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Abstract— Indoor localization of high accuracy has been widely
interested. Among competitive solutions, visible light position-
ing (VLP) is promising due to its ability to deliver high-accuracy
3-D position and orientation with low-cost sensors by sharing the
LED lighting infrastructure widespread in buildings. Most VLP
systems require a prior LED location map for which manual
surveys are costly in practical deployment at scale. In this article,
to address this difficulty, we propose a novel system for efficient
and accurate offline mapping of LEDs for VLP. With input
from visual–inertial sensors and existing or surveyed priors,
it builds the map by posing a full simultaneous localization and
mapping (SLAM) problem within a factor graph formulation.
Compared to manual surveys, it greatly saves human labor and
time while yielding an accurate and workspace-aligned LED
map. With real-world experiments in a room-scale testbed and a
15× larger lab office, we extensively evaluate the LED mapping
system to verify its efficacy and performance gains.

Index Terms— Factor graph optimization, indoor localization,
LED mapping, visible light communication (VLC), visible light
positioning (VLP), visual–inertial odometry (VIO).

I. INTRODUCTION

INDOOR localization is needed by many moving platforms
indoors, e.g., for robot navigation and a wide variety of

location-based services on mobile devices such as people
way-finding in GPS-denied venues. With the growing adop-
tion of LEDs for energy-efficient lighting in buildings and
the advance of visible light communication (VLC), LED
lights hold great potential to be a kind of GPS-like ubiqui-
tous infrastructure that allows accurate and efficient indoor
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Fig. 1. Results of LedMapper in a lab office (around 20 m × 15 m). It shows
the mapped locations of 12 LEDs alongside their IDs decoded through VLC.
The optimized IMU trajectory after closing loops and the raw VIO input
are also compared. The example images are from the VIO camera with
autoexposure (bright background) and the VLC camera with a very short
exposure (dark background).

localization [1]–[5]. This approach is known as visible light
positioning (VLP). Compared to other infrastructure-based
approaches of similar high accuracy (cm to dm) that use
ultrawideband (UWB) radio [6] and ultrasound [7], VLP has
the advantage of reusing LED lights as infrastructure. This
avoids the extra burden and cost of installing specialized
positioning hardware.

In VLC, information is transmitted from modulated LEDs
that change intensities quickly beyond human perception and
is received by a photodiode (PD) or camera sensor. It carries
a unique identifier for each LED, e.g., an identity code (ID)
[8]–[12] and a frequency [13]–[16]. In VLP, LEDs act as arti-
ficial beacons in the environment, and each allows known data
association using its identifier. The sensor takes measurements
of LEDs in the VLC range, e.g., bearing, ranging, and received
signal strength (RSS). These can be used to infer the senor
pose (or position) standalone, such as by geometry-based [15]
(e.g., trilateration) and fingerprinting [16] methods, or can
be combined with other sensors for a fused pose estimate
[8]–[12]. To achieve this, most VLP systems require a prior
map composed of global LED locations in the environment
alongside their identifiers for data association.

If LEDs reside on a precisely assembled frame, the map
can be known from the frame geometry and can be other-
wise by manual surveys using measuring devices (e.g., laser
rangefinder, total station, and motion capture system). This
can be straightforward for small-scale experiments and is the
de facto way in many studies. However, for real applications
at scale, manual surveys are difficult and are prone to human
errors due to the increase of LEDs and coverage. It entails
intensive human labor and time, thereby posing nonnegligible
deployment costs of VLP systems. To overcome such practical
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challenges, we seek novel solutions to efficient, accurate LED
mapping with less human effort. Yet, this is rarely studied in
the VLP field [14]. Our main focus is hence in this direction.

Today, a mobile device has rich sensors onboard, e.g.,
a microelectromechanical system (MEMS) inertial measure-
ment unit (IMU) and multiple rolling-shutter (RS) cameras.
In VLP, the RS camera is a ready-to-use receiver, and the
IMU is widely used for aided VLP, e.g., in loosely or
tightly coupled manners [8]–[11]. Moreover, with camera-IMU
sensors, many visual–inertial odometry (VIO) algorithms are
well developed [17]–[19] in robotics, capable of low-drift,
accurate six-degree-of-freedom (DoF) pose estimates in a local
frame. Indeed, VIO has been integrated into recent mobile
devices as mature software, e.g., ARKit1 and ARCore.2 In
applications, it acts as a virtual 6-DoF odometer of low drift
(e.g., a few percent of traveled distance or less). To the best
of our knowledge, it has not yet been well explored in VLP
usages.

In this article, to tackle the difficulty in LED mapping for
VLP, we propose LedMapper, a novel system developed for
efficient and accurate offline mapping of modulated LEDs in
a 3-D workspace, leading to much-reduced human effort than
manual surveys. We utilize a rig of low-cost visual–inertial
(VI) sensors already existing on mobile devices, i.e., an IMU
and two RS cameras (one for VLC and the other for VIO),
as the mapping device. The mapping process entails data
acquisition in the workspace, for which a surveyor wanders
around with the handheld device to form looped paths and
points the VLC camera to LEDs when passing by. For VLP,
the LED map should align with the global reference frame
of the workspace. To allow this, the mapper needs a few
known global LED locations (the so-called anchors or control
points from surveys beforehand) as prior input. Nevertheless,
the required human effort is much less than a complete
manual survey since the control points account for only a
minor portion of all LEDs. The mapping task is solved by
posing a full simultaneous localization and mapping (SLAM)
problem within a factor graph formulation [20]. An example
mapping process and results are shown in Fig. 1. In this work,
we assume point-source LEDs but explore LED geometry
priors for mapping with the benefit of absolute metric scale.
We consider that our contributions are mainly in the VLP field
and credit the novelty to the proposed LED mapping system
itself. We highlight the novel contributions as follows.

1) A novel LED mapping system for efficient and
accurate mapping of LEDs offline. With input from
visual–inertial sensors and existing or surveyed priors,
it builds the map by solving a full-SLAM problem
within a factor graph. Compared to manual surveys,
it effectively saves human labor and time while yielding
an accurate and workspace-aligned LED map for a wide
range of VLP systems.

2) Extensive evaluations with real-world experiments in a
room-scale testbed and a 15× larger lab office. The
results show the efficacy and performance gains of our
system.

1https://developer.apple.com/augmented-reality/
2https://developers.google.com/ar/

The remainder of this article is structured as follows.
Section II lists the related work. Section III overviews the
proposed system. Section IV briefly reviews the VLC front
end. Section V details the mapping approach. Sections VI
and VII show the experimental results and our discussions of
limitations, respectively. Section VIII concludes this article.

