-eye calibration
problem AX = X B is studied by Nguyen and Pham for
the first time iteratively in [19]. It works very well with

Fig. 4. Sensitivity of errors subject to input translation noises.

both synthetic and real-world data. However, it still has its
drawbacks as follows.

1) The covariance of the rotation RX is independently esti-
mated from RA RX = RX RB, but, in fact, the accuracy
of RX is also affected by tA and tB.

2) The covariances of RX and tX are required to be
computed iteratively, while how many iterations would
be sufficient to provide accurate enough results is still
an unsolved problem.

Hence, the covariance should also be decided by tA and
tB and, if possible, do not require iterations. The proposed
SO(4) method in this paper, however, simultaneously estimates
RX and tX together and can also generate the analytical
probabilistic information within several deterministic steps
considering the tightly coupled relationship inside AX = X B.
Let us define ξRX ,x , ξRX ,y , and ξRX ,z as errors in rotation
RX around the x-, y-, and z-axes, while ξtX ,x , ξtX ,y , and
ξtX,z being errors in translation tX about the x-, y-, and

δRX,SO(4)δRT
X,SO(4)

=
�

δRX δ tX/d
−δ tT

X RX/d − tT
XδRX/d 0

��
δRT

X −RT
Xδ tX/d − δRT

X tX/d
δ tT

X/d 0

�

=
⎡
⎢⎣ δRXδRT

X +
1

d2 δ tXδ tT
X − 1

d

�
δRX RT

Xδ tX + δRXδRT
X tX

�
− 1

d

�
δ tT

X RXδRT
X + tT

XδRXδRT
X

� 1

d2

�
tT
X RX RT

Xδ tX + tT
X RXδRT

X tX + tT
XδRX RT

Xδ tX + tT
XδRXδRT

X tX

�
⎤
⎥⎦

�RX,SO(4) =
'
δRX,SO(4)δRT

X,SO(4)

(
(65)

=
⎡
⎢⎣ �RX +

1

d2 �tX − 1

d

��
δ tX × δθX

�+�RX tX

�
− 1

d

��
δ tX × δθX

�+ �RX tX

�T 1

d2

�
tT
X

�
δ tX × δθX

�+ tT
X�RX tX

�
⎤
⎥⎦

≈
⎡
⎢⎣�RX +

1

d2 �tX − 1

d
�RX tX

− 1

d
tT
X�RX

1

d2 tT
X�RX tX
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Fig. 5. 2-D covariance projections of the solutions to hand-eye calibration using the proposed method and that of Nguyen and Pham. The gray dashed lines
indicate the mean bounds of the simulated statistics. The green dashed lines are from the solution of Nguyen and Pham, while the black solid ones are from
our proposed algorithm. The discrete points in blue reflect the simulated samples.

z-axes, respectively. Given the covariances �RX and �tX ,
the covariance of the equivalent SO(4) transformation can be
computed by (66) where we have

δRX,SO(4) =
�

δRX δ tX/d
−δ tT

X RX/d − tT
XδRX/d 0

�
(67)

and δRX,SO(4)δRT
X,SO(4) is simplified from (65) to (66), as

shown at the bottom of the previous page, according to [51]

ṘX = −[ω]×RX

δRX = −[δθX ]×RX

δRX RT
X = −[δθX ]× (68)

in which ω is the angular velocity vector and θX denotes the
small angle rotation of RX . Therefore, with �RAi

, �tAi
, �RBi

,
and �tBi

, we can compute �RAi ,SO(4) and �RBi ,SO(4) . In this
paper, we consider that the system errors in each measurement
step are identical, and therefore, we have

�RAi
= �RA, �tAi

= �tA

�RBi
= �RB , �tBi

= �tB . (69)

Now, we conduct the same simulation as that pro-
vided in the Python open-source codes of Nguyen
and Pham [19] (https://github.com/dinhhuy2109/python-cope/
examples/test_axxb_covariance.py). The input covariances are

�RA = 10−10 I, �tA = 10−10 I

�RB =
⎛
⎝ 4.15625 −2.88693 −0.60653
−2.88693 32.0952 −0.14482
−0.60653 −0.14482 1.43937

⎞
⎠× 10−5

�tB =
⎛
⎝ 19.52937 2.12627 −1.06675

2.12627 4.44314426 0.38679
−1.06675 0.38679 2.13070

⎞
⎠× 10−5.

