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NLE-DM: Natural-Language Explanations for
Decision Making of Autonomous Driving Based on
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Abstract— In recent years, the advancement of deep-learning
technologies has greatly promoted the research progress of
autonomous driving. However, deep neural network is like a black
box. Given a specific input, it is difficult to explain the output of
the network. Without explainable results, it would be unsafe to
deploy deep networks in unseen environments or environments
with potential unexpected situations. Especially for decision-
making networks, inappropriate outputs could lead to severe traf-
fic accidents. To provide a solution to this problem, we propose
a deep neural network that jointly predicts the decision-making
actions and corresponding natural-language explanations based
on semantic scene understanding. Two types of explanations,
the reasons of driving actions and the surrounding environment
descriptions of the ego-vehicle, are designed. Both the reasons
and descriptions are in the form of natural language. The
decision-making actions could be explained by the corresponding
reasons or the environment descriptions. We also release a
large-scale dataset with hand-labelled ground truth including
driving actions and environment descriptions. The superiority
of our network over other methods is demonstrated on both our
dataset and a public dataset.

Index Terms— Autonomous driving, decision making, explain-
able artificial intelligence, semantic scene understanding.

I. INTRODUCTION

AUTONOMOUS driving can reduce traffic accidents and
improve driving safety, it has attracted great attention

in the robotics and computer vision research communities in
recent years. According to the survey of the American National
Highway Traffic Safety Administration (NHTSA), around 94%
of road accidents are caused by human factors [1], such
as attention distraction, violation of traffic rules, etc. Since
autonomous driving can eliminate human factors, it can greatly
improve driving safety. Although significant research progress
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has been made in the past decade, autonomous driving is still
not mature. The solutions based on traditional techniques still
have not made great progress. Deep learning-based artificial
intelligence has achieved great success in recent years. It has
been widely applied in various research fields. With deep
learning, autonomous driving technologies have been greatly
advanced. Many effective deep neural networks for various
autonomous driving applications, such as object detection [2],
semantic scene understanding [3], [4], localization [5], motion
planning [6], [7], trajectory prediction [8], [9], vehicle con-
trol [10], [11], and decision making [12], have been proposed.

Decision making is a process that selects one action from a
set of discrete control actions (e.g., going straight, or turning
left/right) based on the status of the ego-vehicle and the
surrounding environment information [13]. It is an important
component in autonomous driving. In recent years, many
methods for decision making have been proposed. We can
generally divide the existing methods into classical methods
and deep learning-based methods. For the classical methods,
there are rule-based methods, optimization-based methods and
probabilistic methods, etc. Real traffic environments are often
complex and dynamic. Compared to classical methods, deep
learning-based methods could produce better performance in
real environments [13], [14].

Despite the success of deep learning-based methods, their
outputs are generally not explainable. The major reason is that
deep neural network is like a black box. It is difficult to under-
stand why they produce an output given a specific input. The
lack of explainability has hindered them from being deployed
in real-world environments, because real-world environments
are dynamic, complex and unpredictable. The decision-making
actions could not be anticipated given as input random sensory
data captured in real-world environments, especially in unseen
environments or when there are unexpected disturbances in the
scene. Thus, it is really unsafe to believe the output of the deep
networks without explainability.

To provide a solution to this problem, we propose a deep
neural network that jointly predicts decision-making actions
and natural-language explanations based on semantic scene
understanding. Two types of explanations, the reasons of
driving actions as well as the descriptions of surrounding
environment of ego-vehicle, are proposed to explain the
decision-making actions. To train and evaluate the network
that jointly predicts decision-making actions and environment
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descriptions, a large-scale dataset that contains 10, 000 images
from the BDD-OIA [15] is annotated with 4 driving actions
and 6 descriptions. Furthermore, to verify the prediction
performance and generalization capability of the proposed
network, 1, 500 driving frames are selected from the nuScenes
dataset [16] and labelled with 4 driving actions and corre-
sponding natural-language explanations (including 21 reasons
and 6 descriptions). The superiority of our proposed network
over the other methods is demonstrated on the publicly avail-
able dataset [15] and our datasets. The comparative experimen-
tal results demonstrate that both the prediction performance of
the decision-making actions and explainability of the network
is notably improved. The main contributions of this work are
summarized as follows:

• A novel explainable decision-making network based on
semantic scene understanding for autonomous driving is
proposed. In this network, both the natural-language rea-
sons of driving actions and the surrounding environment
descriptions of ego-vehicle are applied to explain the
decision-making actions.

• A large-scale dataset that contains 10, 000 images with
hand-labelled driving actions and descriptions of driving
environments is released. Moreover, our code is open-
sourced.1

• The superiority of our proposed network over other
networks is demonstrated on both the publicly available
dataset and our released datasets.

The remainder of this paper is structured as follows.
Section II reviews the related work. Section III presents the
details of our proposed network. Section IV discusses the
experimental results. Conclusions and future work are drawn
in the last section.