II. RELATED WORK

There is a rich body of literature on VLP, among which
[1]–[5] provide fundamentals and comprehensive surveys.
To our knowledge, however, only a handful of works aim
to map LED locations efficiently for VLP. In this section,
we review these closely related to our proposed LedMapper
in detail.

In [13] and its follow-up [14], a VLP calibration (i.e., LED
mapping) method is proposed using a mobile robot equipped
with a 2-D Lidar and an upward-facing RS camera. The
Lidar data are processed by an SLAM algorithm [21] to give
drift-less robot poses. The camera takes images of overhead
LEDs and decodes identifiers. The robot must approach each
LED until it appears in the image center. One can thereby
obtain the 2-D LED position from the robot pose. Assuming
a known height, this yields an LED map with 3-D locations
and unique identifiers. Evaluated in a small testbed with four
LEDs, Amsters et al. [14] showed a good map accuracy
of centimeters. Yet, the map is expressed in a local SLAM
frame, not necessarily aligned with the global workspace [14].
In addition, data collection may be problematic in a nontra-
versable area by a wheeled robot.

A handheld device has better mobility in complex scenes.
Using a PD receiver and a Tango tablet (running VIO),
Zhang and Zhang [22] proposed a light registration method
to map 2-D light locations onto a floor plan (say height is
known). This entails a surveyor who holds the device, starts
from a known pose (set by a few anchored lights of known
locations), and walks across ceiling lights. Upon crossing a
lamp, its identifier is decoded, and its 2-D location is recorded
using the tracked VIO pose. To bound VIO drifts, Zhang and
Zhang [22] divided the mapping area into smaller sections and
repeated the process. The VIO paths and light locations are
manually aligned to the floor plan. It attains successful results
in large-scale scenarios. However, the final map accuracy is not
clarified due to the lack of evaluation. Like [14], it may face
data collection problems when lights are located above an area
not traversable by a person. The required human intervention
(e.g., manual alignment) can be prone to errors.

In [22], unmodified lights are in place of modulated LEDs
for VLP. Please refer to [1] for a review of VLP based
on modified and unmodified lights. As in [14], we focus
on mapping modulated LEDs and use an RS camera as the
VLC receiver, but for flexible data collection in complex
venues, we use a handheld device like in [22]. Likewise,
we consider offline mapping since LED positions are fixed and
only require a one-time registration. The methods mentioned
in [13], [14], and [22] are heuristic and ignore the uncertainties
of sensor measurements and prior knowledge. By contrast, our
LedMapper follows a principled design based on the proba-
bilistic state estimation [23]. The mapping task is formulated
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Fig. 2. Photographs of our self-assembled hardware. (a) Modulated LEDs.
(b) Visual–inertial sensors.

as a full-SLAM problem within a factor graph that has been
well studied in robotics [20]. The input information can be
utilized in a sounder way. Moreover, we expect our system to
be way self-contained, not relying on an accurate floor plan
or the presence of other SLAM/localization systems in the
environment.

Rather than using an LED location map, some VLP meth-
ods (e.g., fingerprinting [16]) require a detailed map of
location-labeled light fingerprints. A robot or mobile device
can assist in the mapping process, as in [24] and [25]. Yet,
a detailed review of such methods is beyond our scope.
Overall, unlike in Wi-Fi-based positioning systems [26],
fingerprinting methods attract less attention in VLP stud-
ies [3], partly due to the high cost of light fingerprinting [4].
In contrast, due to the line-of-sight (LOS) light propagation,
geometry methods allow for high accuracy using LED location
maps that are easier to obtain.

III. SYSTEM OVERVIEW

In this section, we describe the hardware setup for our
LED mapping task in Section III-A, give an overview of the
system workflow in Section III-B, and clarify the notations
and reference frames used in this article in Section III-C.

A. Hardware Setup

The VLP hardware often consists of modulated LEDs at
the infrastructure side and VLC receivers at the user side.
Here, an RS camera is chosen as the receiver. We build a few
LED prototypes with rechargeable batteries [see Fig. 2(a)].
Each has a round radiation surface of 15.5 cm in diameter
and rating power of 3 W. The portable design allows for
a flexible LED deployment for experiments. The LEDs are
modified from off-the-shelf products by adding a microcon-
troller unit (MCU) and reusing most inbuilt components, such
as MOSFET, LED beads, batteries, and housings. The MCU
runs VLC logic and modulates LEDs via the MOSFET to
broadcast LED IDs. Due to the small amount of data required
for LED IDs in VLP, a simple, low-speed, and low-cost VLC
method is advocated [5]. We follow the same VLC protocol
as in our previous work [11], which uses the basic ON–OFF

keying (OOK) modulation and the Manchester coding scheme
due to ease of implementation and dc balance. The OOK
modulation frequency is 16 kHz.

The system is evaluated on but not limited to a custom-built
VI sensor rig, including two RS cameras (Raspberry Pi

camera v23) and a low-cost MEMS IMU (LPMS-ME14). The
installation relationship of the two cameras (Cam0&Cam1)
and the IMU is shown in Fig. 2(b). Note that the reference
frame attached to each sensor is marked by colored axes.
The sensors lack hardware synchronization due to hardware
limitations. The two cameras are placed in pairs, but not
in a stereo setup since they are triggered independently and
exposed differently on purpose. This setup is to ease assembly
efforts. The rig uses two Raspberry Pi (RPi) 3B+ computers
for sensor interfacing. Each RPi has only one CSI (camera
serial interface) port that allows connection to the RPi camera.
It runs the Ubuntu Mate 16.04 OS with robot operating sys-
tem (ROS) middleware. The two RPis interconnect by wired
Ethernet and communicate through the ROS network. Their
system clocks are software synchronized using network time
protocol (NTP). The master RPi acts as a local NTP server
and provides the clock reference for all sensor timestamps.
The IMU connects to the USB port of the master. The sensor
streams are recorded as ROS bags for later processing. All
hardware is powered by a power bank.

Cam0 captures images with autoexposure for VIO use at
20 Hz with a resolution of 640 × 480. Cam1 works with
a very short exposure (e.g., 20 μs) for VLC use, collecting
images at 10 Hz with a resolution of 1640 × 1232. IMU is
configured to output data at 400 Hz. We assume that the sensor
rig is precalibrated5 (e.g., using Kalibr [27]–[29]) with known
camera intrinsics, IMU intrinsics, IMU-camera spatiotemporal
extrinsics, and the RS frame readout time tr .

