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Abstract—Road potholes can cause discomforts to passengers
and even traffic accidents to vehicles. Accurate segmentation
of road potholes is an important capability for autonomous
vehicles to ensure safe driving. Some methods on road-pothole
segmentation use single-modal data (i.e., RGB images). The main
challenge faced by these methods is that the visual appearance
of road potholes is often close to road areas, making these
networks difficult to distinguish them. Recent methods resort
to fusing RGB images with depth/disparity images for pothole
segmentation. However, their performance is still not satisfactory
in real-world applications. To achieve superior results, this
article proposes a novel data fusion network for road-pothole
segmentation, where a channel attention fusion module and a
dual attention fusion (DAF) module are designed to hierarchically
fuse the RGB and disparity data. We evaluate our proposed
network using a public dataset, and the experimental results
demonstrate the superiority over the state-of-the-art networks.

Index Terms— Attention mechanism, autonomous vehicles,
RGB-disparity fusion, road potholes, semantic segmentation.

I. INTRODUCTION

OAD pothole is a kind of negative obstacles that lie
below the road surface. It usually appears after long-term
use of roads without timely maintenance. The existence of
road potholes is a potential threat to road users. It can cause
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bumps and discomforts to passengers. When vehicle speed is
fast, it can even cause severe accidents, such as rollover to
vehicles [1]. To alleviate the negative effects caused by road
potholes, vehicles are often equipped with damping systems to
reduce the vibrations [2]. However, adding damping systems
is just a kind of remedial measures. To get alerts for road
potholes in advance, it is necessary to detect or segment
the potholes using vehicle-mounted sensors. Currently, many
effective methods have been proposed using various sensors,
such as visual camera [3], thermal camera [4], RGB-D cam-
era [5], and Lidar [6].

In the field of using visual sensors, RGB images, disparity
images, and depth images have been adopted in existing
road-pothole segmentation methods. Each modal of data has
its own advantages and disadvantages [7]. For example, RGB
images contain rich visual texture information, but not robust
to illumination conditions [8]. Methods using only RGB
images could be degraded in darkness [9]. Disparity and depth
images encode distance information, but cannot provide visual
information. Fusing multimodal data could take advantages of
each modal of data and has been proven to produce better
performance in previous work [10].

However, the existing multimodal methods still cannot pro-
vide satisfactory performance in real-world applications. Seg-
menting potholes by fusing RGB images and disparity images
has been proven to achieve satisfactory performance [11].
However, there are currently few studies on pothole seg-
mentation by fusing RGB and disparity images. Existing
algorithms perform unsatisfactorily, especially at the edges
of potholes. We guess that this is mainly caused by the
limitation of convolutional feature extraction and inappropriate
fusion of the two modals of data. To achieve superior results,
we propose a novel deep neural network that fuses RGB
images and disparity images for road-pothole segmentation in
this work. We replace the final stages of both encoders with
a transformer, extracting more edge information through the
multihead self-attention model. We design two kinds of fusion
modules in the encoders based on channel attention and dual
attention to fuse the two modals of data. Attention modules
can focus the network on useful information and weaken
useless information. Channel attention is used to adjust the
weights between feature maps. Dual attention includes channel
attention and spatial attention, where spatial attention is used
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to adjust the weights between different data in feature maps.
We evaluate and compare our network with the state of the arts
on a public dataset Pothole-600 [11]. The contributions of
this work are summarized as follows.

1) We propose a novel road-pothole segmentation network!
by fusing RGB and disparity images, which integrates
convolutional layers and transformer modules.

2) We adopt two data fusion modules in encoders based
on channel attention and dual attention, and verify the
effectiveness through ablation studies.

The remainder of this article is structured as follows.
Section I presents a review for related work. Section III
describes the details of our network. Section IV discusses the
experimental results. The last section concludes this article and
presents several promising research directions for future work.

II. RELATED WORK

This section reviews related works on road-pothole seg-
mentation and detection. We classify them into single-modal
methods that use only RGB images, and multimodal methods
that fuse RGB and other modality of data. Since many related
works detect road cracks that are also negative obstacles, they
are also reviewed here.

A. Single-Modal Methods

Zhang et al. [14] proposed a crack detection method based
on convolutional neural network (CNN). This method divides
an image into subimage blocks and classifies each sub-image
block into cracks and noncrack regions. Pereira ef al. [15]
designed a classification-based CNN architecture to achieve
pothole detection. They used four convolutions and pooling
layers, as well as a fully-connected layer. The model can detect
potholes under dry, humid, and dark conditions with various
sizes and shapes. Mei and Gul [16] designed ConnCrack com-
bining conditional Wasserstein generative adversarial network
(cWGAN) and connectivity maps. The cWGAN is used for
training, consisting of two separate neural networks called
generator and discriminator, and the connectivity maps are
used to resolve the scattered output caused by the deconvolu-
tion layers. Anand et al. [17] designed an autonomous crack
and pothole detection system based on texture features. They
removed the last convolutional layer of SqueezeNet [18] and
added an encoding layer.

Mandal et al. [19] used YOLOV2 [20] to detect road cracks.
In order to speed up training and improve the perfor-
mance, they used transfer learning and froze the weights of
ResNet-101 and RPN pre-trained on the COCO dataset. Suong
and Kwon [21] also proposed a network based on YOLOvV2
to detect potholes. They designed two architectures. The first
one is based on the Darknet architecture of YOLOv2, which
contains 31 layers, and another is based on the first one,
attempting to reduce the computational costs and model size.

Dhiman and Klette [22] proposed two deep learning-based
pothole detection methods, using stereo vision to estimate
the 3-D point cloud information of the environment, and

The code is available at https:/github.com/lab-sun/MAFNet
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further analyzing the road environments in front of the vehicle.
Masihullah ef al. [23] adopted few-shot learning approach and
introduced the channel attention module to DeepLabv3-+ [24]
to realize the segmentation of potholes in RGB images.