II. RELATED WORK

A. Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) aims to enable
humans to understand and appropriately trust AI algo-
rithms [17], [18]. So far, a number of XAI techniques have
been proposed and applied in different machine learning mod-
els on different tasks, including transparent model [19], [20],
local explanation [21], [22], explanation by simplification [23],
feature relevance explanation [24], visual explanation [25],
[26], [27], architecture modification [28], [29], [30], [31], [32],
etc.

The transparent model refers to the model that is explain-
able by itself. According to the degrees of explainability,
it can be generally divided into three categories: simulatable
model, decomposable model and algorithmically transparent
model [33]. For local explanation, segmentation of the solution
space is applied so that the explanation for the less complex
solution subspaces can be obtained [18]. For explanation by
simplification, the local interpretable model-agnostic expla-
nations (LIME) and its variations [34] are the widely-used
techniques. The main idea of LIME is to build the local
linear models around the predictions. For feature relevance

1Our code and dataset: https://github.com/lab-sun/NLE-DM

explanation, it gives the explanation of inner function of a
model by assigning and calculating the relevance score of input
features based on the importance of each feature in predicting a
target variable [18]. For visual explanation, it is usually applied
along with other techniques to visualize the behavior of model
so that humans could have a better understanding of the model.
For architecture modification, many different techniques can
be performed to modify the architecture of the network so
that the explainable network is obtained. These techniques
includes layer modification [28], model combination [29],
attention networks [30], [31], loss modification [32], etc. Take
the work [30] as an example. The network architecture is
modified by adding a global average pooling layer between
the last convolutional layer and the fully-connected layer. With
this architecture modification, the attention map that highlights
the image regions that are particularly related to a specific
object class is proposed. In our work, to give explanations
to the actions, the decision-making network of autonomous
driving is modified by adding the explanation module that
predicts the natural-language explanations of the actions. The
loss of the network is also modified into the multi-task loss so
that the proposed network is able to jointly predict the driving
actions and explanations. So, our work can be classified as an
architecture modification method.

B. Explainable Autonomous Driving Systems

Considering the fact that the explainability is vital for
autonomous driving, explainable autonomous driving systems
(EADS) have attracted great interest among the research
community. To improve the performance of EADS, many
efforts [15], [35], [36], [37], [38], [39], [40], [41], [42] have
been made in this area. Hofmarcher et al. [35] proposed an
architecture that delivers real-time viable segmentation per-
formance, which can be used as an input for an interpretable
autonomous driving. Cultrera et al. [36] proposed to train
an imitation learning based agent equipped with an attention
model. Li et al. [37] added XAI technology in system to
explain and assist the estimation results in the risk assessment
phase. Shen et al. [38] focused on when an explanation is
needed and how the content of explanation changes with con-
text in autonomous driving. Atakishiyev et al. [39] presented
a framework that integrates the autonomous driving, XAI
architecture, and regulatory compliance to address this issue.

C. Datasets for Autonomous Driving

Autonomous driving largely depends on real-world datasets
to develop, test and verify algorithms before deployment on
public roads. So far, there are a number of autonomous driving
datasets [15], [16], [43], [44], [45], [46], [47] that contain
vision-based information or the information from multiple
sensors, including GPS, radar, LiDAR, or IMU information.
KITTI [43] is focused on the tasks of stereo, optical flow,
visual odometry and 3D object detection. CityScapes [44] is
aimed to assess the performance for semantic urban scene
understanding tasks with high-quality annotations of 5k frames
and 20k weakly annotated frames. Apolloscape [45] contains
144k frames from 4 regions in China under different times of
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Fig. 1. The architecture of our proposed explainable network. We use the semantic scene understanding module for visual feature extraction. The
action-explanation module takes as input the feature maps from the semantic scene understanding module, and produces the decision-making actions and the
corresponding natural-language explanations. The figure is best viewed in color.

day and weather conditions. nuScenes [16] has 1.4M camera
images, 390k LIDAR sweeps, 1.4M RADAR sweeps and 1.4M
object bounding boxes in 1000 scenes. BDD100K [46] is one
of the largest driving video dataset with 100K videos and
multitasks including object detection, semantic segmentation,
lane detection, etc. BDD-OIA [15] is a subset selected from
BDD100K, which contains at least 5 pedestrians or bicycle rid-
ers and more than 5 vehicles. In the BDD-OIA dataset, ground
truth for 4 actions and the corresponding 21 explanations are
annotated.

D. Difference With Existing Work

The closest work to ours is the explainable object-induced
action method proposed by Xu et al. [15]. The authors
proposed a paradigm to focus on the action-inducing objects
by combining action-inducing object reasoning and global
scene reasoning. In their work, a multi-task network (we
call the OIA network) along with a dataset (i.e., the BDD-
OIA) was proposed to predict the actions and explanations.
Unlike the OIA network [15], we employ semantic seg-
mentation to understand the surrounding traffic environment,
while the OIA network uses object detection. Compared
with the OIA network, our network could capture more
detailed information of the environment, which leads to bet-
ter prediction performance of the explanation. Furthermore,
we introduce the natural-language descriptions of surrounding
environments to explain the driving actions, and release a
new large-scale dataset with hand-labelled driving actions
as well as the corresponding natural-language environment
descriptions. Compared with the explanations in the OIA
method, our natural-language descriptions are more concise
and straightforward, which could produce better explainability
for the driving actions.