A sufficiently large LED image with a complete data packet
is required for VLC decoding. The distance from LED to
the camera (Cam1) must be close enough. As shown in [11],
the maximum decoding distance dm is subject to the LED’s
modulation period and surface size, the camera’s row readout
time and focal length, and the data packet length in the
VLC protocol. Due to our hardware limitations (e.g., small-
sized LEDs), we trade the reduction of data packet length
for an acceptable maximum decoding distance (e.g., a few
meters). This is achieved by sacrificing the payload size and
omitting error checking in the protocol [11]. Finally, our VLC
implementation gives dm ≈ 2.5 m while allowing for a data
payload of one byte. We find it sufficient for this study.

B. System Workflow

Fig. 3 shows the workflow of the proposed LED mapping
system. It entails three blocks: VLC front end, VIO estimator,
and LED mapper. The VLC front end takes the RS images
from Cam1 as input and produces feature tracks of LED
blobs with IDs by LED detection, tracking, and decoding. The
gyroscope measurements are utilized to assist LED tracking.
The VIO estimator fuses IMU measurements and the natural
visual features from Cam0 and provides 6-DoF VIO poses
of the IMU frame. We treat it as a black box and assume

3https://www.raspberrypi.org/products/camera-module-v2/
4https://lp-research.com/lpms-me1-dk/
5Currently, we treat these calibrated parameters as known constants without

considering the uncertainties due to possible calibration errors. This gross
treatment gives acceptable results in our implementation.
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Fig. 3. Block diagram showing the workflow of the proposed system.

Fig. 4. Illustration of the involved reference frames and their relations. The
global LED priors (e.g., control points) are expressed in FG .

a favorable lighting condition for VIO operation. It can be
implemented by well-established VIO algorithms, such as
VINS-Mono [18] and OpenVINS [30]. In our case, we choose
VINS-Mono due to its support for RS cameras. Using all
historical LED tracks and VIO poses as input, the LED mapper
aims to build a globally consistent and accurate LED map
by offline batch optimization. Besides sensor inputs, we con-
sider prior map information essential for global workspace
alignment or relatively easy to obtain, such as control points,
ceiling height, and LED geometry. These priors, if available,
can be seamlessly incorporated into the mapper as additional
constraints for improved quality. After mapping, the built LED
map is assumed accurate (with uncertainties) and can later be
used by VLP systems for online localization.

C. Notations and Reference Frames

A transformation matrix TA
B ∈ SE(3) takes a vector pB ∈ R

3

in the frame FB to the frame FA. It can be divided into a
rotation matrix RA

B ∈ SO(3) and a translation vector pA
B ∈ R

3,
i.e., TA

B = [RA
B , pA

B ]. The transformed vector pA ∈ R
3 in FA

is given by pA = RA
BpB + pA

B . With slight abuse of notation
for brevity, we also write pA = TA

BpB . Often, we use the unit
quaternion under Hamilton convention [31], qA

B , to represent
the rotation. R(·) converts qA

B into the rotation matrix RA
B .

⊗ denotes the quaternion multiplication. For a variable (·),
we write its measurement as ˆ(·). As shown in Fig. 4, we work
with four coordinate frames. The global base frame FG is
gravity-aligned and fixed in the workspace. It sets the origin
for all global measurements. The map to be built is aligned
to this frame. The local base frame FL is gravity-aligned and
sets the origin for VIO pose estimation. FI is attached to the
IMU body frame, and FC is attached to the optical frame of
the VLC camera. The IMU-camera extrinsic transformation
TI

C is a known constant from prior calibration.

IV. VLC FRONT END

The blobs from modulated LEDs are detected on incoming
images, tracked over consecutive frames, and decoded to
have correct LED IDs for long-term data association. The
front end has three modules: blob detection, blob tracking,
and VLC decoding. It is mostly inherited from our previous
works [10]–[12]. We briefly review it for completeness.

Fig. 5. Factor graph representation of our LED mapping task.

Due to the fast exposure of the VLC camera, bright LEDs
have high contrast against the background. After binarization
and dilation on grayscale image input, LED blobs are detected
with standard techniques. For each blob, we take its centroid
with pixel coordinate, [û, v̂]T . With the known camera intrin-
sics, the normalized pixel location, ẑ ∈ R

2, is also computed.
To achieve tracking, we detect new blobs on every frame

and find their best matches [32] in the previous frame. Each
blob has a unique tracking ID for short-term data association.
We assume that the mutual blob distances in an image are
greater than the interframe pixel displacements. This works in
our case due to the sparsity of lights and the nonrapid camera
motion. Since camera rotation is more likely to yield large
pixel displacements, we compensate for it using the short-term
integration of gyroscope measurements before matching.

VLC decoding applies to blobs with barcode-like patterns.
The row-parallel strips of varying widths and pixel intensities
carry VLC information, e.g., LED ID. Given a blob, we pick
up the grayscale pixel values on the centering column of its
image region. As the camera’s sampling rate is known, these
ordered pixel values form a time-varying 1D signal. After
binarization, OOK demodulation, and Manchester decoding,
the LED ID can be obtained. The blobs that are part of a track
have the same LED ID, and we can identify them all if any
single is decodable. The blob tracking allows more instances
of LED detections for later mapping and VLP.

V. LED MAPPING FROM BATCH OPTIMIZATION

We present the proposed LED mapper based on factor
graph optimization in detail, including problem statement in
Section V-A, graph construction in Section V-B, factor descrip-
tion in Section V-C, and batch optimization in Section V-D.

A. Problem Statement

The mapping task entails solving a full-SLAM problem that
seeks to estimate the entire IMU poses, {x1, . . . , xN }, and the
locations of LED landmarks, {l1, . . . , lM }, given all historical
sensor measurements and prior knowledge about LEDs. N and
M are the total number of poses and landmarks, respectively.
It is formulated as a factor graph optimization problem [20].
The structure of the built factor graph is shown in Fig. 5.

The IMU poses and LED locations are expressed in the
local frame FL and have the parameterization of xi = TL

Ii
=

[pL
Ii
, qL

Ii
], i ∈ {1, . . . , N} and l j = pL

j , j ∈ {1, . . . , M},
respectively. To align the LED map globally to the workspace,
we also estimate the transformation TG

L . Since FG and FL are
both gravity-aligned, it has 4-DoF with roll and pitch as zeros.
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VIO offers 6-DoF odometry measurements, T̂L
Ii

, at discrete
time instances ti after initialization. The roll and pitch are
accurate, while the yaw and position drift over time. Monoc-
ular VIO can suffer from inaccurate metric scale estimates
under degenerated motions [33]. Also, low-cost IMUs often
have nonnegligible systematic errors, such as nonunit scale
factors and axis misalignment [34]. Without proper compen-
sation by the estimator, these can further affect the VIO scale
accuracy. Note that VIO acts as a black box in this work.
Dealing with the scale issue from the VIO perspective is
beyond our scope. Instead, we estimate in the factor graph
the VIO scale factor, s, using additional metric scale sources
from priors.

