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Abstract— Autonomous driving in multi-agent dynamic traffic
scenarios is challenging: the behaviors of road users are uncertain
and are hard to model explicitly, and the ego-vehicle should
apply complicated negotiation skills with them, such as yielding,
merging and taking turns, to achieve both safe and efficient
driving in various settings. Traditional planning methods are
largely rule-based and scale poorly in these complex dynamic
scenarios, often leading to reactive or even overly conservative
behaviors. Therefore, they require tedious human efforts to main-
tain workability. Recently, deep learning-based methods have
shown promising results with better generalization capability
but less hand engineering efforts. However, they are either
implemented with supervised imitation learning (IL), which
suffers from dataset bias and distribution mismatch issues, or are
trained with deep reinforcement learning (DRL) but focus on one
specific traffic scenario. In this work, we propose DQ-GAT to
achieve scalable and proactive autonomous driving, where graph
attention-based networks are used to implicitly model interac-
tions, and deep Q-learning is employed to train the network
end-to-end in an unsupervised manner. Extensive experiments in
a high-fidelity driving simulator show that our method achieves
higher success rates than previous learning-based methods and
a traditional rule-based method, and better trades off safety
and efficiency in both seen and unseen scenarios. Moreover,
qualitative results on a trajectory dataset indicate that our
learned policy can be transferred to the real world for practical
applications with real-time speeds. Demonstration videos are
available at https://caipeide.github.io/dq-gat/.
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I. INTRODUCTION

AUTONOMOUS driving (AD) technology has made sub-
stantial progress in the last decade, moving from aca-

demic research [1] to industrial practice [2]. Nevertheless,
reliable and robust autonomous driving in urban areas remains
an important challenge, primarily due to the following rea-
sons: 1) There are diverse road topologies and structures
(e.g., roundabouts, multi-lane streets, and intersections) with
different traffic densities to consider [3]; 2) The complex
and coupled interactions among multiple road agents are
hard to model explicitly [4]; 3) The agent vehicle needs to
intelligently make decisions in these uncertain scenarios to
properly balance two contradictory driving objectives: safety
(collision avoidance) and efficiency (time to goal).

Traditional planning methods are mainly based on
hand-engineered heuristics [1], such as finite state machine
(FSM) [5], [6]. However, they are usually designed for a
narrow set of particular use-cases, and require extremely
tedious human efforts to maintain a rule database so that safety
can be ensured [7]. Moreover, new problems may arise as
the rules increase, for example, how to solve new situations
without forgetting the old ones, and how to balance cost
functions in countless hard-to-model scenarios with conflicting
objectives (e.g., safety and efficiency). Therefore, rule-based
methods often lead to unnatural driving behaviors, or they
completely fail in unexpected edge cases [8]. For example,
autonomous vehicles may slow down and stop in highly
interactive scenarios (as shown in Fig. 1) to ensure safety
[9], known as the freezing robot problem. However, such an
overly conservative solution also causes confusion to other
road users and even leads to traffic accidents.1 Due to the these
limitations, traditional rule-based methods are “not robust to
a varied world”, even according to their own authors [1].

In recent years, as an alternative, deep learning has advanced
AD technology to a great extent. The ability to learn and
self-optimize its behavior from data alleviates the laborious
engineering maintenance required to model all foreseeable

1In California in 2018, 86% of autonomous vehicle crashes were caused by
other cars, resulting from the conservatism of the autonomous vehicles [10].
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Fig. 1. Sample unsignalized driving scenarios considered in this work:
(a) unprotected left turns, (b) roundabouts, (c) merging, and (d) crossing.
Rule-based methods have difficulties in tuning for complex interactions, often
leading to reactive or even overly conservative behaviors. In this work we aim
to train DRL-based agents that can act proactively amidst other vehicles to
better trade off safety and efficiency of autonomous driving. The red and white
boxes denote the ego and other vehicles, respectively.

scenarios, making a deep driving model well suited to AD
problems in high-dimensional, nonlinear and dynamic envi-
ronments [11]–[16]. Most of these are implemented with
supervised imitation learning (IL), which can efficiently
extract driving knowledge from human demonstrations. How-
ever, this approach suffers from dataset bias [14] and dis-
tribution mismatch (a.k.a., covariate shift) [17] problems.
Another learning-based approach is deep reinforcement learn-
ing (DRL) [17]–[21], where the agent proactively interacts
with the environment and learns knowledge from trial-and-
error. However, current DRL-based methods have not been
well designed for scalable AD in a uniform setup. Particularly,
most work focuses on a specific network design tailored for
scattered traffic scenarios such as single lanes [19], specific
intersections [20] and roundabouts [21], all with no [17], [18]
or low-level traffic dynamics, leaving it unclear if these models
can generalize to more complex or unseen environments.

In this paper we propose DQ-GAT for autonomous driving
in complex and dynamic scenarios. To avoid a model tailored
for specific scenarios, we first design a graph attention-based
network, which can process heterogeneous traffic information
for generic driving scenarios. Afterwards, we design rewards
and extend the model-free DRL method dueling double deep
Q-learning (D3QN) into an asynchronous version. Finally, the
network is trained at scale to adaptively balance safety and
efficiency (i.e., ensuring driving safety while improving the
efficiency as much as possible) by proactively interacting with
the environments.