III. THE PROPOSED NETWORK

In this section, we present the architecture of the proposed
network and the training details of our network.

A. The Network Architecture

As illustrated in Fig. 1, our network could be mainly divided
into two components: the semantic scene understanding mod-
ule and the action-explanation module. Our network takes as
input a front-view image and predicts the driving actions and
the corresponding explanations.

Let X i ∈ Rh×w×c denote the i-th image in a frame set
X = {X1, . . . , X i , . . . , X N }, where N is the number of frames,
h, w and c respectively denote the height, width and number
of channels for an image. For the driving actions, 4 categories
of actions are adopted: “move forward”, “stop/slow down”,
“turn left/change to left lane”, and “turn right/change to right
lane”. For the explanations, two types of natural-language
explanations, that is, the reasons of driving actions and the
surrounding environment descriptions, are proposed to explain
the actions. Specifically, we adopt 21 categories of reasons
and 6 categories of environment descriptions in this work.
For the natural-language reasons, they have been used in the
work [15] and all the 21 categories of the reasons are displayed
in Tab. II. For the environment descriptions, we adopt “traffic
light allows”, “front area is free of obstruction”, “left/left-turn
area is clear”, “right/right-turn area is clear”, “left side has
solid line” and “right side has solid line”. The 6 environment
descriptions are displayed in Tab. V and the details of the
environment descriptions are discussed in Section IV. The
whole process of our NLE-DM network is described as
follows:

X → (A, R) ∈ {0, 1}
4
× {0, 1}

21,

or

X → (A, D) ∈ {0, 1}
4
× {0, 1}

6, (1)

where A denotes the driving actions, R and D denote the
reasons of driving actions and the environment descriptions,
respectively.

The semantic scene understanding (S-S) module is based on
a semantic segmentation network, DeepLabv3 [48]. We refer
readers to [48] for more details about DeepLabv3. The func-
tion of the S-S module is to extract the semantic feature
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map Mi ∈ Rh×w×n from the image X i , where h and w
denote height and width of the feature map, which are the
same as the image X i , n denotes the number of channels for
semantic feature map, which is also the number of classes for
the semantic segmentation. The process of the S-S module is
described as follows:

S-S Module: X i −→ Mi ∈ Rh×w×n, 1 ≤ i ≤ N , (2)

where N is the number of frames in the frame set X.
The action-explanation (A-E) module consists of three parts:

the embedding module, the Act-Rea sub-network and the Act-
Desc sub-network. The feature maps from the S-S module
are first fed into the embedding module to reduce the dimen-
sionality and resolution. After the processing, the shape of
the embedding feature map is 64 × 18 × 32, where 64 is the
number of channels, and 18×32 is the resolution. Note that in
this work, the input resolution is 720 × 1280 and the number
of channels is 3 (i.e., RGB image). Then, the embedding
feature map is flattened and fed into the Act-Rea sub-network
and the Act-Desc sub-network to predict the decision-making
actions and the corresponding natural-language explanations.
The process of embedding module is described as Mi −→ Vi ,
where Vi is the flatten vector.

As aforementioned, the reasons of driving actions and the
environment descriptions are both proposed to explain the
decision-making actions. So, we design the Act-Rea sub-
network and the Act-Desc sub-network in the A-E module
to output the driving actions with different natural-language
explanations. The Act-Rea sub-network contains the action
and reason modules so that the A-E module outputs the
decision-making actions along with the natural-language rea-
sons of driving actions. The process for the Act-Rea sub-
network is described as follows:

Act-Rea: Vi → (A, R) ∈ {0, 1}
4
× {0, 1}

21, 1 ≤ i ≤ N , (3)

where N is the number of frames in the frame set X. The
Act-Desc sub-network contains the action and description
modules so that the A-E module outputs the decision-making
actions along with the natural-language descriptions of the
surrounding environment of the ego-vehicle. The process for
the Act-Desc sub-network is described as follows:

Act-Desc: Vi → (A, D) ∈ {0, 1}
4
× {0, 1}

6, 1 ≤ i ≤ N , (4)

where N is the number of frames in the frame set X.

B. Training Details

We first pre-train the S-S module using the BDD10K
dataset, which is a part of the BDD100K dataset [46].
The S-S module enables our network to be equipped with
the capability for pixel-wise semantic scene understanding.
Then, we train our whole network by loading the pre-trained
weight. For the Act-Rea sub-network, the training and test-
ing is based on the BDD-OIA dataset [15]. For the Act-
Desc sub-network, we proposed a new dataset, the BDD
Actions and Descriptions (BDD-AD) dataset. The images of
BDD-AD are selected from the BDD-OIA and annotated
with driving actions and natural-language descriptions of the

surrounding environment of the ego-vehicle. The details of
the BDD-AD dataset are presented in Section IV. To further
verify the prediction performance and generalization capacity
of our proposed network, both the Act-Rea and Act-Desc are
tested on 1, 500 images that are selected from the nuScenes
dataset [16] and labelled with driving actions and corre-
sponding natural-language explanations (including reasons and
descriptions).