(70)

The simulation is carried out for 10 000 times, generating
the randomly perturbed {A}, {B}, and in each set, there are

60 measurements. �b is computed according to the simulated
statistics for {A}, {B}. The statistical covariance bounds of
the estimated RX and tX values are then logged. Using the
method by Nguyen and Pham and our proposed method,
the 2-D covariance projections are shown in Fig. 5. One can
see that both methods can estimate the covariance correctly,
while our method achieves very slightly smaller covariances
bounds. This reflects that our proposed method has reached
the accuracy of Nguyen and Pham for uncertainty descriptions.
What needs to be pointed out is that the proposed method is
fully analytical rather than the iterative solution in the method
of Nguyen and Pham. While the analytical methods are always
much faster than iterative ones, this simulation has indirectly
reflected that the proposed method can both correctly estimate
the transformation and determine the precision covariance
information within a short computational period, which is
beneficial to those applications with high demands on a
real-time system with rigorous scheduling logics and timing.

D. Extension to the Extrinsic Calibration Between 3-D Laser
Scanner and a Fisheye Camera

In this section, the developed 4DPA method in this paper is
employed to solve the extrinsic calibration problem between a
3-D laser scanner and a fisheye camera, mounted rigidly on an
experimental platform shown in Fig. 6. This platform contains
a high-end 2-D laser scanner of Hokuyo UST 10-lx spinned
by a powerful Dynamixel MX-28T servo controlled through
the serial ports by the onboard Nvidia TX1 computer with
graphics processing unit (GPU). It also consists of an Intel
Realsense T265 fisheye camera with a resolution of 848 ×
800 and a frame rate of 30 frames/s, along with an onboard
factory-calibrated IMU. The spin mechanism and the feedback
of an internal encoder of the servo guarantee the seamless
stitching of successive laser scans that produce highly accurate
3-D scene reconstructions.
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TABLE IV

TRAJECTORY ERRORS BEFORE AND AFTER THE EXTRINSIC CALIBRATION USING THE PROPOSED METHOD

Fig. 6. Experimental platform equipped with a 3-D laser scanner and a
fisheye camera, along with other processing devices.

Fig. 7. Signal flowchart in the extrinsic calibration between the 3-D laser
scanner and the fisheye camera using the proposed algorithm.

The single sensor or a combination of a laser scanner and
a camera will be of great importance for scene measure-
ment and reconstruction [52]–[54]. However, due to inevitable
installation misalignments, the extrinsic calibration between
the laser scanner and the camera should be performed for
reliable measurement accuracy. Several algorithms have been
proposed to deal with the calibration issues inside these
sensors recently [55]–[57]. These methods in fact require

some standard objects such as large chessboards to obtain
satisfactory results. We, here, extend our method to solving
this extrinsic calibration, without needs of any other standard
reference systems. The sensor signal flowchart can be seen
in Fig. 7.

For the developed system, we can gather three sources
of data, i.e., images from the fisheye camera, the inertial
readings of angular rate and acceleration, and the 3-D laser
scans. At the first stage, the fisheye camera and the IMU
measurements are processed via feature extraction [50] and
navigation integral mechanisms [58], respectively. Then, they
are integrated together for the camera pose, denoted as TAi

with an index of i , using the method in [59]. The pose of the
3-D laser scanner, denoted as TBi with index i , is computed via
the 3-D ICP [33], as shown in Fig. 8. As the camera and the
laser scanner poses have the output frequencies of 200 and
1 Hz, respectively, the synchronization between them is
conducted by continuous linear quaternion interpolation that
we developed recently [43]. Then, using the properly synced
TAi and TBi , we are able to form the proposed hand-eye
calibration principle with entry point equation in (6). With
procedures shown in Algorithm 1, where d is set to d = 105

empirically, the extrinsic parameters, i.e., the rotation and the
translation between the laser scanner and the fisheye camera,
are calculated.

