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Abstract— Road potholes can cause discomforts to passengers1

and even traffic accidents to vehicles. Accurate segmentation2

of road potholes is an important capability for autonomous3

vehicles to ensure safe driving. Some methods on road-pothole4

segmentation use single-modal data (i.e., RGB images). The main5

challenge faced by these methods is that the visual appearance6

of road potholes is often close to road areas, making these7

networks difficult to distinguish them. Recent methods resort8

to fusing RGB images with depth/disparity images for pothole9

segmentation. However, their performance is still not satisfactory10

in real-world applications. To achieve superior results, this11

article proposes a novel data fusion network for road-pothole12

segmentation, where a channel attention fusion module and a13

dual attention fusion (DAF) module are designed to hierarchically14

fuse the RGB and disparity data. We evaluate our proposed15

network using a public dataset, and the experimental results16

demonstrate the superiority over the state-of-the-art networks.17

Index Terms— Attention mechanism, autonomous vehicles,18

RGB-disparity fusion, road potholes, semantic segmentation.19

I. INTRODUCTION20

ROAD pothole is a kind of negative obstacles that lie21

below the road surface. It usually appears after long-term22

use of roads without timely maintenance. The existence of23

road potholes is a potential threat to road users. It can cause24
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bumps and discomforts to passengers. When vehicle speed is 25

fast, it can even cause severe accidents, such as rollover to 26

vehicles [1]. To alleviate the negative effects caused by road 27

potholes, vehicles are often equipped with damping systems to 28

reduce the vibrations [2]. However, adding damping systems 29

is just a kind of remedial measures. To get alerts for road 30

potholes in advance, it is necessary to detect or segment 31

the potholes using vehicle-mounted sensors. Currently, many 32

effective methods have been proposed using various sensors, 33

such as visual camera [3], thermal camera [4], RGB-D cam- 34

era [5], and Lidar [6]. 35

In the field of using visual sensors, RGB images, disparity 36

images, and depth images have been adopted in existing 37

road-pothole segmentation methods. Each modal of data has 38

its own advantages and disadvantages [7]. For example, RGB 39

images contain rich visual texture information, but not robust 40

to illumination conditions [8]. Methods using only RGB 41

images could be degraded in darkness [9]. Disparity and depth 42

images encode distance information, but cannot provide visual 43

information. Fusing multimodal data could take advantages of 44

each modal of data and has been proven to produce better 45

performance in previous work [10]. 46

However, the existing multimodal methods still cannot pro- 47

vide satisfactory performance in real-world applications. Seg- 48

menting potholes by fusing RGB images and disparity images 49

has been proven to achieve satisfactory performance [11]. 50

However, there are currently few studies on pothole seg- 51

mentation by fusing RGB and disparity images. Existing 52

algorithms perform unsatisfactorily, especially at the edges 53

of potholes. We guess that this is mainly caused by the 54

limitation of convolutional feature extraction and inappropriate 55

fusion of the two modals of data. To achieve superior results, 56

we propose a novel deep neural network that fuses RGB 57

images and disparity images for road-pothole segmentation in 58

this work. We replace the final stages of both encoders with 59

a transformer, extracting more edge information through the 60

multihead self-attention model. We design two kinds of fusion 61

modules in the encoders based on channel attention and dual 62

attention to fuse the two modals of data. Attention modules 63

can focus the network on useful information and weaken 64

useless information. Channel attention is used to adjust the 65

weights between feature maps. Dual attention includes channel 66

attention and spatial attention, where spatial attention is used 67
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to adjust the weights between different data in feature maps.68