B. Multimodal Methods

In addition to RGB images, other data, such as thermal
images and depth images, are also used for pothole and
crack detection. Bhatia et al. [25] designed a CNN based on
a residual network, which takes as input thermal images
to detect potholes. Beckman ef al. [26] proposed a method
based on a faster region-based CNN (Faster R-CNN) to
detect concrete spalling damages with RGB and depth data.
Multimodal information fusion brings better segmentation
results, so Pan et al. [27] fused multispectral images obtained
by unmanned aerial vehicle to detect potholes and cracks on
asphalt roads. Fan ef al. [11] proposed AA-RTFNet based on
RTFNet to fuse the RGB images and disparity images to
segment the pothole. They introduced an attention module
in the skip-connection between the encoder and the decoder.
They also released the Pothole-600 dataset that contains
600 pairs of RGB and disparity images.

C. Difference From Existing Work

Our work lies in the category of multimodal methods.
A major issue of existing methods, such as AA-RTFNet [11],
is that they do not perform well on the edges of potholes.
We conjecture that the reasons are using only the convolutional
layers to extract features, as well as using the simple elemen-
twise addition for fusion. Our MAFNet builds on RTFNet,
but has the following differences. First, we believe that the
multihead self-attention model in transformer could better
preserve edge information. So, we replace the last stage of
the RTFNet encoder with a transformer module. Second,
we add a channel attention and a spatial attention for feature
fusion instead of directly elementwise adding the two feature
maps from the two modals of data. Although AA-RTFNet
and our MAFNet both build on RTFNet, our network differs
from AA-RTFNet that we introduce the attention module into
encoders instead of between encoders and decoder.

III. PROPOSED NETWORK
A. Overall Architecture

We propose a new network called multimodal attention
fusion network (MAFNet) for road-pothole segmentation.
Fig. 1 shows the overall architecture.

We develop our network based on RTFNet [13]. So,
MAFNet also follows the two-encoders-one-decoder para-
digm, where both the two encoders have the same initial
block and four stages. We define the input set for encoders
as {(R;, D))|R;, D; e RE>W>3 i =1, .. M}, where M rep-
resents the number of images. We employ ResNet-34 [12]
as the backbone of the encoders, and replace the fourth
stage of the backbone with a transformer module borrowed
from [28]. We call the initial block, Ist, 2nd, and 3rd stages
of ResNet-34 as the initial block, 1st, 2nd, and 3rd stages
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Fig. 1.

Overall architecture of our proposed MAFNet. There are two five-stage encoders and one five-stage decoder, which are the RGB encoder, disparity

encoder, and decoder. We change the last stage of ResNet [12] to the transformer module. The disparity feature maps extracted from the initial block and
the first stage of the encoder are fused into the RGB encoder through the CAF module. The disparity feature maps extracted from the last three stages are
fused into the RGB encoder through the DAF module. For the decoder, we directly borrow the decoder from RTFNet [13] as our decoder. The images in the
dataset are captured by a ZED stereo camera. The figure is best viewed in color.

of our encoder respectively, and the final transformer module
as the 4th stage of the encoder. The encoders are designed to
extract feature maps from the input RGB and disparity images.
We denote the nth stage of the RGB encoder and the disparity
encoder as gg')(R,-) and ggl) (D;), respectively. In the fusion
part, first, the RGB feature maps and the disparity feature
maps are fused by elementwise addition, and the preliminary
fusion result is obtained. This preliminary fusion result has
the same dimension as the feature map. Then, the attention
model is used to adjust the weight between different feature
information for this preliminary fusion result, and the final
fusion result is obtained. The final fusion result has the same
dimension as the original feature map. The first two stages
of fusion use the channel attention model, and the last three
stages of fusion use the dual-attention model. The feature
maps extracted by the initial blocks, and the first stages
of the encoders are respectively fused using our proposed
channel attention-based fusion module. We denote the nth
fusion module as ffgéi(gg’)(Ri), gg’) (D;)). The feature maps
extracted by the last three stages of the encoders are fused
using our proposed dual attention-based fusion module. The
final fused output of the two encoders is fed into the decoder.
The encoder can be denoted as (1), shown at the bottom of the
page. The decoder is used to restore the feature map resolution
and generate the segmentation map. We directly borrow the
RTFNet decoder [13] as our decoder.

B. Fusion Modules

To fuse the RGB and disparity data, we design two types of
fusion modules respectively based on channel attention [29]
and dual attention [30]. So, they are named as channel atten-
tion fusion (CAF) module and dual attention fusion (DAF)

H

s

o) Element-Wise ® Element-Wise
Multiplication Addition

— Data Flow l Fully Connected Layer
l Relu
J siomoid

I Batch Normalization

l Global Average Pool

Fig. 2. Structures of the two kinds of CAF module. (a) Structures of
CAF-1A2F, which adopted from [11]. (b) Structures of CAF-1F2A. The figure
is best viewed in color.

module. We denote them as f, and f;. For each module, we try
two kinds of architectures to choose the better one.

1) CAF Module: Fig. 2 shows the two kinds of archi-
tectures of our proposed CAF module, which are named as
CAF-1st-Attention-2nd-Fusion (CAF-1A2F, denoted as fAF)
and CAF-1st-Fusion-2nd-Attention (CAF-1F2A, denoted as
fCFA). In CAF-1A2F, the feature maps from the two modals
are first weighted by channel attention networks, and then the
weighted feature maps are fused via elementwise addition.
On the contrary, in CAF-1F2A, the feature maps are first fused
via elementwise addition, then weighted by a channel attention
network. We adopt the channel attention model in the encoder
to fuse two modalities and discuss the positional relationship
between the attention model and the fusion of elementwise
summation through two different structures (CAF-1A2F and
CAF-1F2A).