We adopt the stochastic gradient descent (SGD) optimizer
with the initial learning rate of 0.001, momentum of 0.9 and
weight decay of 1 × 10−4. It is worth noting that the images
between BDD10K and BDD-OIA are not totally overlapped
with each other. So, to enable our network to adapt to new
scenes, even though the network is pre-trained on BDD10K,
the weights of the S-S module are not fixed during training
with BDD-OIA or BDD-AD.

Our network is trained with a multi-task loss function, which
is calculated as follows:

Ltotal = Lact + λLrea, (5)
Ltotal = Lact + λLdesc, (6)

where Ltotal is the total loss, Lact , Lrea and Ldesc are
the binary cross entropy losses for action prediction, rea-
son prediction and description prediction, respectively. For
the Act-Rea sub-network, loss function (5) is applied. For
the Act-Desc sub-network, loss function (6) is applied. λ
is a weight parameter that determines the relative impor-
tance between decision-making actions and the corresponding
natural-language explanations.

For the Act-Rea sub-network, we adopt the 4 categories
of decision-making actions and corresponding 21 categories
of natural-language reasons that are used in the work [15].
It is worth noting that in the work [15], the 21 categories
of natural-language reasons are referred as “explanations”.
In such case, the two losses Lact and Lrea are calculated as:
Lact =

∑4
i=1 L[ Âi , Ai ] and Lrea =

∑21
j=1 L[R̂ j , R j ], where

Âi and Ai are the prediction and ground truth for decision-
making actions, respectively. R̂ j and R j are the prediction and
ground truth for the reasons, respectively.

For the Act-Desc sub-network, the 4 categories of
decision-making actions are still adopted but with 6 categories
of natural-language descriptions. Therefore, besides the Lact ,
the Ldesc is calculated as: Ldesc =

∑6
k=1 L[D̂k, Dk], where

D̂k and Dk are the prediction and ground truth for the
descriptions, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Evaluation Metrics

The standard F1 score metric is employed to quantita-
tively evaluate the prediction performance of decision-making
actions, the prediction performance of the reasons of driving
actions, and the prediction performance of the descriptions of
the surrounding environment. Two types of F1 score, F1oval
and F1m, are used. The F1oval refers to the overall F1 score,
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TABLE I
COMPARATIVE RESULTS OF THE PREDICTION PERFORMANCE FOR DIFFERENT NETWORKS. LABEL F DENOTES “MOVE FORWARD”, LABEL S DENOTES

“STOP/SLOW DOWN”, LABEL L DENOTES “TURN LEFT/CHANGE TO LEFT LANE”, LABEL R DENOTES “TURN RIGHT/CHANGE TO RIGHT LANE”.
THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT AND ITALIC FONT

which is calculated as:

F1act
oval =

1
N

N∑
i=1

F1( Âi , Ai ), (7)

F1rea
oval =

1
M

M∑
j=1

F1(R̂ j , R j ), (8)

F1desc
oval =

1
Q

Q∑
k=1

F1(D̂k, Dk), (9)

where F1act
oval, F1rea

oval and F1desc
oval are the F1oval scores for the

action predictions, the reason predictions and the description
predictions, respectively. N , M and Q are the numbers of
the action predictions, the reason predictions and the descrip-
tion predictions, respectively. Considering the fact that the
BDD-OIA and BDD-AD datasets are imbalanced, we also
calculate the mean F1 score, F1m, as follows:

F1act
m =

1
4
(F1F + F1S + F1L + F1R), (10)

F1rea
m =

1
21

21∑
j=1

F1rea
j , (11)

F1desc
m =

1
6

6∑
k=1

F1desc
k , (12)

where F1act
m , F1rea

m and F1desc
m are the F1m scores for the

action predictions, the reason predictions and the description
predictions, respectively. F1F, F1S, F1L and F1R are F1 scores
for the predictions of “move forward”, “stop/slow down”,
“turn left/change to left lane” and “turn right/change to left
lane”, respectively. F1rea

j and F1desc
k are the F1 score for the

predictions of each reason category and description category,
respectively.