We evaluate and compare our network with the state of the arts69

on a public dataset Pothole-600 [11]. The contributions of70

this work are summarized as follows.71

1) We propose a novel road-pothole segmentation network1
72

by fusing RGB and disparity images, which integrates73

convolutional layers and transformer modules.74

2) We adopt two data fusion modules in encoders based75

on channel attention and dual attention, and verify the76

effectiveness through ablation studies.77

The remainder of this article is structured as follows.78

Section II presents a review for related work. Section III79

describes the details of our network. Section IV discusses the80

experimental results. The last section concludes this article and81

presents several promising research directions for future work.82

II. RELATED WORK83

This section reviews related works on road-pothole seg-84

mentation and detection. We classify them into single-modal85

methods that use only RGB images, and multimodal methods86

that fuse RGB and other modality of data. Since many related87

works detect road cracks that are also negative obstacles, they88

are also reviewed here.89

A. Single-Modal Methods90

Zhang et al. [14] proposed a crack detection method based91

on convolutional neural network (CNN). This method divides92

an image into subimage blocks and classifies each sub-image93

block into cracks and noncrack regions. Pereira et al. [15]94

designed a classification-based CNN architecture to achieve95

pothole detection. They used four convolutions and pooling96

layers, as well as a fully-connected layer. The model can detect97

potholes under dry, humid, and dark conditions with various98

sizes and shapes. Mei and Gul [16] designed ConnCrack com-99

bining conditional Wasserstein generative adversarial network100

(cWGAN) and connectivity maps. The cWGAN is used for101

training, consisting of two separate neural networks called102

generator and discriminator, and the connectivity maps are103

used to resolve the scattered output caused by the deconvolu-104

tion layers. Anand et al. [17] designed an autonomous crack105

and pothole detection system based on texture features. They106

removed the last convolutional layer of SqueezeNet [18] and107

added an encoding layer.108

Mandal et al. [19] used YOLOv2 [20] to detect road cracks.109

In order to speed up training and improve the perfor-110

mance, they used transfer learning and froze the weights of111

ResNet-101 and RPN pre-trained on the COCO dataset. Suong112

and Kwon [21] also proposed a network based on YOLOv2113

to detect potholes. They designed two architectures. The first114

one is based on the Darknet architecture of YOLOv2, which115

contains 31 layers, and another is based on the first one,116

attempting to reduce the computational costs and model size.117

Dhiman and Klette [22] proposed two deep learning-based118

pothole detection methods, using stereo vision to estimate119

the 3-D point cloud information of the environment, and120

1The code is available at https://github.com/lab-sun/MAFNet

further analyzing the road environments in front of the vehicle. 121

Masihullah et al. [23] adopted few-shot learning approach and 122

introduced the channel attention module to DeepLabv3+ [24] 123

to realize the segmentation of potholes in RGB images. 124

B. Multimodal Methods 125

In addition to RGB images, other data, such as thermal 126

images and depth images, are also used for pothole and 127

crack detection. Bhatia et al. [25] designed a CNN based on 128

a residual network, which takes as input thermal images 129

to detect potholes. Beckman et al. [26] proposed a method 130

based on a faster region-based CNN (Faster R-CNN) to 131

detect concrete spalling damages with RGB and depth data. 132

Multimodal information fusion brings better segmentation 133

results, so Pan et al. [27] fused multispectral images obtained 134

by unmanned aerial vehicle to detect potholes and cracks on 135

asphalt roads. Fan et al. [11] proposed AA-RTFNet based on 136

RTFNet to fuse the RGB images and disparity images to 137

segment the pothole. They introduced an attention module 138

in the skip-connection between the encoder and the decoder. 139

They also released the Pothole-600 dataset that contains 140

600 pairs of RGB and disparity images. 141

C. Difference From Existing Work 142

Our work lies in the category of multimodal methods. 143

A major issue of existing methods, such as AA-RTFNet [11], 144

is that they do not perform well on the edges of potholes. 145

We conjecture that the reasons are using only the convolutional 146

layers to extract features, as well as using the simple elemen- 147

twise addition for fusion. Our MAFNet builds on RTFNet, 148

but has the following differences. First, we believe that the 149

multihead self-attention model in transformer could better 150

preserve edge information. So, we replace the last stage of 151

the RTFNet encoder with a transformer module. Second, 152

we add a channel attention and a spatial attention for feature 153

fusion instead of directly elementwise adding the two feature 154

maps from the two modals of data. Although AA-RTFNet 155

and our MAFNet both build on RTFNet, our network differs 156

from AA-RTFNet that we introduce the attention module into 157

encoders instead of between encoders and decoder. 158

III. PROPOSED NETWORK 159

A. Overall Architecture 160

We propose a new network called multimodal attention 161

fusion network (MAFNet) for road-pothole segmentation. 162

Fig. 1 shows the overall architecture. 163

We develop our network based on RTFNet [13]. So, 164

MAFNet also follows the two-encoders-one-decoder para- 165

digm, where both the two encoders have the same initial 166

block and four stages. We define the input set for encoders 167

as {(Ri , Di )|Ri , Di ∈ R
H×W×3, i = 1, . . . , M}, where M rep- 168

resents the number of images. We employ ResNet-34 [12] 169

as the backbone of the encoders, and replace the fourth 170

stage of the backbone with a transformer module borrowed 171

from [28]. We call the initial block, 1st, 2nd, and 3rd stages 172

of ResNet-34 as the initial block, 1st, 2nd, and 3rd stages 173

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 28,2022 at 02:58:15 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: MAFNet: SEGMENTATION OF ROAD POTHOLES WITH MULTIMODAL ATTENTION FUSION NETWORK 3523712

Fig. 1. Overall architecture of our proposed MAFNet. There are two five-stage encoders and one five-stage decoder, which are the RGB encoder, disparity
encoder, and decoder. We change the last stage of ResNet [12] to the transformer module. The disparity feature maps extracted from the initial block and
the first stage of the encoder are fused into the RGB encoder through the CAF module. The disparity feature maps extracted from the last three stages are
fused into the RGB encoder through the DAF module. For the decoder, we directly borrow the decoder from RTFNet [13] as our decoder. The images in the
dataset are captured by a ZED stereo camera. The figure is best viewed in color.

of our encoder respectively, and the final transformer module174

as the 4th stage of the encoder. The encoders are designed to175

extract feature maps from the input RGB and disparity images.176

We denote the nth stage of the RGB encoder and the disparity177

encoder as g(n)
R (Ri ) and g(n)