The channel attention networks are shown in Fig. 2.
In CAF-1A2F, we first employ a global average pool to
calculate the average value of the feature maps from the
two channels. Then, two fully connected layers are used to

(k0 = 7 1 (o (R R0 5 00) 5 D). 55 00) g
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Fig. 3.  Structures of the two kinds of DAF modules. (a) Structures of

DAF-1A2F, which adopted from [11]. (b) Structures of DAF-1F2A. (c) Struc-
ture of the DA module. The figure is best viewed in color.

get the weighting factor from the average value. There is a
batch normalization layer and a ReLU activation layer after
the first fully connected layer. The input channels of the first
fully connected layer is 64 and the output channels of the
first fully connected layer is 32. There is a Sigmoid function
after the second fully connected layer, which ensures the
output weighting value ranging from O to 1. The second fully
connected layer restores the number of channels from 32 to
64. We denote this process as w(X;). The two input feature
maps are respectively weighted by the two weighting factors
via elementwise multiplication. Finally, the weighted feature
maps are fused by elementwise addition. CAF-1F2A adopts
the same attention network as CAF-1A2F, but CAF-1F2A first
fuses the two input feature maps, and then feed the fused
result to the attention network. foAF and fCFA are calculated as
follows:

FAF = W(Ri, w(R)) & W(Di, w(Dy)) )
A = W(R; ® D;, w(R; ® D;)) 3)

where the @ means the elementwise summation, C,y,, =
Ajx + Bjr,j € 1,2,...,n,k € 1,2,...,m. The W(A,b)
means the elementwise multiplication, W(A,xm,b) =
Aj xb,jel,2,...,nkel,2, ... ,m.

We take the CAF-1F2A structure as an example to introduce
the process of CAF in detail through the pseudocode of this
module. The pseudocode is shown in Algorithm 1.

2) DAF Module: Similar as the CAF module, we also
have DAF-1st-Attention-2nd-Fusion (DAF-1A2F, denoted as
f:AF)y and DAF-1st-Fusion-2nd-Attention (DAF-1F2A, denoted
as fM), which are illustrated in Fig. 3. We adopt the dual
attention model in the encoder to fuse the two modalities
and discuss the positional relationship between the attention
model and the fusion of elementwise summation through two
different structures (DAF-1A2F and DAF-1F2A). In the DAF
module, we adopt a dual attention (DA) module [30], which
includes a spatial matrix operation (denoted as f;) and a
channel matrix operation (denoted as f.). The spatial matrix
operation resizes the shape of feature maps from C x H x W
to (H x W) x (H x W), and the channel matrix operation
resizes the shape of feature maps from C x H x W to
C x C, where C represents the number of channels of the
feature map, H represents the height of the feature map, and
W represents the width of the feature map.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Algorithm 1 Process of CAF-1F2A ( fCF A)

Data: RGB feature maps Fp, disparity feature maps Fp
Result: Fusion result Q

1 Ffuse <~ Fr @ Fp;

2 WFA = w(Ffuse)§

3 Frew = W(Ffuse> wFA);

4 Q < Fnew;

Algorithm 2 Process of DAF-1F2A ( de )

Data: RGB feature maps Fp, disparity feature maps Fp
Result: Fusion result Q
1 Ffuse <~ Fr ® Fp;
2 Fc = chA(Ffuse)
3 F = stA (Fruse)
4 Frew = F: © F;;
5 Q < Fnew;

// channel attention;
// spatial attention;

Fig. 3(c) shows the structure of the DA module. There
are mainly two branches in the DA module. Each branch
consists of three sub-branches. In the first main branch, the
input features are first fed into a 3 x 3 convolution layer
that keeps the number of channels unchanged, and then the
processed feature map is fed into three sub-branches. In the
bottom sub-branch of the first main branch, a new feature
map is obtained through the channel matrix operation. Then
the new feature map is fused with the feature map from the
middle sub-branch by matrix multiplication. The fused feature
map is then elementwise added with the feature map from the
top sub-branch to produce the final output. The second main
branch is similar to the first main branch, except that there
is the spatial matrix operation instead of the channel matrix
operation. Finally, the outputs from the two main branches are
fused via elementwise addition to produce the final output. The
process can be denoted as f; = f. @ f;. We refer readers to
this article [30] for more details of the DA module. £/ and

dF A are calculated as follows:
M= fa(R) ® fa(Di) 4)
0= fa(R; @ D). )

We take the DAF-1F2A structure as an example to introduce
the process of DAF in detail through the pseudocode of this
module. The pseudocode is shown in Algorithm 2.

C. Encoders

The RGB and disparity encoders share the same archi-
tecture. As aforementioned, we adopt ResNet-34 [12] as
the encoder backbone, and replace the 4th stage of ResNet
with the transformer module. There is a 7 x 7 three-channel
convolutional layer, a batch normalization layer, and a ReLU
activation layer in the initial block. The initial block reduces
the resolution by half and increases the number of channels
from 3 to 64. The first stage of the encoder contains a max
pooling layer and the first residual block, keeping the number
of channels unchanged and reducing the resolution by half.
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TABLE I

DETAILED CONFIGURATIONS OF THE ENCODER AND THE DECODER. C AND S IN BRACKETS REPRESENT CHANNEL AND SIZE, RESPECTIVELY. THE
INITIAL BLOCK OF THE ENCODER CONTAINS THE CONVOLUTION, BATCH NORMALIZATION, AND RELU LAYERS. THE 1ST STAGE OF THE
ENCODER CONTAINS THE MAX POOLING AND THE 1ST STAGE OF THE RESNET

Encoder Decoder
initial block 1st stage 2nd stage 3rd stage  4th stage Ist stage  2nd stage 3rd stage 4th stage Sth stage
input(C) 3 64 64 128 256 512 256 128 64 32
output(C) 64 64 128 256 512 256 128 64 32 2
input(S) 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256
output(S) 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 512 x 512

Each subsequent stage reduces the resolution by half and
doubles the number of channels. We adopt the transformer
module refereed from [28] as the last stage of the encoders.
In the transformer module, we design a three-layer 16-head
self-attention module. Each layer includes a layer norm layer,
a multihead self-attention (MSA) layer, a layer norm layer, and
a multilayer perceptron (MLP) layer in sequence. We refer
readers to [31] for more details about the transformer. The
resolution of the final output of the encoder is 16 x 16, and
the number of channels is 512. The detailed configurations
of the encoder are displayed in Table I. The encoders can be
denoted as (1), where the f~(l’2) = f. and f~(3’4’5) = fa.