We write the entire state for LED mapping as follows:
Xm = [

TL
I1
, . . . , TL

IN
| pL

1 , . . . , pL
M | TG

L , s
]

(1)

where {TL
I1
, . . . , TL

IN
} are the N IMU poses; {pL

1 , . . . , pL
M } are

the M LED positions; TG
L is the base frame transformation

between FG and FL ; and s is the VIO scale factor.

B. Graph Construction

We explain how to construct this graph. A new pose node,
xi , is added as the latest VIO pose measurement, T̂L

Ii
, arrives

(at 10 Hz in our case). This VIO pose gives the initial estimate
of xi . Also, we can apply a simple keyframe selection strategy
based on translation and rotation changes to further sparsify
the graph. The LED detections are available at maximally
10 Hz from the VLC front end. Yet, in general, we do
not assume the same update rate for the VIO poses and
LED detections. When a new LED blob first arrives (as per
the unique tracking ID), we create a temporary landmark
node for it. As each LED has been tracked over frames,
its subsequent detections are associated with this landmark
node. After the LED track is complete, we check all the
detections to find whether one or more blobs have a valid
LED ID (say successfully decoded). If not, the landmark node
is immediately dropped due to decoding failure. Note that this
ID is critical for long-term data association when loop closure
occurs later on. Otherwise, we proceed to check whether a
landmark of the same LED ID exists in the graph. If so,
we reassociate all related LED detections to the existing node
and drop the temporal one. Otherwise, we will triangulate the
LED position using the involved LED detections and IMU
poses alongside the known TI

C . After this, the landmark node
is marked matured and added to the graph as l j , where j
counts the number of unique LED IDs obtained so far. The
associated LED ID is denoted as ID j .

In general, the timestamps of LED detections are not aligned
with those of VIO poses, due to the lack of hardware synchro-
nization between the VLC and VIO sensors. We assume that
the VIO time is based on the IMU clock as in VINS-Mono.
Like in [35], we match the LED detections to a past VIO
pose with the closest timestamp and point them virtually to the
related pose node in the graph. The true pose from which the
LED is detected is in between the two bounding IMU poses,
which can be obtained by linear interpolation. To facilitate

this, we expect the sensors to move smoothly, as in normal
walking.

C. Factor Description

As shown in Fig. 5, the graph incorporates three sources of
factors posed by sensor measurements and prior knowledge.
We will describe them in detail next.

1) VIO Factors: Given input VIO poses, {T̂L
Ii
}, the relative

transformation measurement between consecutive poses, xi

and xi+1, is given by T̂Ii
Ii+1

= T̂L−1

Ii
T̂L

Ii+1
. It is written as

[p̂i
i+1, q̂i

i+1]. The predicted motion is TIi
Ii+1

= TL−1

Ii
TL

Ii+1
=

[pi
i+1, qi

i+1]. This yields the odometry residue

rOi (xi , xi+1, s) =
[

spi
i+1 − p̂i

i+1

2 · vec3
(

qi
i+1 ⊗ q̂i−1

i+1

)]
(2)

where s is the VIO scale factor and vec3(·) returns the vector
part (qx, qy, qz)

T of a quaternion q. We write the covariance
of this relative measurement as �O

i = diag(σ 2
posI3, σ

2
rotI3),

where σ 2
pos and σ 2

rot describe the uncertainties in translation
and rotation, respectively, and are set empirically in this work.

The roll and pitch in VIO are accurate without drift in FL .
To ensure this property, we exploit them as absolute measure-
ments. For each pose xi , we apply a rotational constraint due
to gravity with the residue

rGi (xi) = 2 · vec2
(

qL
Ii

⊗ q̂L−1

Ii

)
(3)

where vec2(·) returns the vector part (qx , qy)
T of q. The

covariance is written as �G
i = σ 2

g I2, where σ 2
g describes the

small uncertainty in the absolute roll and pitch measurements.
2) Vision Factor: We assume an undistorted, pinhole RS

camera model for the VLC camera. An RS camera captures
image rows sequentially at varying times. In the case of
general motions, this leads to different camera poses for each
row. Following the convention in [34], we assume that the
image timestamp corresponds to the middle image row. For
an image of K rows in total with timestamp t , the sampling
time of the kth row away from the middle is tk = t +(k/K )tr ,
k ∈ (−(K/2), (K/2)]. tr is the RS frame readout time, which
is assumed known from precalibration or the sensor’s datasheet
if available.

Consider the landmark l j associated with the pose xi in
the graph, for which the VLC front end gives the normalized
image measurement ẑi j with timestamp ti j . The corresponding
pixel coordinate [û, v̂]T lies in row k = v̂−(K/2), v̂ ∈ [1, K ].
Due to the time misalignment between VIO poses and LED
detections, ẑi j is indeed taken from an intermediate pose, xi j ,
between xi and xi+1 with timestamps ti and ti+1, respectively.
With RS imaging, the exact timestamp is given by tk

i j = ti j +
(k/K )tr . This is depicted by the diagram in Fig. 6.

We can obtain xi j by interpolating xi and xi+1, i.e., using
spherical linear interpolation (Slerp) for the rotation and linear
interpolation for the translation [36]. Having xi = [pL

Ii
, qL

Ii
] and

xi+1 = [pL
Ii+1

, qL
Ii+1

], we write xi j = [pL
Ii j

, qL
Ii j

] with

qL
Ii j

= Slerp
(
qL

Ii
, qL

Ii+1
, τ

)
(4)

pL
Ii j

= (1 − τ )pL
Ii

+ τpL
Ii+1

(5)
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Fig. 6. Illustration of the time misalignment alongside the RS imaging time
used for pose interpolation. Note the time interval of VIO poses and that of
LED detections are not necessarily the same.

τ = tk
i j − ti

ti+1 − ti
= ti j + (

v̂
K − 1

2

)
tr − ti

ti+1 − ti
(6)

where Slerp(q0, q1, τ ) is the Slerp function [31] that linearly
interpolates from q0 to q1 as τ evolves from 0 to 1 (τ ∈ [0, 1]).

The reprojection residue relating to the landmark l j = pL
j

and the interpolated pose xi j = TL
Ii j

is given by

rVi j

(
xi , xi+1, l j

) = ẑi j − π
(

TI−1

C TL−1

Ii j
pL

j

)
(7)

where π(·) projects a 3-D point pC onto the normalized image
plane as a 2-D point z according to z = [pC

x /pC
z , pC

y /pC
z ]T .