D (Di ), respectively. In the fusion178

part, first, the RGB feature maps and the disparity feature179

maps are fused by elementwise addition, and the preliminary180

fusion result is obtained. This preliminary fusion result has181

the same dimension as the feature map. Then, the attention182

model is used to adjust the weight between different feature183

information for this preliminary fusion result, and the final184

fusion result is obtained. The final fusion result has the same185

dimension as the original feature map. The first two stages186

of fusion use the channel attention model, and the last three187

stages of fusion use the dual-attention model. The feature188

maps extracted by the initial blocks, and the first stages189

of the encoders are respectively fused using our proposed190

channel attention-based fusion module. We denote the nth191

fusion module as f (n)
fuse(g(n)

R (Ri), g(n)
D (Di )). The feature maps192

extracted by the last three stages of the encoders are fused193

using our proposed dual attention-based fusion module. The194

final fused output of the two encoders is fed into the decoder.195

The encoder can be denoted as (1), shown at the bottom of the196

page. The decoder is used to restore the feature map resolution197

and generate the segmentation map. We directly borrow the198

RTFNet decoder [13] as our decoder.199

B. Fusion Modules200

To fuse the RGB and disparity data, we design two types of201

fusion modules respectively based on channel attention [29]202

and dual attention [30]. So, they are named as channel atten-203

tion fusion (CAF) module and dual attention fusion (DAF)204

Fig. 2. Structures of the two kinds of CAF module. (a) Structures of
CAF-1A2F, which adopted from [11]. (b) Structures of CAF-1F2A. The figure
is best viewed in color.

module. We denote them as fc and fd . For each module, we try 205

two kinds of architectures to choose the better one. 206

1) CAF Module: Fig. 2 shows the two kinds of archi- 207

tectures of our proposed CAF module, which are named as 208

CAF-1st-Attention-2nd-Fusion (CAF-1A2F, denoted as f AF
c ) 209

and CAF-1st-Fusion-2nd-Attention (CAF-1F2A, denoted as 210

f FA
c ). In CAF-1A2F, the feature maps from the two modals 211

are first weighted by channel attention networks, and then the 212

weighted feature maps are fused via elementwise addition. 213

On the contrary, in CAF-1F2A, the feature maps are first fused 214

via elementwise addition, then weighted by a channel attention 215

network. We adopt the channel attention model in the encoder 216

to fuse two modalities and discuss the positional relationship 217

between the attention model and the fusion of elementwise 218

summation through two different structures (CAF-1A2F and 219

CAF-1F2A). 220

The channel attention networks are shown in Fig. 2. 221

In CAF-1A2F, we first employ a global average pool to 222

calculate the average value of the feature maps from the 223

two channels. Then, two fully connected layers are used to 224

f (Ri , Di ) = f (5)
fuse

(
. . . f (2)

fuse

(
g(2)

R

(
f (1)
fuse

(
g(1)

R (Ri ), g(1)
D (Di )

))
, g(2)

D (Di )

)
, . . . , g(5)

D (Di )

)
(1)
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Fig. 3. Structures of the two kinds of DAF modules. (a) Structures of
DAF-1A2F, which adopted from [11]. (b) Structures of DAF-1F2A. (c) Struc-
ture of the DA module. The figure is best viewed in color.

get the weighting factor from the average value. There is a225

batch normalization layer and a ReLU activation layer after226

the first fully connected layer. The input channels of the first227

fully connected layer is 64 and the output channels of the228

first fully connected layer is 32. There is a Sigmoid function229

after the second fully connected layer, which ensures the230

output weighting value ranging from 0 to 1. The second fully231

connected layer restores the number of channels from 32 to232

64. We denote this process as w(Xi ). The two input feature233

maps are respectively weighted by the two weighting factors234

via elementwise multiplication. Finally, the weighted feature235

maps are fused by elementwise addition. CAF-1F2A adopts236

the same attention network as CAF-1A2F, but CAF-1F2A first237

fuses the two input feature maps, and then feed the fused238

result to the attention network. f AF
c and f FA

c are calculated as239

follows:240

f AF
c = W (Ri , w(Ri ))⊕W (Di , w(Di )) (2)241

f FA
c = W (Ri ⊕ Di , w(Ri ⊕ Di )) (3)242

where the ⊕ means the elementwise summation, Cn×m =243

A jk + B jk, j ∈ 1, 2, . . . , n, k ∈ 1, 2, . . . , m. The W (A, b)244

means the elementwise multiplication, W (An×m, b) =245

A jk × b, j ∈ 1, 2, . . . , n, k ∈ 1, 2, . . . , m.246

We take the CAF-1F2A structure as an example to introduce247

the process of CAF in detail through the pseudocode of this248

module. The pseudocode is shown in Algorithm 1.249

2) DAF Module: Similar as the CAF module, we also250

have DAF-1st-Attention-2nd-Fusion (DAF-1A2F, denoted as251

f AF
d ) and DAF-1st-Fusion-2nd-Attention (DAF-1F2A, denoted252

as f FA
d ), which are illustrated in Fig. 3. We adopt the dual253

attention model in the encoder to fuse the two modalities254

and discuss the positional relationship between the attention255

model and the fusion of elementwise summation through two256

different structures (DAF-1A2F and DAF-1F2A). In the DAF257

module, we adopt a dual attention (DA) module [30], which258

includes a spatial matrix operation (denoted as fs ) and a259

channel matrix operation (denoted as fc). The spatial matrix260

operation resizes the shape of feature maps from C × H × W261

to (H × W ) × (H × W ), and the channel matrix operation262

resizes the shape of feature maps from C × H × W to263

C × C , where C represents the number of channels of the264

feature map, H represents the height of the feature map, and265

W represents the width of the feature map.266

Algorithm 1 Process of CAF-1F2A ( f F A
c )