fuse fuse

D. Decoder

The decoder is designed to restore the feature map resolu-
tion and produce the segmentation map. As aforementioned,
we directly use the RTFNet decoder as our decoder. There
are five stages in the decoder. Each decoder doubles the
feature map resolution. The final resolution is the same as
the input. A softmax layer is placed at the end to compute
the probabilities of each pixel belonging to each class. The
configurations are also displayed in Table I. This module is
denoted as (6), where the L means the output of MAFNet

L= Dcoder(f(Ria D,)) (6)

We detail the pipeline of MAFNet in pseudocode and the
pseudocode is shown in Algorithm 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Dataset

We use the public Pothole-600 dataset [11] for the
experiments. This dataset was recorded using a ZED stereo
camera. Disparity images are provided by applying the
PT-SRP algorithm [32] on the captured stereo images. There
are in total 600 pairs of RGB and disparity images with
the resolution of 400 x 400. Hand-labeled ground-truth seg-
mentation masks are provided along with the images. In our
experiments, we re-scale the image size to 512 x 512.

We follow the image splitting scheme of [11]. The training
set contains 240 pairs of RGB and disparity images. The
validation and testing sets contain 180 pairs of images, respec-
tively. We generate an augmented training set by flipping,
rotating, and cropping the images of the original training set.
The augmented training set contains 960 pairs of images. The
details of the augmentation process is that we first flip the
original training images along the x-axis to obtain a new

Algorithm 3 Process of MAFNet
Data: RGB images R, disparity image D
Result: Semantic Segmentation Results L
1 Fr < R;
2 Fp < D;
3fori < 1to5do// Encoder

4 | Fp <« gg)(FR);

5 | Fp < gg)(FD);

6 | if i <2 then

7 | Sruse = fCFA // CAF Module;
8 | else

9 | fruse = f[* // DAF Module;
10 | end

11 FR <~ ffuse(FRa FD);

12 end

13 L < Decoder(Fg) // Decoder;

set of 240 image pairs (Set A), and then flip the images of
Set A along the y-axis to get Set B. We randomly rotate
the 240 original training images from 0° to 10° to generate
the Set C. Finally, we randomly crop (within 50 pixels) the
images of Set C to generate the Set D. The augmented training
set is the union of Set A, Set B, Set C, and Set D. So the
total number of image pairs of the augmented training set
is 4x 240 = 960. The final training set is the union of the
original training set and the augmented training set. So there
are totally 240 4+ 960 = 1200 pairs of images for training.

B. Training Details

We implement our proposed MAFNet by using PyTorch.
Our MAFNet is trained on a PC with an Intel 3.6 GHz i7 CPU
and two NVIDIA RTX 3060 (12 GB GPU RAM) graphics
cards, but we only use one card to train the network. We test
our network inference speed on three different PCs. The first
one is the aforementioned NVIDIA RTX 3060 PC. The second
one is with an AMD R7 2.9 GHz CPU and a single NVIDIA
RTX 2060 (6 GB GPU RAM) graphics card. The third one is
with an Intel 3.6 GHz i7 CPU and two NVIDIA RTX 3090
(24GB GPU RAM) graphics cards.

We first create a baseline by replacing the last encoder of
RTFNet with a four-head transformer module, and replac-
ing the elementwise addition fusion of RTFNet with the
CAF-1F2A module. We train this baseline with the pretrained
weight of ResNet provided by PyTorch. Then, we train our
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TABLE II

ABLATION STUDY RESULTS (%) OF THE VARIANTS THAT ADOPT THE CAF-1A2F AND DAF-1A2F ON THE POTHOLE-600 TESTING SET. AF PREFIX
REPRESENTS THE CAF-1A2F AND THE DAF-1A2F ARE ADOPTED IN THE MODULES. NF PREFIX REPRESENTS THAT THERE IS ON FUSION
MODULE IN THE NETWORK. /T4H REPRESENTS THAT THE TRANSFORMER MODULE HAS ONE LAYER AND FOUR ATTENTION HEADS IN
MSA. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH CLASS

Background Pothole
Variants Pre Rec Fsc IoU Pre Rec Fsc IoU mPre mRec mFsc mloU
NF-1T4H 97.99 99.31 98.65 97.33 92.04 79.71 85.43 74.57 95.02 89.51 92.04 85.95
AF-1T4H 98.65 98.48 98.56 97.17 85.06 86.57 85.81 75.15 91.86 92.52 92.19 86.16
AF-1T8H 98.36 98.41 98.39 96.82 84.10 83.62 83.86 72.20 91.23 91.02 91.12 84.51
AF-1T16H 98.44 98.83 98.63 97.31 87.84 84.38 86.08 75.56 93.14 91.61 92.36 86.43
AF-1T32H 98.56 98.52 98.54 97.12 85.32 85.64 85.48 74.64 91.94 92.08 92.01 85.88
AF-2T4H 98.65 98.02 98.33 96.72 81.46 86.59 83.94 72.33 90.05 92.31 91.14 84.53
AF-2T8H 98.75 98.23 98.49 97.03 83.24 87.64 85.38 74.49 91.00 92.93 91.94 85.76
AF-2T16H 98.73 98.34 98.53 97.11 84.05 87.33 85.66 74.92 91.39 92.84 92.10 86.01
AF-2T32H 98.38 98.84 98.61 97.25 87.82 83.73 85.73 75.02 93.10 91.28 92.17 86.13
AF-3T4H 98.75 98.33 98.54 97.12 84.03 87.62 85.78 75.11 91.39 92.97 92.16 86.12
AF-3T8H 98.42 98.63 98.53 97.09 86.06 84.18 85.11 74.08 92.24 91.41 91.82 85.59
AF-3T16H 98.53 98.48 98.50 97.05 84.89 85.33 85.11 74.08 91.71 91.90 91.81 85.56
AF-3T32H 98.54 98.41 98.48 97.00 84.37 85.48 84.93 73.80 91.46 91.95 91.70 85.40
AF-4T4H 98.44 98.32 98.38 96.81 83.44 84.49 83.96 72.36 90.94 91.41 91.17 84.59
AF-4T8H 98.97 98.01 98.49 97.02 81.92 89.82 85.69 74.96 90.45 93.92 92.09 85.99
AF-4T16H 98.85 97.89 98.37 96.79 80.83 88.60 84.54 73.22 89.84 93.25 91.45 85.00
AF-4T32H 98.44 98.55 98.50 97.04 85.41 84.40 84.90 73.76 91.92 91.48 91.70 85.40
AF-5T4H 98.58 98.46 98.52 97.08 84.82 85.81 85.31 74.38 91.70 92.13 91.91 85.73
AF-5T8H 98.69 97.63 98.16 96.38 78.65 87.09 82.65 70.44 88.67 92.36 90.41 83.41
AF-5T16H 98.46 98.24 98.35 96.75 82.84 84.65 83.73 72.02 90.65 91.45 91.04 84.39
AF-5T32H 98.82 97.96 98.39 96.83 81.31 88.36 84.69 73.44 90.07 93.16 91.54 85.14