B. Jointly Predicting Actions and Reasons

In this section, we discuss the experimental results for the
Act-Rea sub-network to jointly predict the decision-making
actions and the corresponding natural-language reasons. Tab. I
shows the quantitatively comparative results between our Act-
Rea sub-network and other networks [15], [41], [42], [49],
[50]. As aforementioned, the λ is the weighting parameter
in the loss function (5) to determine the relative importance
between driving actions and corresponding reasons. The effec-
tiveness of λ on the prediction performance is discussed in

TABLE II
THE PREDICTION PERFORMANCE OF THE NATURAL-LANGUAGE REA-

SONS. WITH THE BDD-OIA DATASET, TO ALLEVIATE THE IMBAL-
ANCE, “TURN LEFT/RIGHT” IS MERGED WITH “CAN’T CHANGE TO

LEFT/RIGHT LANE”. HERE, FOR THE CONVENIENCE OF ILLUS-
TRATION, “TURN LEFT/RIGHT” AND “CAN’T CHANGE TO

LEFT/RIGHT LANE” ARE LISTED IN DIFFERENT ROWS

detail in the ablation study. The OIA network [15] combines
the object reasoning with global scene reasoning to focus on
the action-inducing object. The network of local selector is
proposed by Wang et al. [49] and modified by Xu et al. [15],
and it is able to predict the action and explanation. The local
selector could be regarded as the OIA network that contains
only the local object reasoning. The contrastive self-explaining
neural network (C-SENN) [41] combines contrastive learning
with concept learning to improve the explainability and the
accuracy of predictions of driving actions. The concept bot-
tleneck model (CBM) [50] is proposed by Kon et al. [50]
and modified by Sawada et al. [42] to jointly predict action
and corresponding reasons. The concept bottleneck model with
additional unsupervised concepts (CBM-AUC) [42] is based
on CBM and integrates supervised concepts with unsupervised
concepts to improve prediction performance.

As shown in Tab. I, for the action prediction, our Act-Rea
(λ = 1.0 & 2.0) and OIA have similar prediction performance,
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Fig. 2. Sample comparative results of action and reason predictions for the OIA network [15] and our network. The label “GT” denotes the ground truth
for decision-making actions, and the label “Pre” denotes the prediction for decision-making actions. For the reasons, green denotes true positive, red denotes
false positive, grey denotes false negative. To ensure the fairness of comparison, all the four figures are chosen exactly the same with the Fig. 4 from [15].
The figure is best viewed in color.

TABLE III
THE PREDICTED IOU (%) FOR EACH CLASS ON THE BDD10K DATASET

which are better than the other networks. For the reason
prediction, the performance of our Act-Rea (λ = 1.0 &
2.0) and CBM-AUC are at the same level and are better
than the other networks. Therefore, these comparative results
quantitatively demonstrate the superiority of our proposed
Act-Rea sub-network in terms of the prediction performance
of both the decision-making actions and the corresponding
reasons.

The superiority of our network is also validated by the
qualitative results as shown in Fig. 2. In order to ensure
the fairness of the comparison, we choose exactly the
same examples from the paper of OIA [15]. As shown
in Fig. 2, the decision-making action predictions of Act-
Rea (λ = 1.0) sub-network and OIA network are the
same, but with different reason prediction accuracy. For
the OIA network, the ratio of true positive for the reason
prediction of four examples is 100%, 33.3%, 50%, 66.7%,
respectively. For our Act-Rea sub-network, the ratios are
100%, 50%, 75%, 100%.

We conjecture the reasons why the prediction performance
of our network is better than OIA as follows:

• Unlike our network that uses the atrous spatial pyramid
pooling (ASPP) [48] to capture multi-scale features, the
OIA network only involves global and local features.
Given the fact that the driving environment is complex
with various sizes of objects, the lack of multi-scale envi-
ronment perception may cause the network to misidentify
multi-scale objects and eventually lead to incorrect reason
predictions.

• In the OIA network, the object detection (i.e., Faster
R-CNN) is employed to obtain the feature maps and
capture the action-induced objects. By contrast, our
network uses semantic segmentation (i.e., DeepLabv3)
instead of object detection, which could capture more
detailed information from the environments, because
semantic segmentation predicts object class labels at the
fine pixel-wise level while object detection provides the
labels only at the coarse bounding-box level.

The prediction performance for the natural-language rea-
son is also discussed in this section. Tab. II shows the
prediction performance of each category of the reasons of
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Fig. 3. The schematic diagram for surrounding environment descriptions of
the ego-vehicle.

TABLE IV
COMPARATIVE RESULTS ON BDD-OIA AND NU-AR FOR THE PREDICTION

PERFORMANCE OF THE ACT-REA SUB-NETWORK

the Act-Rea (λ = 1.0). Unlike the prediction performance
of the decision-making action, the reason prediction results
are biased. For some reason categories, their F1 scores are
zero, which indicates that the network is unable to predict
the natural-language reasons. The reasons for unsatisfactory
natural-language reason predictions are conjectured as follows:

• The network is pre-trained on the BDD10K dataset for
semantic segmentation. Naturally, the poor segmentation
performance for some object classes from the semantic
segmentation could result in unsatisfactory reason predic-
tion. For example, the intersection over union (IoU) for
the rider class is 13.4% (see details in Tab. III), which
may cause the A-E module in the network to misidentify
the “rider”, not to mention using “obstacle: rider” to
explain the driving action of “Stop/Slow down”. A similar
reason for the unsatisfactory prediction performance of
the reason of “obstacle: others”, as the IoU of other
obstacles, including train, motorcycle and bicycle, are
0.0%, 36.3% and 36.2%, respectively.