Data: RGB feature maps FR , disparity feature maps FD

Result: Fusion result Q
1 Ff use ← FR ⊕ FD ;
2 wF A = w(Ff use);
3 Fnew = W (F f use, wF A);
4 Q← Fnew;

Algorithm 2 Process of DAF-1F2A ( f F A
d )

Data: RGB feature maps FR , disparity feature maps FD

Result: Fusion result Q
1 Ff use ← FR ⊕ FD ;
2 Fc = f F A

c (Ff use) // channel attention;
3 Fs = f F A

s (Ff use) // spatial attention;
4 Fnew = Fc ⊕ Fs ;
5 Q← Fnew;

Fig. 3(c) shows the structure of the DA module. There 267

are mainly two branches in the DA module. Each branch 268

consists of three sub-branches. In the first main branch, the 269

input features are first fed into a 3 × 3 convolution layer 270

that keeps the number of channels unchanged, and then the 271

processed feature map is fed into three sub-branches. In the 272

bottom sub-branch of the first main branch, a new feature 273

map is obtained through the channel matrix operation. Then 274

the new feature map is fused with the feature map from the 275

middle sub-branch by matrix multiplication. The fused feature 276

map is then elementwise added with the feature map from the 277

top sub-branch to produce the final output. The second main 278

branch is similar to the first main branch, except that there 279

is the spatial matrix operation instead of the channel matrix 280

operation. Finally, the outputs from the two main branches are 281

fused via elementwise addition to produce the final output. The 282

process can be denoted as fd = fc ⊕ fs . We refer readers to 283

this article [30] for more details of the DA module. f AF
d and 284

f FA
d are calculated as follows: 285

f AF
d = fd(Ri )⊕ fd(Di ) (4) 286

f FA
d = fd(Ri ⊕ Di ). (5) 287

We take the DAF-1F2A structure as an example to introduce 288

the process of DAF in detail through the pseudocode of this 289

module. The pseudocode is shown in Algorithm 2. 290

C. Encoders 291

The RGB and disparity encoders share the same archi- 292

tecture. As aforementioned, we adopt ResNet-34 [12] as 293

the encoder backbone, and replace the 4th stage of ResNet 294

with the transformer module. There is a 7 × 7 three-channel 295

convolutional layer, a batch normalization layer, and a ReLU 296

activation layer in the initial block. The initial block reduces 297

the resolution by half and increases the number of channels 298

from 3 to 64. The first stage of the encoder contains a max 299

pooling layer and the first residual block, keeping the number 300

of channels unchanged and reducing the resolution by half. 301
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TABLE I

DETAILED CONFIGURATIONS OF THE ENCODER AND THE DECODER. C AND S IN BRACKETS REPRESENT CHANNEL AND SIZE, RESPECTIVELY. THE
INITIAL BLOCK OF THE ENCODER CONTAINS THE CONVOLUTION, BATCH NORMALIZATION, AND RELU LAYERS. THE 1ST STAGE OF THE

ENCODER CONTAINS THE MAX POOLING AND THE 1ST STAGE OF THE RESNET

Each subsequent stage reduces the resolution by half and302

doubles the number of channels. We adopt the transformer303

module refereed from [28] as the last stage of the encoders.304

In the transformer module, we design a three-layer 16-head305

self-attention module. Each layer includes a layer norm layer,306

a multihead self-attention (MSA) layer, a layer norm layer, and307

a multilayer perceptron (MLP) layer in sequence. We refer308

readers to [31] for more details about the transformer. The309

resolution of the final output of the encoder is 16 × 16, and310

the number of channels is 512. The detailed configurations311

of the encoder are displayed in Table I. The encoders can be312

denoted as (1), where the f (1,2)
fuse = fc and f (3,4,5)

fuse = fd .313

D. Decoder314

The decoder is designed to restore the feature map resolu-315

tion and produce the segmentation map. As aforementioned,316

we directly use the RTFNet decoder as our decoder. There317

are five stages in the decoder. Each decoder doubles the318

feature map resolution. The final resolution is the same as319

the input. A softmax layer is placed at the end to compute320

the probabilities of each pixel belonging to each class. The321

configurations are also displayed in Table I. This module is322

denoted as (6), where the L means the output of MAFNet323

L = Dcoder( f (Ri , Di )). (6)324

We detail the pipeline of MAFNet in pseudocode and the325

pseudocode is shown in Algorithm 3.326

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS327

A. Dataset328

We use the public Pothole-600 dataset [11] for the329

experiments. This dataset was recorded using a ZED stereo330

camera. Disparity images are provided by applying the331

PT-SRP algorithm [32] on the captured stereo images. There332

are in total 600 pairs of RGB and disparity images with333

the resolution of 400 × 400. Hand-labeled ground-truth seg-334

mentation masks are provided along with the images. In our335

experiments, we re-scale the image size to 512 × 512.336

We follow the image splitting scheme of [11]. The training337

set contains 240 pairs of RGB and disparity images. The338

validation and testing sets contain 180 pairs of images, respec-339

tively. We generate an augmented training set by flipping,340

rotating, and cropping the images of the original training set.341

The augmented training set contains 960 pairs of images. The342

details of the augmentation process is that we first flip the343

original training images along the x-axis to obtain a new344

Algorithm 3 Process of MAFNet
Data: RGB images R, disparity image D
Result: Semantic Segmentation Results L