The covariance matrix is given by �V
i j = σ 2

n I2, where σ 2
n

describes the normalized pixel noise for LED observations.
3) Prior Factors: We consider prior map information that

is deemed essential or readily available to our mapping task.
It can be absolute or relative depending on if it is given in
FG . The absolute prior on li is specified with a known LED
position p̂G

i . It provides absolute geometric constraints for the
system states. The introduced metric scale information can
help correct VIO scale errors. With the transformation TG

L ,
this leads to the absolute prior residue next

rPa
i

(
li , TG

L

) = p̂G
i − TG

L pL
i (8)

with covariance matrix �Pa
i = diag(σ 2

x , σ 2
y , σ 2

z ) that describes
the measurement uncertainty on each axis.

For absolute priors, we distinguish between control points
and weak priors. The former is precisely known 3-D positions
in FG for a few selected LEDs. These absolute locations can
be obtained by manual surveys using measuring equipment
(e.g., laser rangefinder and total station) and are necessary if
we need to align the built map with the workspace. The latter
is partial knowledge about the LED position (only certain on
one axis), e.g., the common height of ceiling LEDs. This can
be known from one control point on the ceiling or the 3-D
architectural plan when available. For control points, we set
σ 2

x , σ 2
y , and σ 2

z to small values. For weak priors with known
height, we set small values for σ 2

z and large values for others.
An initial guess of TG

L is needed for its optimization. Given
a known pose T̂G

I in FG and the related VIO pose T̂L
I , it is

given by T̂G
L = T̂G

I T̂L−1

I . To achieve this, we currently need at
least two control points that are closely located. Using such
two LEDs co-visible in a single frame, we can compute T̂G

I by
the two-point pose initialization [11] based on a closed-form
P2P solution [37]. With initialization success, we estimate TG

L
while zeroing the roll and pitch. Otherwise,6 we fix it to an
identity matrix and ignore absolute priors in mapping.

6For example, there are less than two control points, control points are far
separated, not allowing for two-point pose initialization, and fail due to other
reasons.

The relative priors come from the known shape and size
of LED geometry without effort. Note that in this work,
we evaluate the system using small-sized circular LEDs and
assume point landmarks. In reality, squared panels or linear
tubes are often used, and each can be, e.g., represented by a set
of corner (end) points. Like in square fiducial markers [38], the
side length of LED panels (tubes) provides extra distance mea-
surements of metric scale. Consider a relative prior between
two corners on an LED landmark, li and l j , with the known
distance d̂i j . The residue is simply written as

rPr
i j

(
li , l j

) = d̂i j − �pL
i − pL

j � (9)

with covariance �Pr
i j = [σ 2

d ], where σ 2
d is the noise uncertainty.

D. Batch Optimization

To obtain the maximum a posteriori estimate for the entire
state Xm , we minimize a cost function f (Xm) that sums over
the Mahalanobis norm of all measurement residues as follows:
f (Xm) =

∑
i∈O

∥∥rOi (Xm)
∥∥2

�O
i

+
∑
i∈G

∥∥rGi (Xm)
∥∥2

�G
i

+
∑

(i, j)∈V
ρ

(∥∥rVi j (Xm)
∥∥2

�V
i j

)

+
∑
i∈Pa

∥∥∥rPa
i (Xm)

∥∥∥2

�Pa
i

+
∑

(i, j)∈Pr

∥∥∥rPr
i j (Xm)

∥∥∥2

�Pr
i j

(10)

where ρ(·) is a robust loss function [23] to reduce the effect
of LED outliers. O and G are sets of the relative odometry
measurements and the absolute rotation measurements around
the gravity, respectively, derived from the VIO input. V is
the set of visual measurements of LEDs that are successfully
decoded. Pa is the set of absolute map priors, including control
points and weak priors, while Pr is the set of relative map
priors. The residuals and their covariances are defined in
Section V-C.

This nonlinear problem is solved using the Ceres
solver [39]. After optimization, we obtain the global posi-
tion of each LED, l j , as per pG

j = TG
L pL

j . The set of
{(ID j , pG

j )}, j ∈ [1, M] constitutes the final LED map
anchored to the workspace. For later VLP use, we empirically
set a fixed uncertainty based on the experimental evaluation
for the mapped locations.

Remark: Without map priors, the VIO scale factor cannot
be determined and is hence fixed in optimization (i.e., s = 1).
As such, the optimized LED positions and the IMU poses
can be subject to an inaccurate metric scale estimate from the
VIO input. If control points are not available or when TG

L fails
in initialization, as explained previously, the built LED map
cannot align to FG in the workspace. Yet, it is acceptable to
use if we allow localization solutions within a local frame FL .

VI. EVALUATION

In this section, we evaluate the proposed LED mapping
system by real-world experiments. We first introduce the
experiment setup in Section VI-A. We assess the LED map-
ping accuracy in a controlled testbed with ground truth LED
locations in Section VI-B. We show the influence of VIO
scale errors on results and describe how they are compensated
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for by using various priors if available. In Section VI-C,
we study the possible impact of LED sparsity on map accuracy.
In Section VI-D, we show the influence of the inhomogeneity
of LED layout. Finally, in Section VI-E, we evaluate the
mapping system at a 15× larger office area of more realistic
settings.

A. Experiment Setup

To verify the efficacy of our LedMapper, we compare its
four variants: M1–M4. The difference lies in the constraints
needed for optimizing the cost function f (Xm), including
sensor measurements {O,G,V} and prior knowledge {Pa,Pr },
as explained in Section V-D.

1) M1: The baseline method uses sensor measurements
{O,G,V} only without prior. The mapping results can
suffer from a nonunit metric scale due to VIO.

2) M2: Besides {O,G,V} as in M1, it uses absolute priors
Pa from control points. We aim to study their effects on
scale estimates and mapping accuracy, alongside their
usage for global map alignment.

3) M3: Like M2, it also exploits {O,G,V,Pa}. However,
Pa now includes both control points and weak priors
(e.g., ceiling height). Comparing M3 to M2 allows us to
see the impact of weak priors.

4) M4: Besides {O,G,V} as in M1, it uses relative priors
Pr from LED geometry. We aim to test their efficacy in
improving VIO scale estimates and mapping accuracy.

For comparison, we align the results to the ground truth by
SE(3) or Sim3 transformation using [40]. To assess the map
accuracy, we compute the root-mean-square error (RMSE)
of estimated LED positions. The metric scale error in LED
positions is based on the scale computed during the Sim3
alignment. The trajectory accuracy is evaluated by the absolute
trajectory error (ATE) [41].