• Some natural-language reasons are abstract and ambigu-
ous, which may also cause incorrect predictions. Tak-
ing the natural-language reasons of “front car turning
left/right” as an example, even though the IoU for the
car class is satisfactory (89.5%), the network still fails
the reason prediction, because the network could not
understand whether the front car is turning left/right or
not.

To further test the prediction performance and the gener-
alization capability of the Act-Rea sub-network, we select

TABLE V
THE CATEGORIES OF THE ACTIONS AND DESCRIPTIONS IN OUR PRO-

POSED BDD-AD DATASET. THE RATIO REFERS TO THE PERCENTAGE
OF EACH CATEGORY IN THE DATASET

1, 500 images from the nuScenes dataset [16] and label each
image with the 4 driving actions and 21 reasons. This dataset is
named as the nuScenes Actions and Reasons (nu-AR) dataset.
In nu-AR, both the driving action categories and reason
categories are the same as the BDD-OIA dataset [15]. Then,
we load the weight that is trained on BDD-OIA and obtain
the prediction performance of the Act-Rea sub-network that
is tested on nu-AR. Tab. IV shows the comparative results of
prediction performance for the Act-Rea (λ = 1.0) that is tested
on BDD-OIA and nu-AR, respectively. As shown in Tab. IV,
both the action and description prediction performance of
Act-Rea tested on BDD-OIA is slightly better than those of the
Act-Rea tested on nu-AR. For the F1act

m and F1rea
oval, the testing

results of BDD-OIA are about 5% higher than the testing
results of nu-AR. For the F1act

oval and F1rea
m , the testing results

of BDD-OIA are about 1% higher than the testing results
of nu-AR. These comparative results verify the prediction
performance and generalization capability of our proposed
Act-Rea sub-network.

C. Jointly Predicting Actions and Descriptions

To further improve the explainability of decision-making
actions, here we propose to apply the natural-language
descriptions of surrounding environment of the ego-vehicle
to explain the decision-making actions. As shown in Fig. 3,
to give a comprehensive description of surrounding environ-
ment, natural-language descriptions of “traffic light allows”,
“front area free of obstruction”, “left/left-turn area is clear”,
“right/right-turn area is clear”, “left side has solid line” and
“right side has solid line” are chosen. For the description
category of “left/left-turn area is clear”, it contains the “left
area of ego-vehicle is clear” and “left-turn area of crossroads
is clear”. For the description category of “right/right-turn area
is clear”, it contains the “right area of ego-vehicle is clear”
and “right-turn area of crossroads is clear”. Considering the
fact that the relative ratios of “left/right-turn area of crossroads
is clear” are low, the description categories of “left/right area
of ego-vehicle is clear” and “left/right-turn area of crossroads
is clear” are merged into “left/left-turn (right/right-turn) area
is clear” to avoid biased distribution. It is clear to see that
compared with the natural-language reasons of driving actions,
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TABLE VI
COMPARATIVE RESULTS OF THE PREDICTION PERFORMANCE FOR THE

ACT-DESC SUB-NETWORK AND ACT-REA SUB-NETWORK

the surrounding environment descriptions of the ego-vehicle
are much more straightforward and objective.

In order to use the surrounding environment descriptions
to explain the decision-making actions, the Act-Desc sub-
network jointly predicts the decision-making actions and
natural-language environment descriptions. Then, the descrip-
tions could be used to explain the decision-making actions. For
example, if the natural-language descriptions of the surround-
ing environment are “traffic light allows” and “front area is
free of obstruction”, then the action of “move forward” could
be explained.

To train the Act-Desc sub-network to jointly produce
decision-making actions and the description of the ego-
vehicle’s surrounding environment, a large-scale dataset with
hand-labelled driving actions and natural-language descrip-
tions of the ego-vehicle’s surrounding environment is built
by us. We refer this dataset as BDD Actions and Descrip-
tions (BDD-AD) dataset, because 10, 000 images from the
BDD-OIA dataset [15] are selected from various weather
conditions and different times of the day. Each image in
BDD-AD is manually annotated with 4 driving actions (“move
forward”, “stop/slow down”, “turn left/change to left lane”,
“turn right/change to right lane”) and 6 natural-language
descriptions of the ego-vehicle’s surrounding environment.
In addition, each image in BDD-AD contains at least 5 pedes-
trians or bicycle riders and more than 5 vehicles. There-
fore, considering the complex driving scenes, multiple driving
actions and descriptions are annotated for each image. Tab.
V summarizes the number of each category of actions and
descriptions. We use binary vectors to represent the driving
actions and natural-language descriptions. For example, if the
driving actions of the ego-vehicle are “move forward” and
“change to right lane”, and the surrounding environment
descriptions are: “traffic light allows”, “front area is free of
obstruction”, “left/left-turn area is clear”, “right/right-turn area
is clear”, “left side has solid line” and “right side has no
solid line”, the annotations for the actions and descriptions
are [1, 0, 0, 1]

T and [1, 1, 1, 1, 1, 0]
T , respectively.