1 FR ← R;
2 FD ← D;
3 for i ← 1 to 5 do // Encoder

4 FR ← g(i)
R (FR);

5 FD ← g(i)
D (FD);

6 if i ≤ 2 then
7 f f use = f F A

c // CAF Module;
8 else
9 f f use = f F A

d // DAF Module;
10 end
11 FR ← f f use(FR, FD);
12 end
13 L ← Decoder(FR) // Decoder;

set of 240 image pairs (Set A), and then flip the images of 345

Set A along the y-axis to get Set B. We randomly rotate 346

the 240 original training images from 0◦ to 10◦ to generate 347

the Set C. Finally, we randomly crop (within 50 pixels) the 348

images of Set C to generate the Set D. The augmented training 349

set is the union of Set A, Set B, Set C, and Set D. So the 350

total number of image pairs of the augmented training set 351

is 4× 240 = 960. The final training set is the union of the 352

original training set and the augmented training set. So there 353

are totally 240+ 960 = 1200 pairs of images for training. 354

B. Training Details 355

We implement our proposed MAFNet by using PyTorch. 356

Our MAFNet is trained on a PC with an Intel 3.6 GHz i7 CPU 357

and two NVIDIA RTX 3060 (12 GB GPU RAM) graphics 358

cards, but we only use one card to train the network. We test 359

our network inference speed on three different PCs. The first 360

one is the aforementioned NVIDIA RTX 3060 PC. The second 361

one is with an AMD R7 2.9 GHz CPU and a single NVIDIA 362

RTX 2060 (6 GB GPU RAM) graphics card. The third one is 363

with an Intel 3.6 GHz i7 CPU and two NVIDIA RTX 3090 364

(24GB GPU RAM) graphics cards. 365

We first create a baseline by replacing the last encoder of 366

RTFNet with a four-head transformer module, and replac- 367

ing the elementwise addition fusion of RTFNet with the 368

CAF-1F2A module. We train this baseline with the pretrained 369

weight of ResNet provided by PyTorch. Then, we train our 370
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TABLE II

ABLATION STUDY RESULTS (%) OF THE VARIANTS THAT ADOPT THE CAF-1A2F AND DAF-1A2F ON THE POTHOLE-600 TESTING SET. AF PREFIX
REPRESENTS THE CAF-1A2F AND THE DAF-1A2F ARE ADOPTED IN THE MODULES. NF PREFIX REPRESENTS THAT THERE IS ON FUSION