All experimental data are collected using the self-assembled
sensor rig (cf. Section III-A) and are processed on a desktop
computer (Intel i7-7700K CPU at 4.2 GHz, 16-GB RAM).

B. Mapping Accuracy

To study the mapping accuracy, we conduct experiments in
a room-sized testbed (5 m × 4 m × 2.35 m) instrumented with
a precise OptiTrack7 motion capture system (Mocap). There
are 25 modulated LEDs evenly distributed on the ceiling,
as shown in Fig. 7. We set FG the same as the world frame
of Mocap. High-accuracy 3-D LED positions are available as
ground truth by a tedious manual calibration procedure using
Mocap and a laser rangefinder for height compensation.8 The
ground truth IMU poses (trajectory) are computed from offline
batch optimization using all available sensor inputs (VIO poses
and LED detections) and taking all ground truth LED positions
as control points.9 To collect data in the testbed, we carry the

7https://optitrack.com/
8The ceiling LED locations are beyond the operation scope of our Mocap

system. We do calibration in two steps using Mocap and a leveler-mounted
laser rangefinder. We first measure the 3-D orthogonal projection position of
the LED on the floor using Mocap and then obtain the truth LED location by
compensating for the height difference using the laser distance measurement.

9The ground truth trajectory data provided by Mocap were not recorded at
the time of data collection due to some reason. Yet, this does not hamper the
goal of assessing the LED mapping accuracy in this work.

Fig. 7. (Left) Photograph and (Right) illustration of the Mocap testbed for
experiments, showing the locations and IDs of mounted LEDs. Black dots:
ground truth locations. Red pentagons: control points. Blue squares: LED
geometry prior.

handheld sensor, point the VLC camera to ceiling LEDs, and
walk around normally to close loops. While walking, we do
not require the camera to face upright to the ceiling (say it can
tilt forward). The sensor height is kept relatively constant (1 m
above the floor) in the experiment. Five datasets with different
motion profiles are collected, and each lasts about 1 min.10 At
the start of each run, the sensor is put on the ground still for a
few seconds and then moved with sufficient motion excitation
to aid VIO initialization. The start point sits beneath LED-110
and LED-114, as shown in Fig. 7.

We now detail the test settings for the four mapper variants
(i.e., M1–M4). As shown in Fig. 7, three LEDs of known
positions in FG (red pentagons) are chosen as control points
for M2/M3. With LED-110 and LED-114, an initial estimate
for TG

L can be obtained by two-point pose initialization [11].
We use the rough ceiling height of 2.35 m as weak priors for
M3. The affected standard deviation is set as σz = 0.2 m.
For M4, we select three pairs of LEDs (blue squares) with
known pairwise distances (blue dashed lines) and treat this
knowledge as a simulated source of relative priors from the
LED geometry.

Fig. 8 shows the results on dataset #1 of M1–M4 after
SE(3) alignment. The 22 LEDs are mapped successfully.
The Sim3 results of M1 are also included (denoted as
M1-sim3). We align the VIO trajectory using its first 50 poses.
Fig. 8(a) compares M1’s results with the ground truth and VIO
input. The results of M2–M4 are very close to M1-sim3 and
are omitted here for clarity. The Sim3 results (blue) well fit
the ground truth, while the SE(3) results (cyan) show larger
mismatches (see outer rings). This suggests an inaccurate scale
estimate in M1. To examine the scale errors in optimized
trajectories, we compare the scale ratio [33] among different
methods, as shown in Fig. 8(b). The scale ratio is computed
as the traveled distance of the trajectory estimate divided by
the ground truth and subtracted by one. A ratio closer to zero
means a better metric scale. For M1 and VIO, the scale ratio
drifts away evidently from zero. This confirms the nonunit
metric scale in the VIO input, which, without correction,
will later translate into scale errors in M1. For M2, M3, and
M1-sim3, the scale ratio is close to zero (the absolute value is

10Running on these datasets, batch optimization for mapping 25 LEDs can
finish within a fraction of seconds.
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TABLE I

MAPPING RESULTS BY M1, M2, M3, AND M4 ON FIVE DATASETS. EACH COLUMN REPORTS THE METRIC SCALE ERROR (IN %)
AND THE LED POSITION RMSE (IN cm) AFTER SIM3 AND SE(3) ALIGNMENT. THE BOLD FIGURES HIGHLIGHT

THE BEST RESULTS (I.E., SMALLEST ERRORS) IN EACH ROW

Fig. 8. Mapping results on dataset #1 using four methods (M1–M4).
(a) Mapped LED positions and the optimized trajectory. Cyan shows results
after SE(3) alignment, blue shows results after Sim3 alignment, and red shows
the ground truth. (b) Scale ratio of optimized trajectories and VIO input over
time.

less than 0.3%). Also, M4 has an improved scale estimate than
M1, despite remaining drifts. As a result, the priors used by
M2–M4 can help correct VIO scale errors due to their absolute
scale information.

The quantitative results by M1–M4 running on five datasets
are reported in Table I. In the column of each method, from
left to right, we present the scale errors in LED positions,
the RMSE of LED positions after Sim3 alignment, and that
after SE(3) alignment. The total number of mapped LEDs
on five datasets is among {22, 23, 24, 22, 25}. Overall, M1
yields more significant errors in scale estimates and the
SE(3)-aligned LED positions, while M3 achieves the least
errors. With the Sim3 alignment, however, the map accuracy
of M1 is very close to that of M3 (about 2 cm), and no
big difference appears among M1–M4, that is, M1 can yield
decent mapping results, despite a nonunit metric scale (e.g.,
a few percent of errors). We can thereby say that the majority
of M1’s mapping errors are due to its inaccurate metric scale
and, in our case, is from the VIO input. If not fixed, it can
undermine the mapping accuracy.

TABLE II

MAP ALIGNMENT ERRORS BY M2 AND M3 ON FIVE DATASETS.
THE BEST RESULTS ARE SHOWN IN BOLD

Fig. 9. Mapping results (blue) on dataset #1 by M1 under LED setups of
varying sparsities, compared to the ground truth (red). From (a) to (d) are
with 3, 6, 12, and 25 LEDs. Three LEDs are not mapped in (d).

Compared to M1, the metric scale errors of M2 and M3
are of a few thousandths, reduced by one order of magnitude;
and despite being less remarkable, that of M4 is three times
smaller. For M2–M4, we observe a reduction in LED position
errors by a factor of 2–3. The LED position RMSE is almost
within 3 cm across five datasets. This shows the advantage
of using priors over the baseline method. Due to added
geometric constraints, the priors from a few control points
(e.g., M2/M3) or the LED geometry (e.g., M4) can help
correct the scale estimate and maintain a good map accuracy.
To see how weak priors contribute, we compare M3 to M2
and find that M3 has smaller errors in both the estimated
scale and LED positions. Note that M3 takes the ceiling
height as extra priors, while M2 does not. This shows the
gain for better mapping accuracy of using some weak priors,
which are easy to obtain, by our mapper.