Then, these parameters are applied to the developed plat-
form for 3-D trajectory verification using the Visual-lidar
Odometry and Mapping (V-LOAM), method [60]. We put the
system into measurement mode and then start moving it from
origin to origin. Then, when computing the trajectories with
the uncalibrated and calibrated data, we can find out that
the trajectory after the calibration has much less odometric
errors (see Fig. 9). In later periods, a similar experiment is
repeated twice. The detailed statistics of the trajectory errors
are presented in Table IV containing results on each of the
x-, y-, and z-axes. One can see that the errors have been
significantly reduced after calibration, which indicates the
effectiveness of the proposed calibration scheme in real-scene
measurement application. Also, the results of the proposed
4DPA method for hand-eye calibration will be affected by the
value of d , as described in the previous sections. Therefore,
a study on such an influence is conducted using the data for
experiment 3 (see Table V).

We tune the d value from 1 × 103 to 1 × 107. The
errors indicate that the chosen value d = 1 × 105 in this
section results in sufficiently accurate estimates. And with
larger values of d , the error bounds almost reach their limits.
While for those small values of d , we can see that they
cannot deal with the calibration accurately. The reason is that
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Fig. 8. Reconstructed scenes using the presented 3-D laser scanner. They are later used for the pose estimation of the laser scanner frame with ICP.

TABLE V

VERIFIED 3-D TRAJECTORY ERRORS AFTER HAND-EYE CALIBRATION

WITH DIFFERENT VALUES OF d (EXPERIMENT 3)

Fig. 9. Projected XY trajectories before and after the extrinsic calibration
between the 3-D laser scanner and the fisheye camera.

the approximation in (51) requires large d for more precise
computation (but not too large, see Section III-D). The optimal
dynamic selection of the parameter d will be the next task for
us in the near future.

V. CONCLUSION

This paper studies the classical hand-eye calibration prob-
lem AX = X B by exploiting a new generalized method on
SO(4). The investigated 4-D Procrustes analysis provides us
with very useful closed-form results for hand-eye calibration.
With such a framework, the uncertainty descriptions of the
obtained transformations can be easily computed. It is ver-
ified that the proposed method can achieve better accuracy

and much less computation time than representatives in the
real-world data sets. The proposed uncertainty descriptions for
the 4 × 4 matrices are also universal to other similar prob-
lems, such as spacecraft attitude determination [29] and 3-D
registration [32]. We also notice that the Procrustes analysis
on SO(n) may be of benefit to solve the generalized hand-eye
problem AX = X B in which SE(n) and this is going to be
discussed in the next task for us in further works.

APPENDIX A
SOME CLOSED-FORM RESULTS

A. Analytical Forms of Some Fundamental Matrices

Taking c1 = P1(σ )σ as an example, one can explicitly
write out

c1 =

⎛
⎜⎜⎝

ap − bq − cr − ds
aq + bp + cs − dr
ar + cp − bs + dq
as + br − cq + dp

⎞
⎟⎟⎠ .

One would be very easy to verify that c1 = P1(σ )σ . Then,
the similar factorization can be established for c2, c3, and c4
and r1, r2, r3, and r4, respectively, generating the following
results:

P1(σ ) = 1√
2

�× �

P2(σ ) = 1√
2

⎛
⎜⎜⎝
−q −p s −r −b −a −d c
p −q r s a −b c d
−s −r −q p d −c −b −a
r −s −p −q −c −d a −b

⎞
⎟⎟⎠

P3(σ ) = 1√
2

⎛
⎜⎜⎝
−r −s −p q −c d −a −b
s −r −q −p −d −c −b a
p q −r s a b −c d
−q p −s −r b −a −d −c