MODULE IN THE NETWORK. 1T4H REPRESENTS THAT THE TRANSFORMER MODULE HAS ONE LAYER AND FOUR ATTENTION HEADS IN

MSA. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH CLASS

MAFNet with the pretrained weight of this baseline. Specif-371

ically, we reuse the weight of the initial block, the first372

three stages of the encoders and all stages of the decoder of373

the baseline. We use the stochastic gradient descent (SGD)374

optimization function with the initial learning rate of 0.1 and375

the momentum of 0.9. The learning rate is decreased using the376

exponential strategy with the decay rate of 0.95. The training377

is stopped when the validation loss converges.378

C. Evaluation Metrics379

We employ four quantitative metrics that are used in to380

evaluate the semantic segmentation performance, the F-score381

(Fsc), the recall (Rec), the precision (Pre), and the intersection382

over union (IoU). They are calculated as follows:383

Fsc = 2× Rec× Pre

Rec+ Pre
(7)384

Rec = True Positives

True Positives+ False Negatives
(8)385

Pre = True Positives

True Positives+ False Positives
(9)386

IoU = True Positives

True Positives+ False Negatives+ False Positives
.387

(10)388

There are two classes (i.e., pothole and unlabelled back-389

ground) in the ground-truth images of the dataset. We calculate390

the Fsc, Rec, Pre, and IoU values for the two classes. The391

average values (denoted as mFsc, mRec, mPre, and mIoU)392

are the mean values over the two classes.393

D. Ablation Study394

1) Ablation on Data Fusion: In the ablation study, we first395

test MAFNet by removing the fusion module. We name this396

variant as NF-1T4H because it has No the proposed fusion 397

(NF) module. The fusion module is replaced with elementwise 398

addition. 1T4H means that in the transformer module there is 399

one transformer layer and four self-attention heads (1T4H). 400

As aforementioned, we design two structures for the fusion 401

modules CAF and DAF. We name the variants with AF prefix 402

when the CAF-1A2F and the DAF-1A2F are adopted in the 403

modules. Similarly, we name the variants with FA prefix when 404

the CAF-1F2A and the DAF-1F2A are adopted in the modules. 405

In MAFNet, the first two fusion modules are CAFs, and the 406

last three fusion modules are DAFs. So all the AF variants 407

include two CAF-1A2Fs and three DAF-1A2Fs, and all the 408

FA variants include two CAF-1F2As and three DAF-1F2As. 409

2) Ablation on the Transformer Module: For the trans- 410

former module, we try different numbers of transformer layers 411

and attention heads. As the number of layers increases, the 412

transformer module is expected to be more powerful, but 413

it also increases the number of module parameters, thereby 414

increases the time cost. So, the number of transformer layers is 415

not the more the better. To tradeoff the performance and speed, 416

the number of transformer layers is chosen from 1 to 5. The 417

more attention heads of MSA, the more information can be 418

extracted, but at the same time, it will make the network more 419

redundant, make the network larger, and reduce the inference 420

speed of the network. To tradeoff the performance and the 421

speed, the number of attention heads of MSA is not the more 422

the better. We design the number of attention heads of MSA 423

to be 4, 8, 16, and 32. For the naming, we take AF-3T8H 424

as an example, the name means that the transformer module 425

of the variant has three transformer layers and eight attention 426

heads. 427

3) Quantitative Results: Table II displays the results of 428

NF-1T4H and all the AF variants we designed on the testing 429
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TABLE III

ABLATION STUDY RESULTS (%) OF THE VARIANTS THAT ADOPT THE CAF-1F2A AND DAF-1F2A ON THE POTHOLE-600 TESTING SET. FA PREFIX
REPRESENTS THE CAF-1F2A AND THE DAF-1F2A ARE ADOPTED IN THE MODULES. NF PREFIX REPRESENTS THAT THERE IS ON FUSION

MODULE IN THE NETWORK. 1T4H REPRESENTS THAT THE TRANSFORMER MODULE HAS ONE LAYER AND FOUR ATTENTION HEADS IN

MSA. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH CLASS

set of the Pothole-600 dataset. We can see that the430

proposed fusion modules could generally improve the perfor-431

mance. The values for the background are close to 100% and432

similar between all the variants we designed. We conjecture433

the reason could be that background occupy most of the434

pixels in the images so that the networks learn well for the435

background.436

Table III displays the results for all of AF variants in437

Table III on the Pothole-600 testing set which contains438

180 pairs of images. From Table II, we can see that compared439

with the AF series variants in Table II, the best results of440

the FA series variants in Table II are concentrated on the441

FA-3T16H variant except the Pre of all classes and the Rec of442

the background and the pothole. The best Pre for background443

is 98.92%, for pothole is 92.04%, and for mPre is 95.02%. The444

best Rec for background is 99.31%, for pothole is 89.34%, and445

for mRec is 93.47%. The best Fsc for background is 98.69%,446

for pothole is 87.11%, and for mFsc is 92.90%. The best IoU447

for background is 97.41%, for pothole is 77.17%, and for448

mIoU is 87.29%.449

Comparing AF-4T8H with FA-3T16H, although the Rec450

result of FA-3T16H is slightly lower than the result of451

AF-4T8H, the result of IoU is much larger than that452

of AF-4T8H. Comparing the segmentation results of the453

two structures of FA-3T16H and AF-1T16H, the result of454

AF-1T16H is lower than the result of FA-3T16H in all455

evaluation metrics except the Rec of background and the Pre of456

background and mPre. The above results show that when the457

feature maps are fused by the CAF-1F2A and the DAF-1F2A,458

the final segmentation result is better and more stable.459

Tables II and III show that FA-3T16H generally has the460

best performance. So we use this variant in the following461

comparative study. This result is also in line with our intuitive462

understanding. Although the increase in the number of trans- 463

former layers can improve the learning ability of the entire 464

network, the amount of data we use is relatively small, which 465

may cause the network over-fitting during the learning process. 466

According to the results in Tables II and III, we can find that 467

the results do not increase monotonously with the increase 468

of the number of transformer layers. In MSA, more attention 469

heads can focus on more information. However, no matter 470

how many attention heads there are, the data length of all 471

information is fixed. In our network, the data length of all 472

attention heads is 1024. More attention heads means that 473

the length of the data representing a piece of information 474

is shorter, which makes them unable to fully express the 475

information. In other words, the less attention head means that 476

too long data is used to represent a feature information, which 477

is redundant and allows the network to extract less feature 478

information. In short, the appropriate number of transformer 479

layers and the number of attention heads are very important 480

for a good semantic segmentation result. 481

From all the experimental results, it can be seen that among 482

the variants with the same number of transformer layers and 483

self-attention heads, the results of the AF variants are inferior 484

to those of the FA variants. For example, the mIoU value 485

of FA-4T8H is higher than that of AF-4T8H. It shows that 486

the fusion schemes have a significant impact on the network 487

performance. We choose the best fusion scheme (i.e., the FA 488

structure) to design our MAFNet. 489

4) Inference Speed: We use the same testing set to test the 490

inference speed of all variants on the above three graphics 491

cards with the input resolution of 512 × 512. The inference 492

speed are displayed in Fig. 4 (using RTX 2060 graphics card), 493

Fig. 5 (using RTX 3060 graphics card), and Fig. 6 (using 494

RTX 3090 graphics card), respectively. In these figures, 1T 495
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TABLE IV