This paper significantly extends our recent conference paper
[22], and the improvements are multi-fold. First, we extend
the original training pipeline from supervised learning to
reinforcement learning, and demonstrate its superiority quan-
titatively in this work. Second, we conduct more thorough
experiments with related works on DRL, IL and rule-based
methods and provide more in-depth discussions. Moreover,

we examine the zero-shot generalization performance and
runtime speeds of our model in the real-world traffic dataset.

The main contributions are summarized as follows:

1) We propose a novel graph attention-based network archi-
tecture to encode heterogeneous traffic information (i.e.,
road structures and vehicle states) and implicitly model
inter-vehicle interactions in generic driving scenarios.

2) We develop a parallel DRL framework to provide asyn-
chronous and scalable training of the proposed network
for autonomous driving without relying on supervisions.

3) We conduct extensive evaluation in a high-fidelity
driving simulator and show that our method balances
safety and efficiency better than previous learning-based
and rule-based methods, in both training and unseen
scenarios.

4) We show that our method can achieve sim-to-real policy
transfer in an interaction-intensive real-world dataset,
where real-time performance is also satisfied.

II. RELATED WORK

A. Imitation Learning

IL is the dominant approach for learning-based AD due
to its sample efficiency, where a deep neural network is
trained to mimic expert driving behaviors using supervised
learning [11]–[16]. Based on the collected demonstrations
(i.e., observation-action pairs), the model compares the error
between its prediction and the labelled data from human
drivers, then adjusts its weights using gradient decent.

1) End-to-End Driving: With the powerful representation
capabilities of deep neural networks, end-to-end driving
approaches [11]–[16] directly take as input the raw sensor
readings (e.g., LiDAR point clouds and camera images) to
output control commands or future trajectories. For example,
Codevilla et al. [13] proposed a conditional imitation learning
approach that splits the network into multiple branches for
discrete tasks such as follow lane and turn left/right. Follow-
up works include [12] and [15]. However, these methods
cannot handle complex road topologies such as multi-lane
streets or roundabouts. Recently, Cai et al. [11] used global
routes as direction to achieve robust end-to-end navigation
in complex dynamic environments with multi-modal sensor
fusion. However, as with previous methods, the learned policy
is reactive without efficient interaction with other road users.

To summarize, it is quite challenging to learn a direct
mapping from high dimensional sensory observations to low
dimensional motion plans, as the end-to-end approaches con-
flate two aspects of driving: learning to see and learning
to act. Therefore, they suffer from the domain gap problem
in the perception stage, which leads to poor generalization
performance in new environments [22].

2) Learning to Drive by Semantic Abstraction: Recently,
another stream of work has arisen that uses semantic infor-
mation to learn driving policies (e.g., HD maps [3], brid-eye-
views (BEVs) [23], and occupancy maps [24]). Compared to
redundant sensory observations, this semantic information is
a kind of concise and informative abstraction of perceptual
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results, and has better environmental consistency. These prop-
erties help the training process to focus on learning to act,
which is more efficient and generalizable. For example, the
policy network of [24] takes as input hybrid features composed
of the roadmap, traffic lights, route plans and dynamic objects
to produce waypoints to follow. This has the advantage of
helping the network to learn meaningful contextual cues
behind the human driver’s action and achieve more complex
driving behaviors. However, [24] mainly shows its results on
offline logged data, and only performs closed-loop evaluation
in simple environments with at most two obstacles. Such a
problem also exists in other similar works [23]. According
to [25], the driving performance can vary significantly between
offline open-loop and online closed-loop tests, and the latter
can better reveal the driving quality. In this work, the obser-
vation is similar to those of [23] and [24] but, differently,
we focus more on dynamic, interactive and large-scale closed-
loop driving performance.

3) Limitations: Although the paradigm of IL is appealing,
there still exist three major shortcomings that prevent IL from
being applied to broader applications: 1) The cost of human
driving data collection on a large scale can be prohibitive
[20]; 2) IL approaches are particularly sensitive to the dataset
bias issue, as different drivers, or even the same driver in
different moods, might have different driving preferences, thus
the learning objective might be dominated by the main modes
in the training data [14]; 3) IL performs well for states that are
covered by the training distribution, but it generalizes poorly
to new states due to compounding action errors [26], which is
also referred to as distribution mismatch.

B. Deep Reinforcement Learning

DRL is another popular training paradigm, where the agent
interacts with the environment and gains knowledge through
trial-and-error, aiming to maximize the sum of expected future
rewards [17]–[21]. Therefore, it does not require expert labels
and thus eliminates the dataset bias issue associated with IL.
Furthermore, its online training paradigm also allows avoiding
the distribution mismatch problem. Due to these advantages,
DRL has shown promising results in various areas in decision
making. For example, Wu et al. [27] proposed a triplet-average
deep deterministic (TADD) policy gradient algorithm to reduce
the estimation bias, and it achieves superior performance in
the OpenAI gym environment. In addition, Dong et al. [28]
improved the performance of visual object tracking by dynam-
ically optimizing its hyperparameters for changing sequences
with deep Q-learning.