Tab. VI shows the comparative results between the Act-
Rea (λ = 1.0) and the Act-Desc (λ = 1.0). For the Act-
Rea sub-network, it jointly predicts decision-making actions
and the corresponding natural-language reasons. For the
Act-Desc sub-network, it jointly produces decision-making
actions and the corresponding natural-language descriptions
of ego-vehicle’s surrounding environment. Since the images
of BDD-AD dataset are selected from the BDD-OIA dataset,
these two datasets have the same level of scene complexity
and traffic conditions. Therefore, even though the dataset for
Act-Rea sub-network and Act-Desc sub-network are different
(Act-Rea sub-network is based on BDD-OIA dataset, while

TABLE VII
COMPARATIVE RESULTS ON BDD-AD AND NU-AD FOR THE PREDICTION

PERFORMANCE OF THE ACT-DESC SUB-NETWORK

Act-Desc sub-network is based on BDD-AD dataset), the
prediction performance between these two sub-networks are
still comparable. As shown in Tab. VI, for the prediction
performance of the decision-making actions, both the F1act

m
and F1act

oval of the Act-Desc sub-network is about 20% higher
than the Act-Rea sub-network. For the prediction performance
of the natural-language explanations, the F1desc

m of Act-Desc
sub-network is about 200% higher than the F1rea

m of Act-
Rea sub-network, and the F1desc

oval is about 70% higher than
F1rea

oval. Therefore, compared with Act-Rea sub-network, the
Act-Desc sub-network has better prediction performance both
in decision-making actions and natural-language explanations.

The possible reasons why the prediction performance of the
decision-making actions and natural-language explanations of
the Act-Desc sub-network are better than the Act-Rea sub-
network are discussed as follows:

• Compared with some natural-language reasons (such as
“follow traffic”, “front car turning left/right”, “on the
left/right turn lane”, etc), all the 6 natural-language
descriptions of ego-vehicle’s surrounding environment are
more straightforward and precise, which could lead to
better prediction performance of natural-language expla-
nation for the Act-Desc sub-network.

• It can be discovered that the existence of natural-language
explanations could improve the prediction performance of
decision-making actions (see the details in the following
ablation study). So, the better prediction performance
of natural-language explanation of Act-Desc sub-network
also leads to more accurate prediction of decision-making
actions.

Fig. 4 shows sample qualitative results for the Act-Desc sub-
network to jointly predict the decision-making actions and the
corresponding descriptions of the surrounding environment.
Different weather conditions and different times of the day
are chosen to demonstrate the generalization capability of our
proposed network. As shown in Fig. 4, all the decision-making
action predictions and most description predictions of the
Act-Desc sub-network are the same as ground truth, which
demonstrates the satisfactory performance of the Act-Desc
sub-network.

To further test the prediction performance and the gener-
alization capability of the Act-Desc sub-network, we label
the selected 1.5k nuScenes images with 4 driving actions
and 6 natural-language descriptions. This dataset is named
as the nuScenes Actions and Descriptions (nu-AD) dataset.
In nu-AD, both the driving action categories and descrip-
tion categories are the same as the BDD-AD dataset. Then,
we load the weight that is trained on BDD-AD and obtain
the prediction performance of the Act-Desc sub-network that
is tested on nu-AD. Tab. VII shows the comparative results
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Fig. 4. The sample prediction results of the decision-making actions and the surrounding environment descriptions of the ego-vehicle. The label “GT”
denotes the ground truth for action, and the label “Pre” denotes the action prediction. For the descriptions, green explanation denotes correct predictions, red
explanation denotes wrong predictions. The figure is best view in color.

of prediction performance for the Act-Desc (λ = 1.0) that
is tested on BDD-AD and nu-AD, respectively. The action
prediction performance of the Act-Desc tested on BDD-AD
is about 10% better than the Act-Desc tested on nu-AD. The
description prediction performance of the Act-Desc tested on
BDD-AD is slightly better than the Act-Desc tested on nu-
AD. For the F1desc

m , the testing result of BDD-AD is about
3% higher than the testing result of nu-AD. For the F1desc

oval , the
testing results of BDD-AD and nu-AD are almost the same.
These comparative results verify the prediction performance
and generalization capability of our proposed Act-Desc sub-
network.

D. Ablation Study
We first investigate the relationship between the

decision-making actions and the corresponding natural-
language explanations. Tab. VIII shows the prediction
performance of the Act-Rea sub-network with different
values of λ in the loss function (5). As aforementioned, the
weighting parameter λ determines the relative importance
between decision-making actions and corresponding reasons.
The Act-Rea sub-network with λ = 0.0 means that the
reason prediction is removed. On the contrary, the λ = ∞

refers to the Act-Rea sub-network without action prediction.
As shown in Tab. VIII, for the Act-Rea with λ = 0.0
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TABLE VIII
THE ABLATION STUDY RESULTS OF PREDICTION PERFORMANCE FOR ACT-REA SUB-NETWORKS WITH THE DIFFERENT RELATIVE IMPORTANCE OF