COMPARATIVE RESULTS (%) ON THE POTHOLE-600 TESTING SET. Methods REPRESENTS THE NAME OF THE NETWORKS. DLV3+ REPRESENTS
DEEPLABV3+. r, d AND 6c REPRESENT THAT THE NETWORKS ARE TRAINED AND TEST WITH ONLY RGB IMAGES, ONLY DISPARITY IMAGES,

AND BOTH RGB IMAGES AND DISPARITY IMAGES, RESPECTIVELY. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH

CLASS. THE DATA IN THE TABLE DIRECTLY PROVES THE SUPERIORITY OF OUR PROPOSED MAFNET

Fig. 4. Inference speed for each variant evaluated on RTX 2060. The figure
clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.

represents that there is one transformer layer in the transformer496

module. The number 4, 16, and 32 represent that there are 4,497

16, and 32 attention heads in MSA, respectively. AF represents498

that the CAF-1A2F and the DAF-1A2F are adopted in the499

network. FA represents that the CAF-1F2A and the DAF-1F2A500

are adopted in the network. Based on the measured discrete501

results, we fit the distribution of the inference time in 3-D502

space, which could be helpful to analyze the underlying pat-503

terns between different variants. In these figures, the discrete504

points are the true measured values, and the surface between505

the discrete points is interpolated. We use different colors to506

represent different inference time, and the time cost increases507

from blue to red.508

As we can see, all the variants exhibit a real-time inference509

speed on RTX 3060 (the fast speed is 21.58 ms from FA-1T4H510

and the slowest is 34.03 ms from AF-5T32H) and RTX 3090 511

(the fast speed is 14.91 ms from FA-1T4H and the slowest 512

is 23.79 ms from AF-5T32H), and an acceptable speed on 513

RTX 2060 (the fast speed is 52.56 ms from FA-1T4H and the 514

slowest is 78.48 ms from AF-5T32H). 515

These figures clearly demonstrate that increasing the num- 516

ber of attention heads for MSA in transformer only slightly 517

increases the inference time for one image. The line between 518

the measurement points of the variants with the same trans- 519

former is approximately parallel to the coordinate plane of the 520

attention head and the number of network layers, indicating 521

that the inference time of these variants is almost the same. 522

However, the increase in the number of layer of transformer 523

greatly increase the inference time. The color of the line 524

between the measurement points of the variants with the same 525

attention head changes sharply, indicating that the reasoning 526

time gap of these variants is huge. The inference speed 527

increases by the same amount when the transformer module 528

increases a layer. Compared with the CAF-1F2A and the 529

DAF-1F2A, the CAF-1A2F, and the DAF-1A2F require more 530

time cost to infer an image. 531

5) Number of Network Parameters: The number of a net- 532

work parameter could measure the size of a network. Accord- 533

ing to our observation, the number of parameters for the 534

variants satisfies the following: 535

P = Bi + n(L + h × H ) (11) 536

where the P represents the number of parameters of a network. 537

Bi represents the type of network, which is 37 409 156 for AF 538

variants, and is 36 969 444 for FA variants. n represents the 539

number of transformer layer. L represents the basic parameters 540
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Fig. 5. Inference speed for each variant evaluated on RTX 3060. The figure
clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.

Fig. 6. Inference speed for each variant evaluated on RTX 3090. The figure
clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.

of each transformer layer, which is 25 192 448. h represents541

the number of attention heads. H represents the increase of542

the parameter when an attention head is added, which is 8.543

We can see that the number of network parameters increases544

with the number of transformer layers and attention heads.545

E. Comparative Study546

We compare our proposed MAFNet with UNet++ [33],547

MA-Net [34], PSPNet [35], TransUNet [28],548

DeepLabv3+ [24], FuseNet [36], SegNet [37], RTFNet549

[13], MFNet [38], and AA-RTFNet [11] in this section. The550

comparison networks can be divided into two categories:551

single-modal networks and multimodal networks. To ensure552

fair comparisons, we train the single-modal networks with553

the three-channel RGB images, the three-channel disparity554

images and six-channel RGB-disparity images, respectively.555

The input layers of single-modal networks are modified to556

accommodate the six-channel RGB-disparity images. We use557

the implementations from the library2 for the single-modal558

networks except TransUNet, and use the implementation from559

the library3 for TransUNet. All parameters of the function560

adopt default values in the libraries. We also modify the561

one-channel encoder in FuseNet, RTFNet, and AA-RTFNet562

to accept the three-channel disparity images. All the networks563

are trained until the validation loss converges.564

2https://github.com/qubvel/segmentation_models.pytorch
3https://github.com/The-AI-Summer/self-attention-cv