1) Applications and Limitations: DRL has been applied
to learn autonomous driving policies [17]–[21]. For exam-
ple, [19] trained an end-to-end policy for lane-following tasks
on a slow vehicle, and [18] achieved high-speed autonomous
vehicle racing using model-free DRL methods. However, these
works only consider static environments without interaction
with other vehicles. By contrast, [20], [21], [29] and [30]
consider dynamic traffic scenarios and thus they are more
applicable for urban driving. However, current methods have
not been well designed for scalable AD in a uniform setup.

Particularly, most works focus on specialized network design
(e.g., input representations and reward) tailored for scattered
traffic scenarios such as intersections [20], roundabouts [21],
merging [29] and highway [31] scenarios, where one model
cannot generalize across different scenarios due to the varied
requirements of observation space. For example, [31] used a
list of vehicle state vectors, such as position and velocity,
to depict the environment. Although this representation is
concise and precise, it lacks the information of driving contexts
and would fail in complex scenarios such as multi-lane inter-
sections. For example, in Fig. 1, the vehicles should drive by
obeying traffic rules according to the road structures. By con-
trast, processed BEVs [30] are more suitable for context-aware
driving, where all necessary information, including static road
and dynamic vehicles, can be rasterized into pixels and jointly
processed with convolution neural netowrks (CNNs). However,
the drawback of this method is the information loss during
rasterization. In this work, we combine the benefits of both
pixel- and state-based methods to train agents that can drive
in diverse urban scenarios.

C. Graph Representation Learning

Many real-world problems can be modeled with graphs
where the nodes contain features of different entities, and
edges represent interactions between entities. For example,
in the field of video object segmentation, Lu et al. used graphs
to store frames as nodes and capture cross-frame correlations
by edges [32]. A challenge in learning on graphs is to find an
effective way to get a meaningful aggregated feature represen-
tation to facilitate downstream tasks. Recently, graph neural
networks (GNNs) have been shown to be effective in many
applications such as social networks, personalized recommen-
dation, video object segmentation [32] and detection [33].
In this area, graph convolutional networks (GCNs) generalize
the 2D convolution on grids to graph-structured data. When
training a GCN, a fixed adjacency matrix is commonly adopted
to aggregate the feature information of neighboring nodes.
On the other hand, a graph attention network (GAT) [34] is
a GCN variant that aggregates node information with weights
learned in a self-attention mechanism. Such adaptiveness of
GATs makes them commonly more effective than GCNs in
graph representation learning.

1) Applications and Limitations: Recently, graph neural
networks (GNNs) have also been shown to be effective in
robotics, such as in crowd robot navigation [4], [35], where
the robot can navigate safely in human crowds of various
sizes. However, these works totally neglect the environmental
structures, which is not particularly important for indoor robot
navigation in restricted areas, but is non-negligible for outdoor
driving problems, as introduced in Sec. II-B. In this work,
we borrow the idea of the GNN to model the traffic scenes as
graphs, and use a context-aware GAT for autonomous driving
in dense traffic.

III. PRELIMINARIES

In this paper, a value-based reinforcement learning algo-
rithm called dueling double deep Q-learning (D3QN) [36],

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on November 09,2022 at 07:51:03 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: DQ-GAT: TOWARDS SAFE AND EFFICIENT AD WITH DEEP Q-LEARNING AND GATs 21105

Fig. 2. Schematic overview of the proposed method DQ-GAT for autonomous driving. We assume the input information is accessible with a functioning
perception system or with a vehicle-to-everything (V2X) module, and focus on learning to act of autonomous vehicles. The semantic BEV image and
vehicle states (locations, velocities, etc.) are first encoded respectively by a CNN backbone (ResNet-18) and MLP layers. The derived feature vectors are then
concatenated to construct a heterogenous scene-level graph {gk }, which is further processed by a two-layer GAT and noisy MLP layers (see Sec. III-.5) to
compute Q-values for controlling the ego-vehicle.

is applied to autonomous driving.2 In the following, we intro-
duce the notation, terminology and algorithm for the system
modeling and training.

2) Markov Decision Process (MDP): The MDP process
is the theoretical basis of reinforcement learning, and it
can be formulated as a tuple containing five elements:
< S,A, R, f, γ >, which denote the state space, action space,
immediate reward, state transition model and the discount
factor, respectively. Within this formulation, the agent interacts
with environment and learns the policy π by maximizing
the expected discounted return Rt = ∑∞

ρ=t γ
ρ−trρ , where

γ ∈ [0, 1] trades-off the importance of immediate and future
rewards.