⎞
⎟⎟⎠

P4(σ ) = 1√
2

⎛
⎜⎜⎝
−s r −q −p −d −c b −a
−r −s p −q c −d −a −b
q −p −s −r −b a −d −c
p q r −s a b c −d

⎞
⎟⎟⎠

Q1(σ ) = 1√
2

⎛
⎜⎜⎝

p −q −r −s a −b −c −d
−q −p s −r −b −a −d c
−r −s −p q −c d −a −b
−s r −q −p −d −c b −a

⎞
⎟⎟⎠
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Q2(σ ) = 1√
2

⎛
⎜⎜⎝

q p s −r b a −d c
p −q r s a −b c d
s −r −q −p −d −c −b a
−r −s p −q c −d −a −b

⎞
⎟⎟⎠

Q3(σ ) = 1√
2

⎛
⎜⎜⎝

r −s p q c d a −b
−s −r −q p d −c −b −a
p q −r s a b −c d
q −p −s −r −b a −d −c

⎞
⎟⎟⎠

Q4(σ ) = 1√
2

⎛
⎜⎜⎝

s r −q p d −c b a
r −s −p −q −c −d a −b
−q p −s −r b −a −d −c
p q r −s a b c −d

⎞
⎟⎟⎠ .

The results of J j k,i can then be computed using symbolic
computation tools, e.g., MATLAB and Mathematica

J11,i

=

⎛
⎜⎜⎝

e11 − z11 e12 + z21 e13 + z31 e14 + z41
e12 + z21 z11 − e11 e14 − z41 z31 − e13
e13 + z31 z41 − e14 z11 − e11 e12 − z21
e14 + z41 e13 − z31 z21 − e12 z11 − e11

⎞
⎟⎟⎠

J12,i

=

⎛
⎜⎜⎝

e21 − z21 e22 − z11 e23 + z41 e24 − z31
e22 − z11 z21 − e21 e24 + z31 z41 − e23
e23 − z41 z31 − e24 −e21 − z21 e22 − z11
e24 + z31 e23 + z41 z11 − e22 −e21 − z21

⎞
⎟⎟⎠

J13,i

=

⎛
⎜⎜⎝

e31 − z31 e32 − z41 e33 − z11 e34 + z21
e32 + z41 −e31 − z31 e34 + z21 z11 − e33
e33 − z11 z21 − e34 z31 − e31 e32 + z41
e34 − z21 e33 − z11 z41 − e32 −e31 − z31

⎞
⎟⎟⎠

J14,i

=

⎛
⎜⎜⎝

e41 − z41 e42 + z31 e43 − z21 e44 − z11
e42 − z31 −e41 − z41 e44 − z11 z21 − e43
e43 + z21 z11 − e44 −e41 − z41 e42 + z31
e44 − z11 e43 + z21 z31 − e42 z41 − e41

⎞
⎟⎟⎠

J21,i

=

⎛
⎜⎜⎝

e12 − z12 z22 − e11 e14 + z32 z42 − e13
z22 − e11 z12 − e12 −e13 − z42 z32 − e14
z32 − e14 z42 − e13 e12 + z12 e11 − z22
e13 + z42 −e14 − z32 z22 − e11 e12 + z12

⎞
⎟⎟⎠

J22,i

=

⎛
⎜⎜⎝

e22 − z22 −e21 − z12 e24 + z42 −e23 − z32
−e21 − z12 z22 − e22 z32 − e23 z42 − e24
−e24 − z42 z32 − e23 e22 − z22 e21 − z12
e23 + z32 z42 − e24 z12 − e21 e22 − z22

⎞
⎟⎟⎠

J23,i

=

⎛
⎜⎜⎝

e32 − z32 −e31 − z42 e34 − z12 z22 − e33
z42 − e31 −e32 − z32 z22 − e33 z12 − e34
−e34 − z12 z22 − e33 e32 + z32 e31 + z42
e33 − z22 −e34 − z12 z42 − e31 e32 − z32