MAFNet with the pretrained weight of this baseline. Specif-
ically, we reuse the weight of the initial block, the first
three stages of the encoders and all stages of the decoder of
the baseline. We use the stochastic gradient descent (SGD)
optimization function with the initial learning rate of 0.1 and
the momentum of 0.9. The learning rate is decreased using the
exponential strategy with the decay rate of 0.95. The training
is stopped when the validation loss converges.

C. Evaluation Metrics

We employ four quantitative metrics that are used in to
evaluate the semantic segmentation performance, the F-score
(Fsc), the recall (Rec), the precision (Pre), and the intersection
over union (IoU). They are calculated as follows:
2 x Rec x Pre

Fsc = (7)
Rec + Pre
True Positives
Rec = — - (8)
True Positives + False Negatives
True Positives
Pre = — — 9
True Positives + False Positives
True Positives
IoU =

True Positives + False Negatives + False Positives -
(10)

There are two classes (i.e., pothole and unlabelled back-
ground) in the ground-truth images of the dataset. We calculate
the Fsc, Rec, Pre, and IoU values for the two classes. The
average values (denoted as mFsc, mRec, mPre, and mloU)
are the mean values over the two classes.

D. Ablation Study

1) Ablation on Data Fusion: In the ablation study, we first
test MAFNet by removing the fusion module. We name this

variant as NF-1T4H because it has No the proposed fusion
(NF) module. The fusion module is replaced with elementwise
addition. 1T4H means that in the transformer module there is
one transformer layer and four self-attention heads (1T4H).
As aforementioned, we design two structures for the fusion
modules CAF and DAF. We name the variants with AF prefix
when the CAF-1A2F and the DAF-1A2F are adopted in the
modules. Similarly, we name the variants with FA prefix when
the CAF-1F2A and the DAF-1F2A are adopted in the modules.
In MAFNet, the first two fusion modules are CAFs, and the
last three fusion modules are DAFs. So all the AF variants
include two CAF-1A2Fs and three DAF-1A2Fs, and all the
FA variants include two CAF-1F2As and three DAF-1F2As.
2) Ablation on the Transformer Module: For the trans-
former module, we try different numbers of transformer layers
and attention heads. As the number of layers increases, the
transformer module is expected to be more powerful, but
it also increases the number of module parameters, thereby
increases the time cost. So, the number of transformer layers is
not the more the better. To tradeoff the performance and speed,
the number of transformer layers is chosen from 1 to 5. The
more attention heads of MSA, the more information can be
extracted, but at the same time, it will make the network more
redundant, make the network larger, and reduce the inference
speed of the network. To tradeoff the performance and the
speed, the number of attention heads of MSA is not the more
the better. We design the number of attention heads of MSA
to be 4, 8, 16, and 32. For the naming, we take AF-3T8H
as an example, the name means that the transformer module
of the variant has three transformer layers and eight attention
heads.
3) Quantitative Results: Table II displays the results of
NF-1T4H and all the AF variants we designed on the testing
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TABLE III

ABLATION STUDY RESULTS (%) OF THE VARIANTS THAT ADOPT THE CAF-1F2A AND DAF-1F2A ON THE POTHOLE-600 TESTING SET. FA PREFIX
REPRESENTS THE CAF-1F2A AND THE DAF-1F2A ARE ADOPTED IN THE MODULES. NF PREFIX REPRESENTS THAT THERE IS ON FUSION
MODULE IN THE NETWORK. /T4H REPRESENTS THAT THE TRANSFORMER MODULE HAS ONE LAYER AND FOUR ATTENTION HEADS IN
MSA. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH CLASS