Given a policy π , the action-value (Q-value) of a
state-action pair is defined as

Qπ(st , at ) = E [Rt | st , at , π] , (1)

which can be computed using the Bellman equation:
Qπ (st , at ) = E[rt + γE[Qπ (st+1, at+1)] | st , at , π]. (2)

Finally, the optimal Q-value function can be written as

Q∗ (st , at ) = E[rt + γ max
at+1

Q∗ (st+1, at+1) | st , at ]. (3)

3) Double Deep Q-Learning: It can be seen that once
Eq. (3) is computed, we can choose the optimal action a∗

t with
the largest Q-value to execute at state st . However, traditional
tabular methods cannot scale to large state spaces, like images.
In deep Q-learning, the Q∗(s, a) in Eq. (3) is approximated by
a deep neural network Q(s, a; θ) with parameters θ . We use
double deep Q-learning [38] to estimate this network, and
optimize the following sequence of loss function at iteration i
based on the temporal-difference (TD) error:

Li (θi ) = Es,a,r,s � [(yi − Q (s, a; θi))
2], (4)

yi = r + γ Q̂(s�, arg max
a�

Q
(
s�, a�; θi

) ; θ−), (5)

2In this work we choose to use value-based DRL as it has shown advanced
intelligence beyond the level of human beings in certain areas like Go [37].
In addition, it is also known to be more data efficient than the policy-based
method, which is another family of DRL.

where Q̂ denotes the target network with paramters θ−, which
are updated by copying the weights of Q(s, a; θ) every T
gradient steps and are frozen in other intervals. In this work,
Q and Q̂ share the same CNN encoder, and we set T = 1500.

4) Dueling Network Architecture: Based on the double
DQN algorithm introduced above, Wang et al. [36] further
proposed the dueling network architecture for the Q network,
named D3QN, where two streams of sub-networks are built to
compute the state value Vπ(s) (scalar) and advantage functions
Aπ(s, a) (vector of |A|-dimensional) separately, as shown in
Fig. 2. These two branches are finally combined to compute
the action values:

Q(s, a; θ)=V (s; θ)+(A(s, a; θ)− 1

|A|
∑

a�
A

(
s, a�; θ)). (6)

The decoupling operation of value and advantage in deep
Q-networks has shown dramatic improvements in the challeng-
ing Atari gaming domain in terms of task performance and
training speed. In this work, we extend this method into the
area of autonomous driving, which will be methodologically
introduced in the next section.

5) Noisy Networks for Exploration: Classical DRL methods
use �-greedy strategies to randomly perturb the agent’s policy
and induce novel behaviors for exploration. However, these
methods require hyperparameter tuning, and the induced local
dithering perturbations make it hard to generate diverse behav-
iors for efficient exploration. Therefore, we adopt the idea of
noisy nets [39] for exploration in this work. This uses a noisy
linear layer that combines a deterministic and noisy stream:

y = (b + Wx)+
(

bnoisy � �b + (
Wnoisy � �w

)
x
)
, (7)

where the parameters b,W, bnoisy and Wnoisy are learnable,
while �b and �w are random variables. In this way, the amount
of noise injected in the network is tuned automatically by the
RL algorithm, allowing state-conditioned and self-annealing
exploration. During testing, bnoisy and Wnoisy are set to zero
for stable policy deployment.
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Fig. 3. Overview of our training system design. The training process is
divided into two iterative parts until convergence: exploration and model
update. At the exploration stage, multiple agents sharing the same Q-network
collect experiences in their separate CARLA threads. Different threads are
synchronized using the message passing interface (MPI), and their transition
tuples (s, a, r, s�) are pushed into the replay buffer D in parallel, enabling high
throughput. At the training stage, mini-batches of transition data are sampled
from D to calculate the TD-loss (Eq. 4) to update the Q-network.

IV. METHODOLOGY

The structure of the proposed DQ-GAT for autonomous
driving is shown in Fig. 2. The goal is to drive safely and
efficiently in complex and dynamic urban environments with
different road layouts and other vehicles.

A. Training Scenarios

Our system is trained and evaluated in the open-source
CARLA simulator (v0.9.12) [40] since it possesses abundant
vehicle models and maps close to the real world. We choose
four different unsignalized traffic scenarios, where the agent
has to drive safely and efficiently according to the intent of
other vehicles, being neither too conservative nor too aggres-
sive. These scenarios are shown in Fig. 3. The T-Merge
scenario involves making a right turn for lane merging at
a T-shaped junction. The T-Left and Int-Left scenario
involves making an unprotected left turn at a T-shaped junc-
tion and a four-lane intersection, respectively. Int-Cross
involves driving straight to cross the four-lane intersection.

We use the AI engine of CARLA to form realistic and
dynamic traffic flows with several random properties, in terms
of vehicle types (cars, big trucks, ambulance, etc.), destina-
tions, densities and speeds. This randomness provides a large
state space to explore, which can produce generic driving
policies and avoid overfitting the policy to a specific case.
The simulation step is set to 0.1 seconds, meaning the control
frequency is 10 Hz for all our experiments.