As per the design, control points enable the built LED map
to be aligned with the global workspace. To evaluate this,
we report in Table II the map alignment errors of M2 and
M3 on five datasets computed during the SE(3) alignment. M2
yields a translation error of within 4 cm and a rotation error
of within 1◦. M3 performs even better, with smaller errors in
translation (≤2.2 cm) and rotation (≤0.53 deg). This accuracy
gain is due to the weak priors about LED height.

C. Impact of LED Sparsity on Mapping Accuracy

In what follows, we study the impact of the sparsity of
LED observations on mapping accuracy. The previous setup
of 25 LEDs in a 5 m × 4 m area means a dense LED
placement and provides rich LED observations. In reality,
due to the variances of LED deployment density and ceiling
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Fig. 10. Mapping results by M1 on five datasets and with 3, 6, 12, and 25 LEDs. From left to right: LED position errors, RMSE of optimized trajectories,
LED outage rate, max LED outage, and the average number of LED observations per frame.

height in complex indoor settings, LED observations valid for
mapping can be much sparser. It will be helpful to assess
the mapping performance under sparse LED setups. Explicitly,
we consider four LED setups of different sparsity levels with
3/6/12/25 LEDs, as shown in Fig. 9. Rather than altering the
physical setup, for evaluation convenience, we selectively use
measurements from the chosen LEDs [see blue squares in
Fig. 9(a)–(c)]. These are evenly scattered over the test area.

We test M1 on the five testbed datasets as used previously.
To minimize the influence of VIO scale errors, we precalibrate
the scale factor s by batch optimization using all sensor
measurements and the ground truth LED map and keep it fixed
in the experiments, that is, we here assume a scale-correct VIO
input. As the VIO scale can change with motion profiles across
datasets, we calibrate the scale factor individually for each but
apply it to all four LED setups. For comparison, the mapping
results are SE(3)-aligned to the ground truth.

In Fig. 9, we show the qualitative results (blue) obtained
on dataset #1 for four LED setups, compared to the ground
truth (red). We report the quantitative results on five datasets
in the boxplots of Fig. 10, including LED position errors and
trajectory RMSE. With the four LED setups, the mapper can
recover LED positions and the IMU trajectory on all datasets.
As shown in Fig. 9, these LED positions match the ground
truth well, even when LEDs are sparse. The map accuracy
is consistent among the four LED setups, as seen from the
boxplot of LED position errors (5 cm@max) in Fig. 10. As a
result, the LED mapper can run under very sparse LED distri-
bution and build an accurate LED map. The trajectory errors,
as shown by the boxplot in Fig. 10, grow evidently as LEDs
become sparser. This degradation is due to insufficient loop-
closure constraints from LED observations on IMU motions.
To examine the availability of LED observations, we report in
Fig. 10 the LED outage rate, the maximum outage, and the
average number of observations per frame. The outage rate is
computed as the accumulated time of LED outages divided
by the total time (the higher this rate, the severer the outage).
The maximum outage measures the longest period without
LED observations. The results clearly show the lack of LED
constraints when LEDs are sparsely placed.

D. Impact of the Inhomogeneity of LED Layout

So far, we consider only those LED setups of homoge-
neous layout (LEDs are evenly scattered over the area for
mapping). Sometimes, LEDs may not be evenly deployed but
are clustered on one side of the mapping area. It is helpful to

Fig. 11. Eight testbed setups of inhomogeneous LED layouts with six LEDs.
TL: top left. TR: top right. BL: bottom left. BR: bottom right.

Fig. 12. Mapping results by M1 with six LEDs on five datasets. (a) RMSE
of LED position estimates. (b) RMSE of trajectory estimates. The boxplots
summarize the results under eight inhomogeneous LED layouts. The triangles
show the baseline results under the homogeneous LED layout.

study the impact of inhomogeneous LED layouts on mapping
accuracy.

In the experiment, we consider eight setups of inhomoge-
neous LED layouts with six LEDs in the testbed, as shown
in Fig. 11. In each setup, all the six LEDs for mapping are
clustered on one corner of the testbed. For comparison, we take
the homogeneous LED setup with six LEDs [see Fig. 9(b)] as
a baseline. These LED layouts have different homogeneities
but the same sparsity (i.e., the same number of LEDs in a
given area). Like in Section VI-C, we test the M1 variant of
the LedMapper on the five testbed datasets. Also, we follow
the same experimental settings, e.g., fixing the VIO scale by
precalibration and aligning the results by SE(3).

In Fig. 12, for each dataset, we report the mapping results
by M1 under inhomogeneous LED setup (see boxplots) along-
side the baseline result under homogeneous LED setup (see
triangles). Fig. 13 shows the time-evolving number of LED
observations per frame on dataset #1, corresponding to one
inhomogeneous and one homogeneous LED setup.

As shown in Fig. 12(a), the LED position RMSE on
the five datasets is smaller than the baseline result. In the
experiment, the system achieves improved LED mapping
accuracy in the inhomogeneous case. This is likely due to
more LED observations in the small clustered area. Under our
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Fig. 13. Results of the time-evolving number of LED observations per frame
on dataset #1, corresponding to (a) one inhomogeneous (TL1) and (b) one
homogeneous LED setup with six LEDs.

inhomogeneous LED setups, the LEDs are all within a local
region, in which the camera can observe multiple LEDs per
frame [see Fig. 13(a)]. This can help yield more consistent
and accurate LED position estimates. By contrast, in the
homogeneous case, the camera can often observe one LED
per frame [see Fig. 13(b)] due to the scattered distribution.

Meanwhile, the accuracy of trajectory estimates tends to
degrade under inhomogeneous LED setups, as shown in
Fig. 12(b). We suspect this is because of the less frequent
correction to the drifting VIO poses based on intermittent LED
detections [see Fig. 13(a)]. The batch optimized trajectory can
serve as the best achievable positioning result by a real-time
VLP system, which takes as input the VIO estimates and LED
detections as used by LED mapping. In this sense, to allow
for better VLP accuracy, we prefer homogeneous LED layouts
in a given area.

E. Mapping Tests at a Lab Office

Now, we aim to test LedMapper in more realistic settings
and at a larger scale. We carry out experiments in our lab at
HKUST, a typical office scene that covers about 20 m × 15 m.
We place 12 LEDs randomly on the ground along pathways
and leave them facing the ceiling. In principle, our system can
work from LEDs placed at will since they are no more than
3-D landmarks. The choice of putting them on the ground is
for evaluation convenience.