Background Pothole
Variants Pre Rec Fsc ToU Pre Rec Fsc ToU mPre mRec mFsc mioU
NE-1T4H 97.99 99.31 98.65 97.33 92.04 79.71 85.43 74.57 95.02 89.51 92.04 85.95
FA-1T4H 98.33 98.75 98.54 97.13 87.02 83.31 85.13 74.10 92.68 91.03 91.83 85.62
FA-1T8H 98.54 98.33 98.44 96.92 83.69 85.50 84.58 73.29 91.12 91.92 91.51 85.10
FA-1T16H 98.92 97.43 98.17 96.40 77.68 89.34 83.11 71.09 88.30 93.39 90.64 83.75
FA-1T32H 98.65 98.29 98.47 96.99 83.54 86.59 85.04 73.97 91.09 92.44 91.75 85.48
FA-2T4H 98.82 98.14 98.48 97.00 82.63 88.32 85.38 74.49 90.72 93.23 91.93 85.75
FA-2T8H 98.26 98.97 98.61 97.26 88.89 82.52 85.59 74.81 93.57 90.74 92.10 86.03
FA-2T16H 98.56 98.02 98.29 96.64 81.29 85.74 83.45 71.61 89.93 91.88 90.87 84.12
FA-2T32H 98.40 98.63 98.51 97.07 85.98 83.99 84.97 73.87 92.19 91.31 91.74 85.47
FA-3T4H 98.65 97.90 98.28 96.61 80.57 86.65 83.50 71.67 89.61 92.28 90.89 84.14
FA-3T8H 98.13 98.90 98.51 97.06 88.08 81.16 84.48 73.12 93.10 90.03 91.49 85.09
FA-3T16H 98.83 98.54 98.69 97.41 85.88 88.39 87.11 7717 92.35 93.47 92.90 87.29
FA-3T32H 98.49 98.25 98.37 96.80 82.99 85.00 83.98 72.39 90.74 91.63 91.18 84.59
FA-4T4H 98.66 98.38 98.52 97.08 84.26 86.70 85.46 74.62 91.46 92.54 91.99 85.85
FA-4T8H 98.40 98.87 98.63 97.30 88.13 83.92 85.97 75.40 93.26 91.39 92.30 86.35
FA-4T16H 98.73 98.52 98.63 97.29 85.58 87.41 86.48 76.18 92.16 92.97 92.56 86.74
FA-4T32H 98.48 98.35 98.41 96.88 83.77 84.82 84.29 72.85 91.12 91.58 91.35 84.86
FA-5T4H 98.60 98.58 98.59 97.22 85.85 86.05 85.95 75.36 92.23 92.31 92.27 86.20
FA-5T8H 98.53 98.70 98.61 97.26 86.79 85.30 86.04 75.50 92.66 92.00 92.33 86.38
FA-5T16H 98.33 98.96 98.65 97.33 88.96 83.28 86.03 75.48 93.65 91.12 92.34 86.41
FA-5T32H 98.70 98.34 98.52 97.08 84.01 87.07 85.51 74.69 91.35 92.70 92.01 85.88

set of the Pothole-600 dataset. We can see that the
proposed fusion modules could generally improve the perfor-
mance. The values for the background are close to 100% and
similar between all the variants we designed. We conjecture
the reason could be that background occupy most of the
pixels in the images so that the networks learn well for the
background.

Table III displays the results for all of AF variants in
Table III on the Pothole-600 testing set which contains
180 pairs of images. From Table II, we can see that compared
with the AF series variants in Table II, the best results of
the FA series variants in Table II are concentrated on the
FA-3T16H variant except the Pre of all classes and the Rec of
the background and the pothole. The best Pre for background
is 98.92%, for pothole is 92.04%, and for mPre is 95.02%. The
best Rec for background is 99.31%, for pothole is 89.34%, and
for mRec is 93.47%. The best Fsc for background is 98.69%,
for pothole is 87.11%, and for mFsc is 92.90%. The best loU
for background is 97.41%, for pothole is 77.17%, and for
mloU is 87.29%.

Comparing AF-4T8H with FA-3T16H, although the Rec
result of FA-3T16H is slightly lower than the result of
AF-4T8H, the result of IoU is much larger than that
of AF-4T8H. Comparing the segmentation results of the
two structures of FA-3T16H and AF-1T16H, the result of
AF-1T16H is lower than the result of FA-3T16H in all
evaluation metrics except the Rec of background and the Pre of
background and mPre. The above results show that when the
feature maps are fused by the CAF-1F2A and the DAF-1F2A,
the final segmentation result is better and more stable.

Tables II and III show that FA-3T16H generally has the
best performance. So we use this variant in the following
comparative study. This result is also in line with our intuitive

understanding. Although the increase in the number of trans-
former layers can improve the learning ability of the entire
network, the amount of data we use is relatively small, which
may cause the network over-fitting during the learning process.
According to the results in Tables II and III, we can find that
the results do not increase monotonously with the increase
of the number of transformer layers. In MSA, more attention
heads can focus on more information. However, no matter
how many attention heads there are, the data length of all
information is fixed. In our network, the data length of all
attention heads is 1024. More attention heads means that
the length of the data representing a piece of information
is shorter, which makes them unable to fully express the
information. In other words, the less attention head means that
too long data is used to represent a feature information, which
is redundant and allows the network to extract less feature
information. In short, the appropriate number of transformer
layers and the number of attention heads are very important
for a good semantic segmentation result.

From all the experimental results, it can be seen that among
the variants with the same number of transformer layers and
self-attention heads, the results of the AF variants are inferior
to those of the FA variants. For example, the mloU value
of FA-4T8H is higher than that of AF-4T8H. It shows that
the fusion schemes have a significant impact on the network
performance. We choose the best fusion scheme (i.e., the FA
structure) to design our MAFNet.

4) Inference Speed: We use the same testing set to test the
inference speed of all variants on the above three graphics
cards with the input resolution of 512 x 512. The inference
speed are displayed in Fig. 4 (using RTX 2060 graphics card),
Fig. 5 (using RTX 3060 graphics card), and Fig. 6 (using
RTX 3090 graphics card), respectively. In these figures, IT
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TABLE IV

COMPARATIVE RESULTS (%) ON THE POTHOLE-600 TESTING SET. Methods REPRESENTS THE NAME OF THE NETWORKS. DLV3+ REPRESENTS
DEEPLABV3+.r, d AND 6¢c REPRESENT THAT THE NETWORKS ARE TRAINED AND TEST WITH ONLY RGB IMAGES, ONLY DISPARITY IMAGES,
AND BOTH RGB IMAGES AND DISPARITY IMAGES, RESPECTIVELY. WE USE BOLD FONT TO HIGHLIGHT THE BEST RESULTS FOR EACH
CLASS. THE DATA IN THE TABLE DIRECTLY PROVES THE SUPERIORITY OF OUR PROPOSED MAFNET