B. Semantic Abstraction of Driving Scenes

In order to learn good driving policies, we use seman-
tic BEV images as the representation of driving scenes to
reduce the dimensionality and redundency of raw sensory data.
Furthermore, with such representation, there is no domain
difference between the simulation and real world, thus the

policy transfer problem [41] can be alleviated. Specifically,
we rasterize different semantic elements (e.g., lane marking
and obstacles) into RGB channels to form a concise and
informative scene representation. As shown in Fig. 2, our
BEV input is composed of the following two parts: 1) High-
definition (HD) map: The HD map contains the drivable
area, lane markings, and the route to follow. Leveraging
map information to learn driving policies is very helpful
because it provides valuable structural priors on the motion
of surrounding road agents. For example, vehicles normally
drive on lanes rather than on sidewalks, and they should not
cross solid lane markings; 2) Road vehicles: We render the
ego and other vehicles on the HD map to provide more spatial
information.

In this work, our region of interest is W=70 m wide (35 m to
each side of the ego-vehicle) and H =50 m long (35 m in front
and 15 m behind the ego-vehicle). The image resolution is set
to 0.25 m/pixel, which finally results in a binary BEV input
X of size 200 × 280×3, anchored at the ego-vehicle’s current
position. We use the CNN backbone ResNet-18 to project X
into a lower-dimensional vector z ∈ R

512 for further operation.

C. Graph Modeling of Driving Scenes

1) Network Architecture: As shown in Fig. 2, we use a GAT
to model the interaction among road agents during driving, and
it is composed of multiple graph layers. The input to the i -th
layer is a set of node features, {hi

1, hi
2, . . . , hi

N }, hi
k ∈ R

Fi
,

where N is the number of nodes (agents, including the ego-
vehicle), and Fi is the dimensions of features in each node.
Then, the information of each node k is propagated to the
neighboring nodes Nk and is used to update the node features
via a self-attention mechanism, which produces the output of
the layer:

hi+1
k = σ(

∑
j∈Nk

αkj (hi
k, hi

j )Whi
j ), (8)

where σ(·) is the ReLU activation function, W ∈ R
Fi+1×Fi

is a
shared weight matrix to be applied to each node for expressive
feature transformation, αkj (·, ·) means the importance of node
j to node k, which is the normalized attention coefficients
computed with shared weight vector �a ∈ R

2Fi+1
:

αkj (hi
k, hi

j ) = exp(σ (�aT [Whi
k ||Whi

j ]))∑
m∈Nk

exp(σ (�aT [Whi
k ||Whi

m])) , (9)

where || represents the concatenation operation. Furthermore,
we follow the multi-head attention method in [34] to stabilize
the learning process. Specifically, Si independent graph net-
works execute the transformation of (8) and their features are
concatenated to produce the output of the i-th layer:

hi+1
k = Si

�
s=1

σ(
∑
j∈Nk

αs
kj (h

i
k, hi

j )W
s hi

j ). (10)

For the final layer, we employ averaging among multiple
heads rather than concatenation.
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2) Implementation Details: In this work, we adopt a
two-layer GAT and set S1, S2 = 4, F1, F2 = 256. The
input features C include motion state information for each node
(road agent) in the ego-vehicle’s local coordinates. For node
k ∈ {1, 2, . . . , N}, the input feature is a 10-dimensional vector:

ck = {x, y, d, ψ, vx, vy, ax, ay, w, l} , (11)

which includes its location (x, y), distance to the ego-vehicle
(d), yaw angle (ψ), velocity (vx, vy), acceleration (ax, ay)
and size (width w and length l). Inspired by [4], we first pass
each node state ck ∈ C through a multilayer perceptron (MLP)
to produce a feature vector ek ∈ R

128 for sufficient expressive
power. For context-aware graph modeling, we then concatenate
ek with z derived from the CNN module introduced in
Section IV-B to generate the mixed vector gk . Then, the set
{gk} is sent to the GAT to output the final aggregated feature
ho

k ∈ R
256, which represents the internal interactions on each

node k. We are interested in the result ho
1 of the first node,

which represents the influence on the ego-vehicle.

D. Driving Policy Training With D3QN

With the components defined above, the derived feature
vector ho

1 is processed with two MLPs to generate the advan-
tage functions and the state value, separately (as shown in
Fig. 2). Finally, the Q values are computed based on Eq. (6).
During deployment, the action with the highest Q value will be
executed to control the vehicle. In the following, we introduce
the implementation details of this part.

1) Action Space: In this work, the agent chooses among a
set of target speeds in the action space A = {0, 10, 20, 30, 40}
(km/h) to navigate the vehicle longitudinally. The chosen target
speed is translated into throttle and brake actions based on a
low-level PID controller. The steering control is implemented
with another PID to track the route.

2) Reward Design: To enable safe autonomous driving, the
reward is set to -50 as punishment for collision events, and to
v/40 ∈ [0, 1] elsewhere to stimulate driving efficiency, where
v is the speed of the agent vehicle in km/h.

3) Asynchronous Training: Inspired by [41], we extend the
original D3QN algorithm to an asynchronous version with
many experience collection threads working in parallel. Each
thread randomly chooses a scenario to simulate for every
new episode. In this way, the experience generation is decou-
pled from the parameter learning, which can provide higher
throughput and thus improve the training efficiency. Moreover,
interacting with different environments simultaneously also
decorrelates the agent’s data and makes the training process
more stable [42]. To show the effectiveness of asynchronous
training, we track the agent’s mean reward during training
using different numbers of threads. The results are shown in
Fig. 4. It can be seen that the asynchronous DQ-GAT with
6 threads converges much faster than the single-thread version.