In this experiment, we do not have ground truth for the
IMU trajectory and LED positions. To evaluate the mapping
performance, we examine the consistency of mapped locations
among multiple runs. Five datasets are collected in the lab
using the mobile mapping device. During collection, we point
the cameras forward and face them to ground LEDs when
walking by. We revisit these LEDs to form closed loops before
returning to the start point. We test the mapper by the baseline
method M1 due to the lack of ground truth measurements of
control points or pairwise distances (needed by M2–M4).

In Fig. 1, we show the results on a typical lab dataset with
the locations and IDs of mapped LEDs and the optimized
trajectory, as well as the VIO input. All 12 LEDs are mapped
successfully. As expected, the optimized trajectory has less
drift (see the z-axis) and better consistency. We take this map
as a reference and align the results from the other datasets to
it by Sim3. This is because M1 is subject to a nonunit VIO
scale that can vary among datasets. For each LED, we compute
the errors of estimated positions to their mean and take the
RMSE as a measure of consistency. The results on five datasets
are summarized in Fig. 14. As can be seen from Fig. 14(a),
the mapped LED locations are consistent among five runs
(see the clusters of blue dots); yet, discrepancies are evident

Fig. 14. Results in the lab-scale test on five datasets using 12 LEDs.
(a) Positions and IDs of mapped LEDs. For each LED, the blue dots are
estimates, and the red plus is the mean. (b) Statistics of the LED position
RMSE among five datasets.

in zoomed views. The position RMSE is within 10 cm for
all 12 LEDs, as shown in Fig. 14(b). Mapping errors at such a
level of degree are acceptable, considering that the lab area
is 15× larger than our previous testbed. According to the
study in Section VI-B, the mapping performance can be further
improved using M2–M4, given any existing or surveyed prior
knowledge.

VII. DISCUSSION OF LIMITATIONS

Currently, we use homemade circular LEDs for evaluation.
The blob detector and tracker of the VLC front end are
designed for circular LEDs. Still, the system can run with
other shaped LEDs (e.g., linear tubes and square panels) by
adapting the front end. Moreover, pose estimation using a
single such LED is achievable, while the appearance (often
symmetrical) may need extra modification (e.g., a colored
marker on corners) for distinctiveness [42]. For a modified
square LED of known size, the camera observation model for
square fiducials [38] can be readily applied to our system.
Also, due to limited LEDs for the study, we have assessed the
system in a room-sized testbed and a 300-m2 office area. There
is a practical difficulty in preparing enough homemade LEDs
for experiments at a larger scale. With more LEDs available in
future work, evaluation in wider environments will be desired.

The data payload and maximum decoding distance dm

by our VLC implementation could be insufficient in reality.
A larger sized data payload is essential to large-scale deploy-
ment with thousands of LEDs. Also, to enable operation in sce-
narios with high ceilings (e.g., shopping malls rather than our
office buildings), a greater dm is desired. Otherwise, the LED-
camera distance can easily exceed dm , causing decoding fail-
ure. As mentioned previously, these limitations are mainly due
to the small LED surface (i.e., 15.5 cm) in use. In real applica-
tions, one can effectively increase the data payload and (or) the
maximum decoding distance by simply using LEDs of a larger
surface. As for standard LEDs for daily lighting, a square panel
can be 50 cm wide, while a linear tube can be 120 cm long.
In future work, advanced VLC modulation/coding schemes
can be explored for improved performance.

To ease hardware setup, we resort to a low-quality VI sensor
without hardware triggering. Under the same environments
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and motion profiles, it yields inferior VIO performance with
more drifts and scale errors. This can affect the best achievable
accuracy of the LedMapper. Also, VI measurements are now
loosely fused by our system since these are preprocessed by
a third-party VIO estimator before use, leading to suboptimal
results. For higher mapping accuracy, a high-quality VI sensor
alongside a tightly coupled implementation is more advocated.

LedMapper is not fully automated as it still requires manual
input, e.g., surveying a few LEDs as control points. Yet, these
are often necessary to align the LED map with the workspace
for VLP. Even so, the human effort has been much reduced
than manual surveys, as control points take only a minor
portion of LEDs (e.g., 3/25 in our case). To align the map, the
mapper now needs at least two close control points. We safely
expect improved map accuracy if using more. However, this
will cause increased human effort and hence less efficiency.
In practice, a tradeoff should be sought between accuracy and
efficiency. When the architectural floor plan has updated LED
locations, it can assist as informative priors. Yet, one cannot
directly turn it into a usable map for VLP due to the lack of
LED identifiers on a standard floor plan.

Compared to PD-based VLP systems, camera-based systems
are less affected by multipath effects [2], [3] from diffuse
reflections off rough surfaces (e.g., walls and floors). In daily
scenarios, specular reflective materials (e.g., glass and mirrors)
are relatively few [43] but challenging to camera-based sys-
tems, alongside our LedMapper. When LEDs are close to a
mirror surface, the LED and its mirroring can be observed and
decoded by the camera at the same time. While it is not easy to
disambiguate between them, we can circumvent this issue by
discarding the affected LED detections. In a worse situation,
only the LED mirroring is detected. Currently, our LedMapper
cannot handle this corner case. In practice, specular reflections
can be in part reduced by adding a polarizer on the camera
lens. To solve this issue, however, much research effort is
required in future work.

VIII. CONCLUSION

This article introduced a novel system designed for efficient
and accurate offline mapping of modulated LEDs for VLP,
named LedMapper. Compared to manual surveys, it required
much less human effort in building a usable LED map, thereby
reducing the deployment costs of VLP systems in reality.
A handheld mapping device with low-cost visual–inertial
sensors was utilized. The mapping process entailed a surveyor
wandering around the workspace with the device for data col-
lection. Given collected sensor data and some existing or sur-
veyed priors, it can build an accurate and workspace-aligned
LED map by formulating a full-SLAM problem within a factor
graph. Compared to its heuristic counterparts, LedMapper
exploited input information in a sounder way, credited to
the principled design following probabilistic state estimation.
Finally, the system was extensively evaluated with real-world
experiments in a room-scale controlled testbed and a 15×
larger lab office, showing its efficacy and performance gains.

In future work, we will adapt the system to different-shaped
LEDs and evaluate it in larger scale settings. It is rewarding
to do tightly coupled integration for higher mapping accuracy

or to explore advanced VLC modulation/coding methods for
better performance. Finally, improving the system robustness
to specular reflections is challenging and yet to be solved.
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