Background Pothole

Variants Pre Rec Fsc ToU Pre Rec Fsc ToU mPre mRec mFsc mloU
UNet++(r) 97.51 96.35 96.93 94.04 67.48 75.48 71.26 55.35 82.50 85.92 84.09 74.69
UNet++(d) 98.32 98.73 98.53 97.09 86.77 83.22 84.96 73.85 92.55 90.97 91.74 85.47
UNet++(6¢) 98.36 98.73 98.54 97.13 86.84 83.54 85.16 74.15 92.60 91.13 91.85 85.64
PSPNet(r) 96.79 95.04 95.90 92.13 58.06 68.53 62.87 45.84 77.43 81.78 79.38 68.99
PSPNet(d) 98.49 98.08 98.28 96.63 81.59 95.04 83.28 71.35 90.04 91.56 90.78 83.99
PSPNet(6¢) 98.63 98.34 98.48 97.01 83.87 86.35 85.09 74.05 91.25 92.34 91.79 85.53
DLV3+(r) 96.51 96.33 96.42 93.08 64.04 65.21 64.62 47.73 80.27 80.77 80.52 70.41
DLV3+(d) 98.49 98.47 98.48 97.01 84.81 84.91 84.86 73.7 91.65 91.69 91.67 85.35
DLV3+(6¢) 98.71 98.39 98.55 97.14 84.43 87.18 85.78 75.11 91.57 92.78 92.17 86.12
MA-Net(r) 96.75 94.10 95.41 91.22 53.79 68.50 60.26 43.12 75.27 81.30 77.83 67.17
MA-Net(d) 98.32 98.31 98.32 96.69 83.16 83.26 83.21 71.25 90.74 90.79 90.76 83.97
MA-Net(6¢) 98.24 98.43 98.33 96.72 84.03 82.37 83.19 71.22 91.13 90.40 90.76 83.97
TransUNet(r) 96.63 97.69 97.16 94.47 74.13 66.00 69.83 53.65 85.38 81.85 83.49 74.06
TransUNet(d) 98.13 98.81 98.47 96.98 87.28 81.18 84.12 72.59 92.70 90.00 91.29 84.79
TransUNet(6¢) 98.43 98.39 98.41 96.87 83.99 84.35 84.17 72.67 91.21 91.37 91.29 84.77
RTFNet 98.01 98.98 98.49 97.03 88.70 79.95 84.10 72.56 93.35 89.46 91.29 84.79
FuseNet 98.19 98.76 98.47 96.99 86.86 81.82 84.26 72.81 92.53 90.29 91.37 84.90
SegNet 96.47 99.55 97.99 96.05 93.40 63.67 75.72 60.93 94.94 81.61 86.85 78.49
MFNet 98.22 98.73 98.48 97.00 86.68 82.19 84.37 72.97 92.45 90.46 91.43 84.99
AA-RTFNet 97.56 99.43 98.49 97.02 93.02 75.15 83.14 71.14 95.29 87.29 90.81 84.08
MAFNet(Ours) 98.83 98.54 98.69 97.41 85.88 88.39 87.11 7717 92.35 93.47 92.90 87.29
o AF and the slowest is 34.03 ms from AF-5T32H) and RTX 3090
A FA (the fast speed is 14.91 ms from FA-1T4H and the slowest

is 23.79 ms from AF-5T32H), and an acceptable speed on

_ o RTX 2060 (the fast speed is 52.56 ms from FA-1T4H and the

E707 ah o slowest is 78.48 ms from AF-5T32H).

§ 6 4 = These figures clearly demonstrate that increasing the num-

] 68 ber of attention heads for MSA in transformer only slightly

& 60 increases the inference time for one image. The line between
the measurement points of the variants with the same trans-

55 1 former is approximately parallel to the coordinate plane of the
‘ ; , attention head and the number of network layers, indicating

5T 471 3T that the inference time of these variants is almost the same.

Fig. 4. Inference speed for each variant evaluated on RTX 2060. The figure
clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.

represents that there is one transformer layer in the transformer
module. The number 4, 16, and 32 represent that there are 4,
16, and 32 attention heads in MSA, respectively. AF represents
that the CAF-1A2F and the DAF-1A2F are adopted in the
network. FA represents that the CAF-1F2A and the DAF-1F2A
are adopted in the network. Based on the measured discrete
results, we fit the distribution of the inference time in 3-D
space, which could be helpful to analyze the underlying pat-
terns between different variants. In these figures, the discrete
points are the true measured values, and the surface between
the discrete points is interpolated. We use different colors to
represent different inference time, and the time cost increases
from blue to red.

As we can see, all the variants exhibit a real-time inference
speed on RTX 3060 (the fast speed is 21.58 ms from FA-1T4H

However, the increase in the number of layer of transformer
greatly increase the inference time. The color of the line
between the measurement points of the variants with the same
attention head changes sharply, indicating that the reasoning
time gap of these variants is huge. The inference speed
increases by the same amount when the transformer module
increases a layer. Compared with the CAF-1F2A and the
DAF-1F2A, the CAF-1A2F, and the DAF-1A2F require more
time cost to infer an image.

5) Number of Network Parameters: The number of a net-
work parameter could measure the size of a network. Accord-
ing to our observation, the number of parameters for the
variants satisfies the following:

P=B;+n(L+hxH) (11)
where the P represents the number of parameters of a network.
B; represents the type of network, which is 37409 156 for AF
variants, and is 36969 444 for FA variants. n represents the
number of transformer layer. L represents the basic parameters
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Fig. 5. Inference speed for each variant evaluated on RTX 3060. The figure
clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.
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Fig. 6. Inference speed for each variant evaluated on RTX 3090. The figure

clearly demonstrates that increasing the number of attention heads can only
slightly increases the inference time. The figure is best viewed in color.

of each transformer layer, which is 25192448. h represents
the number of attention heads. H represents the increase of
the parameter when an attention head is added, which is 8.
We can see that the number of network parameters increases
with the number of transformer layers and attention heads.

E. Comparative Study

We compare our proposed MAFNet with UNet++ [33],
MA-Net  [34], PSPNet [35], TransUNet [28],
DeepLabv3+ [24], FuseNet [36], SegNet [37], RTFNet
[13], MFNet [38], and AA-RTFNet [11] in this section. The
comparison networks can be divided into two categories:
single-modal networks and multimodal networks. To ensure
fair comparisons, we train the single-modal networks with
the three-channel RGB images, the three-channel disparity
images and six-channel RGB-disparity images, respectively.
The input layers of single-modal networks are modified to
accommodate the six-channel RGB-disparity images. We use
the implementations from the library? for the single-modal
networks except TransUNet, and use the implementation from
the library® for TransUNet. All parameters of the function
adopt default values in the libraries. We also modify the
one-channel encoder in FuseNet, RTFNet, and AA-RTFNet
to accept the three-channel disparity images. All the networks
are trained until the validation loss converges.