4) Overall Pipeline: The overall training pipeline of our
DQ-GAT is shown in Fig. 3. The learning process is divided
into two iterative parts: data collection and model update.
During data collection, the agent selects and executes the
actions according to the estimated Q values from Q(s, a; θ),

Fig. 4. Training performance of our method with different numbers of
experience collection threads. The solid curve indicates the mean, and the
shaded region corresponds to the standard deviation.

where the noisy MLP layers are activated for exploration.
Related experiences et = (st , at , rt , st+1) are accumulated
into the buffer D = {e1, e2, . . . , et }. During training, we first
sample mini-batches of experiences from D using prioritized
experience replay (PER) [43], then update the parameters of
the Q network through stochastic gradient descent.

V. EXPERIMENTS

A. Training Setup

The replay buffer size is set to 500K. At each new episode,
the ego-vehicle is placed in a random training scenario.
The GPU trainer samples mini-batches of experiences every
4000 steps to update the Q-net for 300 rounds with the Adam
optimizer. We further use a grid search to empirically find the
best hyperparameters on learning rate α ∈ {0.001, 0.0001},
reward discount γ ∈ {0.9, 0.99} and batch size N ∈ {32, 128}.
We found that setting α = 0.0001, γ = 0.99 and N =
128 performs best in this work.

B. Training Performance With Different DRL Methods

We first compare our DQ-GAT with several other
DRL-based methods for autonomous driving to verify the
effectiveness of our model design.

• GCN(U). This adopts a two-layer GCN to process the
node features {gk}. We refer to the baseline U-GCNRL
introduced in [4] and set the adjacency matrix of GCN
with uniform weights.

• GCN(D). It is similar to GCN(U) but uses
distance-related weights in its adjacency matrix.
It adopts a straightforward intuition that obstacles closer
to the ego-vehicle should exert a stronger influence. This
network follows the idea of D-GCNRL introduced in [4].

• DenseBEV. Following [30], we use the occupancy-grid
style BEV image to form the observation, including
information about the dynamic states of neighbouring
vehicles and road layouts. Then, a CNN backbone Resnet-
18 is used to handle such input.

The results are shown in Fig. 5. It can be seen that our
method performs better than others with higher final rewards.
First, DenseBEV has information loss when rasterizing the
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TABLE I

EVALUATION RESULTS OF DIFFERENT MODELS IN BOTH TRAINING AND NEW SCENARIOS. ↑ MEANS LARGER NUMBERS ARE BETTER, ↓ MEANS
SMALLER NUMBERS ARE BETTER. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

Fig. 5. Training performance with different DRL methods. The solid curve
indicates the mean, and the shaded region means the standard deviation.

dynamic states of vehicles into pixels. Second, the influences
of road agents are not always equal (GCN(U)) or related to dis-
tance (GCN(D)). Our model addresses these problems through
a heterogeneous graph attention network, where inter-vehicle
influences are automatically learned and adjusted through data.

C. Evaluation Methods

In order to cover as many driving scenarios as possible
to thoroughly evaluate different methods, we set two levels
of traffic densities, namely regular and dense. Then, we run
300 trials on each scenario setup for each model with 200 ran-
dom seeds different from those in the training stage.

1) Metrics: We use the following two metrics, which are
averaged over all episodes, to measure the driving perfor-
mance: (1) S.R. (success rate): An episode is considered to
be successful if the agent reaches a certain goal without any
collision. The episode will be recounted if there is a traffic
jam. (2) C.T. (completion time): The average time cost for the
successful trials. The failed trials where collision happens are
not counted for this metric.

2) Baselines: We consider two driving modes in this
paper, namely aggressive and conservative. The former favors

Fig. 6. The average success rate and the completion time for different
methods on the (a) training scenarios and (b) unseen new scenarios. The
solid marker indicates the mean value and the shaded area means the standard
deviation.

efficiency over safety. For example, it drives fast (40 km/h)
so as to reach the goal in minimal time, but tends to collide
with other vehicles. By contrast, the conservative mode drives
the car very cautiously (20∼30 km/h), and slows down or
stops to avoid all potential accidents. Accordingly, we collect
human driving data in the training scenarios per mode, leading
to demonstrations Haggr and Hconser , respectively. Then,
we compare DQ-GAT with the following policies:

• IL-Conser. An IL agent trained on Hconser .
• IL-Aggr. An IL agent trained on Haggr .
• H-REIL. We follow [8] and train a high-level DRL-based

mode switcher, which selects the low-level agent, i.e.,
IL-Conser. or IL-Aggr., every 0.5 s to balance safety and
efficiency.

• FSM-TTC. This is a traditional rule-based method for
crossing intersections [44]. It is implemented by an FSM
with the time-to-collision (TTC) safety indicator [45].