⎞
⎟⎟⎠

J24,i

=

⎛
⎜⎜⎝

e42 − z42 z32 − e41 e44 − z22 −e43 − z12
−e41 − z32 −e42 − z42 −e43 − z12 z22 − e44
z22 − e44 z12 − e43 e42 − z42 e41 + z32
e43 − z12 z22 − e44 z32 − e41 e42 + z42

⎞
⎟⎟⎠

J31,i

=

⎛
⎜⎜⎝

e13 − z13 z23 − e14 z33 − e11 e12 + z43
e14 + z23 e13 + z13 −e12 − z43 z33 − e11
z33 − e11 z43 − e12 z13 − e13 −e14 − z23
z43 − e12 e11 − z33 z23 − e14 e13 + z13

⎞
⎟⎟⎠

J32,i

=

⎛
⎜⎜⎝

e23 − z23 −e24 − z13 z43 − e21 e22 − z33
e24 − z13 e23 + z23 z33 − e22 z43 − e21
−e21 − z43 z33 − e22 −e23 − z23 −e24 − z13
z33 − e22 e21 + z43 z13 − e24 e23 − z23

⎞
⎟⎟⎠

J33,i

=

⎛
⎜⎜⎝

e33 − z33 −e34 − z43 −e31 − z13 e32 + z23
e34 + z43 e33 − z33 z23 − e32 z13 − e31
−e31 − z13 z23 − e32 z33 − e33 z43 − e34
−e32 − z23 e31 − z13 z43 − e34 e33 − z33

⎞
⎟⎟⎠

J34,i

=

⎛
⎜⎜⎝

e43 − z43 z33 − e44 −e41 − z23 e42 − z13
e44 − z33 e43 − z43 −e42 − z13 z23 − e41
z23 − e41 z13 − e42 −e43 − z43 z33 − e44
−e42 − z13 e41 + z23 z33 − e44 e43 + z43

⎞
⎟⎟⎠

J41,i

=

⎛
⎜⎜⎝

e14 − z14 e13 + z24 z34 − e12 z44 − e11
z24 − e13 e14 + z14 e11 − z44 z34 − e12
e12 + z34 z44 − e11 e14 + z14 −e13 − z24
z44 − e11 −e12 − z34 z24 − e13 z14 − e14

⎞
⎟⎟⎠

J42,i

=

⎛
⎜⎜⎝

e24 − z24 e23 − z14 z44 − e22 −e21 − z34
−e23 − z14 e24 + z24 e21 + z34 z44 − e22
e22 − z44 z34 − e21 e24 − z24 −e23 − z14
z34 − e21 z44 − e22 z14 − e23 −e24 − z24

⎞
⎟⎟⎠

J43,i

=

⎛
⎜⎜⎝

e34 − z34 e33 − z44 −e32 − z14 z24 − e31
z44 − e33 e34 − z34 e31 + z24 z14 − e32
e32 − z14 z24 − e31 e34 + z34 z44 − e33
−e31 − z24 −e32 − z14 z44 − e33 −e34 − z34

⎞
⎟⎟⎠

J44,i

=

⎛
⎜⎜⎝

e44 − z44 e43 + z34 −e42 − z24 −e41 − z14
−e43 − z34 e44 − z44 e41 − z14 z24 − e42
e42 + z24 z14 − e41 e44 − z44 z34 − e43
−e41 − z14 z24 − e42 z34 − e43 z44 − e44

⎞
⎟⎟⎠

where e jk, z jk, j, k = 1, 2, 3, 4 are the matrix entries of
Ei and Zi , respectively. Note that these computation proce-
dures can also be found out at https://github.com/zarathustr/
hand_eye_SO4.

B. Matrix Determinant Property

Given an arbitrary square matrix

M =
�

A B
C D

�
.

If D is invertible, then the determinant of M is

det(M) = det(D) det(A− B D−1C).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 06,2022 at 05:56:02 UTC from IEEE Xplore.  Restrictions apply. 



2980 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 6, JUNE 2020

Inserting the above-mentioned result into

det(λW ,max I −W) = det

��
λW ,max I −K
−K T λW ,max I

��

gives (26).
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