Zhttps://github.com/qubvel/segmentation_models.pytorch
3https://github.com/The-AI-Summer/self-attention-cv
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TABLE V

INFERENCE SPEED FOR EACH NETWORK. THE NETWORKS ARE TESTED
WITH THE SAME TESTING SET ON RTX 2060, RTX 3060, AND
RTX 3090, RESPECTIVELY. DLV3+ REPRESENTS DEEPLABV3+.
ms REPRESENTS MILLISECOND AND FPS REPRESENTS THE
FRAME-PER-SECOND. WE USE SIX-CHANNEL DATA TO
TEST THE SINGLE-MODE NETWORKS

RTX 2060 RTX 3060 RTX 3090
Methods ms FPS ms FPS ms FPS
UNet++ 54.64 18.30  24.47 40.87 11.53 86.69
PSPNet 10.01 99.85 4.64 215.42 3.09 323.19
DLV3+ 31.64 31.61 11.53 86.70 7.94 125.89
MA-Net 33.78 29.61 13.99 71.49 9.50 105.31
TransUNet 111.55 8.96 60.38 16.56 28.56 35.01
SegNet 21.34 46.86 10.57 94.58 7.66 130.61
MFNet 15.38 65.04 6.72 148.90 6.26 159.65
FuseNet 97.53 10.25  60.64 16.49 31.88 31.36
AA-RTFNet 39.21 25.50 24.15 41.41 19.99 50.03
RTFNet 45.33 22.06 18.92 52.87 12.15 82.31
MAFNet(Ours) 64.27 1556  26.31 38.01 18.85 53.06

1) Overall Results: We display the quantitative comparative
results for all the networks in Table IV. As we can see, our
proposed MAFNet achieves the best results in terms of all the
metrics across all the networks, except the Rec values of the
background. The superiority of our MAFNet is demonstrated
by the comparative results.

From Table IV, we can see that the results for all the
single-modal networks trained with disparity images are better
than those trained with RGB images. This indicates that
disparity images are beneficial to the pothole segmenta-
tion. The second and third best networks are single-modal
DeepLabv3+ (DLV3+) and single-modal UNet++, both of
which are trained with six-channel RGB-disparity images.
Their performance is not only better than multimodal networks
but also better than themselves trained with three-channel
data. For the other networks, the results for the single-modal
networks trained with six-channel RGB-disparity images are
the best, compared with those trained alone with RGB images
or disparity images. It proves that using multimodal infor-
mation is effective to improve the performance. From the
results, we can find that our MAFNet significantly outperforms
RTFNet (higher by 2.5%) and AA-RTFNet (higher by 3.21%).
It shows that the transformer, CAF, and DAF in the encoder
have a significant impact on the performance of the network.

It should be denoted that AA-RTFNet is designed based on
RTFNet, and has achieved better results on the augmented
Pothole-600 dataset [11] than RTFNet. However, the
results for AA-RTFNet in our experiments are worse than
those of RTFNet. We think the reason could lie in the different
augmentation methods adopted in the two works.

2) Inference Speed: The inference running time is a crucial
evaluation metrics besides accuracy. We test these networks
with the same testing set on RTX 2060, RTX 3060, and
RTX 3090, respectively. To ensure fair comparison, we test
the single-modal networks with six-channel data. Table V
displays the average running time on the testing set. The input
images resolution is 512 x 512. According to Table V, our
MAFNet (FA-3T16H) exhibits a real-time inference speed on
RTX 3060 and RTX 3090, and an acceptable speed on RTX
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Il False Positive

I False Negative

Sample qualitative demonstrations for the networks. Every column shows the results for different networks testing with the same RGB and disparity

images. The top three rows display the RGB images, disparity images, and the ground truth, respectively. Rows from the 3rd to the 9th show the experimental
results for RTFNet, MFNet, SegNet, FuseNet, AA-RTENet, and our MAFNet on the Pothole-600 testing set. The comparative results shows that our proposed
network MAFNet generally exhibits better performance. The figure is best viewed in color.

2060. Although our inference speed is the slowest among all
multimodal fusion networks, our segmentation performance
is better than others. In addition, our inference speed is
faster than the TransUNet that also uses the convolution and
transformer structure.

3) Qualitative Demonstrations: The qualitative demonstra-
tions are displayed in Fig. 7. In general, our proposed MAFNet
exhibits more accurate and robust segmentation performance
than the others. In particular, our network significantly outper-
forms the other networks on pothole edges. But there are still
some false detected pixels on edges compared to the ground
truth. We think the reason could be the multiple resolution
reduction from 512 x 512 to 16 x 16 in the encoders, which

leads to inappropriate edge spatial information for decoding.
This reason could be validated from that the edge segmentation
results of larger potholes are better than those of the small
potholes. As we can see from the columns 4, 5, and 7, the
smaller the potholes area, the less data are used for encoding
in the last layer of encoders, so that it is more difficult to
decode the edge information.

V. CONCLUSION

We proposed here a novel RGB-disparity fusion network for
road-pothole segmentation, in which two data-fusion modules
based on channel attention and dual attention were proposed.
To find better data-fusion module structures, the appropriate
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numbers of transformer layers, and attention heads, we tried
a number of variants and evaluated their segmentation per-
formance as well as the inference speed. We also compared
our network with state-of-the-art single-modal and multimodal
semantic segmentation networks. The experimental results
demonstrate the superiority of our network.

However, there still exist some limitations. First, our net-
work can only run at a real-time inference speed on RTX
3060 or better cards, which might be not suitable to be used
on resource-constrained vehicles. This could be alleviated by
using lightweight technologies, such as knowledge distillation
or model compression. Second, the edge information might
be ignored due to excessive downsampling in the encoder.
We will use skip connections to introduce the feature maps
from the encoder to the same level of the decoder to reduce
the information loss. At the same time, edge features will also
be learned by introducing a new loss function.
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