D. Quantitative Analysis

The left column of Table I shows the evaluation results in
four training scenarios. The average performance is shown in
Fig. 6-(a). We have the following main findings:
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Fig. 7. Evaluation results of our DQ-GAT in the CARLA simulator. We show several driving clips with camera images in four scenarios, where Roundabout
and Five-Way are unseen scenarios for the agent. We label the speed of key vehicles, and render the output control commands of the ego-vehicle for better
understanding. The sample driving behaviors are: (a) and (d) creeping forward to safely and efficiently drive through the traffic when taking unprotected left
turns at intersections; (b) timely slowing down to avoid an accident when an aggressive vehicle beside suddenly cuts into the lane of the ego-vehicle; and
(c) yielding to the vehicle (which is departing the roundabout) on the left side for collision avoidance.

1) Since IL-Cons. favors more safety than IL-Aggr.,
it achieves higher success rates at the cost of efficiency. For
example, in T-Merge with dense traffic, IL-Cons. reaches a
success rate of 92.67%, higher than that of IL-Aggr. (79%).
However, it requires much more time for the task (11.99 v.s.
5.36 s).

2) After training a high-level DRL-based mode switcher,
the H-REIL model achieves success rates close to those of
IL-Cons., and completion time close to those of IL-Aggr.,
as shown in Fig. 6-(a), meaning it better trades off safety and
efficiency than the two base agents.

3) The rule-based method FSM-TTC achieves much higher
success rates than the above methods, but it is not as efficient
as IL-Aggr. with more task completion time. This is because
FSM-TTC controls the vehicle in a reactive manner, and
always waits for a gap to go.

4) As shown in Fig. 6-(a), on average, our DQ-GAT model
not only achieves the highest success rate (98.88%), but also
achieves a comparable completion time to the IL-Aggr. model
(6.01 v.s. 6.07 s). These results demonstrate that DQ-GAT can
better trade off safety and efficiency than previous methods.
We accredit this improvement to our DRL-based pipeline,
which is an unsupervised training framework enabling end-to-
end optimization (compared with H-REIL) and self-learning
(compared to IL-Coners., IL-Aggr. and FSM-TTC) of driving
policies.

E. Qualitative Analysis

The qualitative results of DQ-GAT in diverse dynamic
environments with different road structures and traffic flows
are shown in Fig. 7. For example, in (a) Int-Left, the
ego-vehicle is taking an unprotected left turn at a four-lane
intersection, with many other vehicles driving towards differ-
ent directions in front. The ego-vehicle first applies a brake to
slow down for collision avoidance at t=0 s. In the meantime,

Fig. 8. Policy visualization. (a) Saliency map of the input BEV image X,
where the computed Jacobian of Q is masked on the X for better visualization.
Lighter pixels indicate more salient parts with larger values. (b) Attention
distribution, where thicker lines indicate larger attentions.

another vehicle A is also waiting to cross the intersection.
Rather than stopping at the intersection and waiting other
vehicles to leave, the ego-vehicle releases the brake to slowly
creep forward at 5.7 km/h in an exploratory manner (t=4 s).
This interactive manner informs the other vehicles of its intent.
Therefore, vehicle A continues to wait and yields to the ego-
vehicle. Finally at t=5.2 s when the ego-vehicle arrives in front
of vehicle A, it starts to accelerate to finish the turn efficiently.

In some cases, instant safety is more important than
efficiency. For example, in (b) Int-Cross, when the
ego-vehicle is driving straight down the road, an aggressive
vehicle B suddenly cuts into the lane of the ego-vehicle at
25 km/h. To ensure safety, the ego-vehicle applies a full brake
to lower the speed from 18.8 km/h to 4.3 km/h at t=0.4 s, and
then accelerates at t=1.9 s to drive behind vehicle B.

In summary, these exploratory and interactive driving styles
are quite similar to how humans drive, leading to a better
trade-off between safety and efficiency, which can also explain
the advantage of DQ-GAT on the quantitative results in
Sec. V-D.

F. Policy Visualization

To better understand the roles of Q-learning and the atten-
tion mechanism in this work, in the following, we compute and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on November 09,2022 at 07:51:03 UTC from IEEE Xplore.  Restrictions apply. 



21110 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 9. Qualitative results on the real-world openDD dataset. (a) Maintaining the speed to take the front way of a mild slow-driving vehicle, and decelerating
to yield to the front vehicle which is (b,c) at relatively high speeds or (d) accelerating to enter the roundabout.

visualize the salient part [36] of the input BEV image X, and
show attention values from the graph networks. Specifically,
to show the saliency map of X, we compute the absolute value
of the Jacobian of the estimated Q value with respect to the
input BEVs: |∇X Q(s, arg maxa� Q(s, a�); θ)|.

A sample driving case in the T-Merge scenario is shown in
Fig. 8. We can see that the ego-vehicle is yielding to the front
vehicle V1, which drives at high speeds (31.6 km/h) and exerts
a strong influence with higher attention (0.5) than the others.
Accordingly, as observed in the saliency map, the Q-value also
cares more about V1. Note that there is another vehicle V2 in
the right lane, which is about the same distance from the ego
agent as is V1. However, V2 is assigned with lower attention
(0.25), because it is turning into a different lane and does
not have much influence on the ego agent. This phenomenon
demonstrates that the ideas of GCN(U) and GCN(D) are
not reasonable in some occasions because the influences of
road agents should be measured within specific contexts and
are not always equal or related to distance. By contrast,
without external supervisions, our DQ-GAT can still learn
to dynamically and reasonably focus on different parts of
the environment, like humans do, thanks to the self-attention
mechanism. Such a difference also explains the performance
gap between GCN methods and our DQ-GAT in Fig. 5.