TABLE V

INFERENCE SPEED FOR EACH NETWORK. THE NETWORKS ARE TESTED
WITH THE SAME TESTING SET ON RTX 2060, RTX 3060, AND

RTX 3090, RESPECTIVELY. DLV3+ REPRESENTS DEEPLABV3+.
ms REPRESENTS MILLISECOND AND FPS REPRESENTS THE

FRAME-PER-SECOND. WE USE SIX-CHANNEL DATA TO
TEST THE SINGLE-MODE NETWORKS

1) Overall Results: We display the quantitative comparative 565

results for all the networks in Table IV. As we can see, our 566

proposed MAFNet achieves the best results in terms of all the 567

metrics across all the networks, except the Rec values of the 568

background. The superiority of our MAFNet is demonstrated 569

by the comparative results. 570

From Table IV, we can see that the results for all the 571

single-modal networks trained with disparity images are better 572

than those trained with RGB images. This indicates that 573

disparity images are beneficial to the pothole segmenta- 574

tion. The second and third best networks are single-modal 575

DeepLabv3+ (DLV3+) and single-modal UNet++, both of 576

which are trained with six-channel RGB-disparity images. 577

Their performance is not only better than multimodal networks 578

but also better than themselves trained with three-channel 579

data. For the other networks, the results for the single-modal 580

networks trained with six-channel RGB-disparity images are 581

the best, compared with those trained alone with RGB images 582

or disparity images. It proves that using multimodal infor- 583

mation is effective to improve the performance. From the 584

results, we can find that our MAFNet significantly outperforms 585

RTFNet (higher by 2.5%) and AA-RTFNet (higher by 3.21%). 586

It shows that the transformer, CAF, and DAF in the encoder 587

have a significant impact on the performance of the network. 588

It should be denoted that AA-RTFNet is designed based on 589

RTFNet, and has achieved better results on the augmented 590

Pothole-600 dataset [11] than RTFNet. However, the 591

results for AA-RTFNet in our experiments are worse than 592

those of RTFNet. We think the reason could lie in the different 593

augmentation methods adopted in the two works. 594

2) Inference Speed: The inference running time is a crucial 595

evaluation metrics besides accuracy. We test these networks 596

with the same testing set on RTX 2060, RTX 3060, and 597

RTX 3090, respectively. To ensure fair comparison, we test 598

the single-modal networks with six-channel data. Table V 599

displays the average running time on the testing set. The input 600

images resolution is 512 × 512. According to Table V, our 601

MAFNet (FA-3T16H) exhibits a real-time inference speed on 602

RTX 3060 and RTX 3090, and an acceptable speed on RTX 603

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 28,2022 at 02:58:15 UTC from IEEE Xplore.  Restrictions apply. 



3523712 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Fig. 7. Sample qualitative demonstrations for the networks. Every column shows the results for different networks testing with the same RGB and disparity
images. The top three rows display the RGB images, disparity images, and the ground truth, respectively. Rows from the 3rd to the 9th show the experimental
results for RTFNet, MFNet, SegNet, FuseNet, AA-RTFNet, and our MAFNet on the Pothole-600 testing set. The comparative results shows that our proposed
network MAFNet generally exhibits better performance. The figure is best viewed in color.

2060. Although our inference speed is the slowest among all604

multimodal fusion networks, our segmentation performance605

is better than others. In addition, our inference speed is606

faster than the TransUNet that also uses the convolution and607

transformer structure.608

3) Qualitative Demonstrations: The qualitative demonstra-609

tions are displayed in Fig. 7. In general, our proposed MAFNet610

exhibits more accurate and robust segmentation performance611

than the others. In particular, our network significantly outper-612

forms the other networks on pothole edges. But there are still613

some false detected pixels on edges compared to the ground614

truth. We think the reason could be the multiple resolution615

reduction from 512 × 512 to 16 × 16 in the encoders, which616

leads to inappropriate edge spatial information for decoding. 617

This reason could be validated from that the edge segmentation 618

results of larger potholes are better than those of the small 619

potholes. As we can see from the columns 4, 5, and 7, the 620

smaller the potholes area, the less data are used for encoding 621

in the last layer of encoders, so that it is more difficult to 622

decode the edge information. 623

V. CONCLUSION 624

We proposed here a novel RGB-disparity fusion network for 625

road-pothole segmentation, in which two data-fusion modules 626

based on channel attention and dual attention were proposed. 627

To find better data-fusion module structures, the appropriate 628
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numbers of transformer layers, and attention heads, we tried629

a number of variants and evaluated their segmentation per-630

formance as well as the inference speed. We also compared631

our network with state-of-the-art single-modal and multimodal632

semantic segmentation networks. The experimental results633

demonstrate the superiority of our network.634

However, there still exist some limitations. First, our net-635

work can only run at a real-time inference speed on RTX636

3060 or better cards, which might be not suitable to be used637

on resource-constrained vehicles. This could be alleviated by638

using lightweight technologies, such as knowledge distillation639

or model compression. Second, the edge information might640

be ignored due to excessive downsampling in the encoder.641

We will use skip connections to introduce the feature maps642

from the encoder to the same level of the decoder to reduce643

the information loss. At the same time, edge features will also644

be learned by introducing a new loss function.645
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