G. Zero-Shot Generalization Performance

1) New Scenarios in the CARLA Simulator: To examine
whether our method can generalize to unseen environments,
we further conduct benchmark tests as stated in Sec. V-C in
two new scenarios, namely Roundabout and Five-Way,
where the vehicle should drive around a roundabout and
take a left turn at a five-way intersection, respectively. The
quantitative results are shown in the right column of Table I.
The average performance is shown in Fig. 6-(b). We can see
that IL-based methods generalize poorly in new scenarios. For
example, in Roundaboutwith regular traffic, the success rate
of IL-Aggr. is only 26.67%. By contrast, DQ-GAT achieves
higher success rates (77.67∼99.67%), with similar completion
time to the IL-Aggr. model, in most scenarios.3

For qualitative analysis, we demonstrate two driving cases
in columns (c and d) of Fig. 7. In (c) Roundabout, the
ego-vehicle timely slows down at t=3.3 s to yield to the
vehicle on the left side (which is departing the roundabout)

3An exception is in Roundabout with dense traffic. We observe that the
IL-Aggr./H-REIL model exhibits low-level interactive driving skills, and tends
to collide with other vehicles, leading to a very low success rate (1∼2%).
Therefore, it can only aggressively finish a few random cases where safe
behaviors that take time (e.g., yielding, vehicle-following, etc.) are not needed,
leading to a shorter average completion time than ours.
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Fig. 10. Sample failure cases of our method: (a) scratching accidents;
(b) collisions caused by other aggressive vehicles.

for collision avoidance. In (d) Five-Way, the ego-vehicle
first slows down to yield to vehicle D1 for collision avoid-
ance, then accelerates at t=0.9 s to inform vehicle D2 to
slow down (20.7→12.8 km/h), and finally crosses the traffic
flow at t=1.9 s. In summary, similar to the performance in
seen environments, DQ-GAT can still dynamically adjust its
driving style in new environments according to specific driving
contexts.

2) New Scenarios in the Real World: For practical applica-
tion, we further test the driving performance of DQ-GAT in
openDD [46], which is a real-world trajectory dataset focusing
on interaction-intensive unregulated roundabouts with varying
topologies in Wolfsburg and Ingolstadt, Germany. Qualitative
results on four roundabouts in openDD, rdb1, rdb2, rdb4 and
rdb6 are shown in Fig. 9. We can see that the agent makes two
different decisions in these scenarios: (a) maintaining the speed
against a mild vehicle for efficiency, and (b-d) decelerating to
yield to the front aggressive vehicle for safety.

In addition, the proposed model also observes a notable
inference rate of 150 Hz on the NVIDIA RTX 2060 mobile
GPU, and 260 Hz on the GTX 1080 Ti GPU, essential for
real-time driving applications.

H. Failure Cases

The typical failure cases of our model are shown in Fig. 10.
We observe that they can be divided into two categories:
inter-vehicle scratching accidents (Fig. 10-(a)), and collisions
caused by other aggressive cars (Fig. 10-(b)). For example,
in scenario (a), the ego-vehicle is taking an unprotected left
turn, but its rear left panel slightly collides with the stopped
vehicle V1. In scenario (b), the rear-left vehicle V2 suddenly
turns right to depart the roundabout at a relative higher speed
of 22.1 km/h. The ego-vehicle timely infers its intent and starts
to decelerate by applying large brake values. However, V2
continues to drive without slowing down. Finally, these two
vehicles collide. The limitation of our model in handling these
near-accident cases leaves possible avenues for future research
on safer autonomous driving.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed DQ-GAT to achieve safe and effi-
cient autonomous driving in various urban environments. It is
a graph-based network using the self-attention mechanism to
encode heterogeneous information in generic traffic scenarios.
We extended the original D3QN to an asynchronous version
to train the network without relying on human labels. Then,
by setting various traffic flows in different scenarios (e.g.,
unprotected left turns at intersections, merging, and crossing),
we extensively evaluated different methods and demonstrated
that our DQ-GAT can dynamically adjust its driving styles

according to specific driving contexts like human drivers do,
finally achieving a better trade-off between safety and effi-
ciency than previous rule-based and learning-based methods.
Afterwards, we showed that our method generalizes well in
totally unseen scenarios like roundabouts and five-way inter-
sections, where the performance of baseline learning-based
methods degrades a lot in terms of safety. Furthermore,
we qualitatively tested the zero-shot generalization perfor-
mance of DQ-GAT, which is trained in a simulator, on the
real-world dataset openDD and demonstrated its potential for
practical applications.

This work makes a common assumption on perfect percep-
tion results. However, measurement noise is inevitable in the
real world. In the future, we will investigate how to handle
the perceptual uncertainties within the training framework.
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