ACTION AND REASON. THE RELATIVE IMPORTANCE IS DETERMINED BY λ ON THE LOSS FUNCTION (5). THE BEST AND SECOND-BEST RESULTS
ARE HIGHLIGHTED IN BOLD FONT AND ITALIC FONT

TABLE IX
THE ABLATION STUDY RESULTS OF THE ACT-DESC SUB-NETWORK. THE PREDICTION PERFORMANCE FOR THE ACT-DESC SUB-NETWORKS WITH THE

DIFFERENT RELATIVE IMPORTANCE OF ACTION AND DESCRIPTION (TOP). THE PREDICTION PERFORMANCE FOR NETWORKS WITH DIFFERENT
BACKBONES (BOTTOM). THE RELATIVE IMPORTANCE OF ACTION AND DESCRIPTION IS DETERMINED BY λ ON THE LOSS FUNCTION (6).

THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT AND ITALIC FONT

(only action prediction), the prediction performance of the
decision-making actions is worse than the Act-Rea with
λ = 1.0 (both action and reason predictions), which indicates
that the existence of the reasons could improve the prediction
performance of the decision-making actions. For the Act-Rea
with λ = 0.5, its action prediction performance is better
than the Act-Rea with λ = 0.0 and worse than the Act-Rea
with λ = 1.0, which again validates that the existence of
reason could impose positive impacts on the action prediction.
However, it is worth noting that the positive impacts of reason
on action prediction are limited, because the action prediction
performance of the Act-Rea with λ = 2.0 is worse than the
Act-Rea with λ = 1.0.

For the Act-Rea with λ = ∞ (only reason prediction),
its prediction performance of the natural-language reasons
is better than the Act-Rea with λ = 1.0, indicating that
the existence of action has no positive effect on the reason
prediction. Furthermore, the reason prediction performance of
the Act-Rea with λ = 2.0 is better than the Act-Rea with
λ = 1.0 and worse than the Act-Rea with λ = ∞, which
again validates that the existence of action could not improve
the reason prediction.

A similar relationship between the decision-making actions
and descriptions of the surrounding environment is also dis-
covered for the Act-Desc sub-network (see the top rows of Tab.
IX). For the Act-Desc with λ = 0.0 (only action prediction),
the prediction performance of the decision-making actions
is worse than the Act-Desc with λ = 1.0 (both action and
description predictions), which indicates that the existence of
the description could improve the prediction performance of
the decision-making actions. For the Act-Desc with λ = 0.5,
its action prediction performance is better than the Act-Desc
with λ = 0.0 and worse than the Act-Desc with λ = 1.0,

which again validates that the existence of description could
impose positive impacts on the action prediction. For the
Act-Desc with λ = ∞ (only description prediction), its pre-
diction performance of description is better than the Act-Desc
with λ = 1.0, indicating that the existence of action has no
positive effect on the description prediction. The description
prediction performance of the Act-Desc with λ = 2.0 is better
than the Act-Desc with λ = 1.0 and worse than the Act-Desc
with λ = ∞, which again validates that the existence of action
could not improve the description prediction.

We think this is caused by the internal relationship between
the decision-making actions and the corresponding explana-
tions. Even though the action and explanation predictions
are parallel from the view of the network architecture, there
may exist some interactions or impacts between them. The
decision-making action could be regarded as the result of the
corresponding explanation. So, accurate explanation predic-
tion could improve the action prediction, while the action
predictions do not impose such impacts on the description
predictions.

In this section, we also test different feature extraction
backbones, including ResNet50 (baseline), ResNet101 [51],
MobileNetV3-Small and MobileNetV3-Large [52], in the Act-
Desc sub-network (λ = 1.0) to compare their prediction
performance. As shown in the bottom rows of Tab IX, the
Act-Desc sub-network with the ResNet101 backbone presents
the best prediction performance in both the decision-making
actions and surrounding environment descriptions. For the
Act-Desc sub-network with the MobileNetV3-Large back-
bone, its prediction performance is at the same level as the
Act-Desc sub-network with the ResNet50 backbone. Even
though the prediction performance of the Act-Desc sub-
network with the MobileNetV3-Small backbone is the worst
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among these networks, it is still acceptable, indicating that
the Act-Desc sub-network has a potential to be applied on
resource-constrained mobile devices.

E. Limitations

Despite the superiority of our proposed network, there
are still some limitations. Firstly, the proposed network uses
only one image frame. However, human drivers usually use
a sequence of visual information to make driving deci-
sions. So, using a sequence instead of a single image frame
may improve the prediction performance of decision-making
action. Moreover, for both the Act-Rea sub-network and the
Act-Desc sub-network, the predicted decision-making actions
are selected from only 4 action categories. More categories of
decision-making actions should be considered to enable our
network to work in real environments.

V. CONCLUSION AND FUTURE WORK

We proposed here an explainable network to explain the
decision-making actions by jointly predicting decision-making
actions and the corresponding natural-language explanations
for autonomous driving. Two types of explanations, the rea-
sons of driving actions as well as the descriptions of ego-
vehicle’s surrounding environment, are proposed. We also
release a large-scale dataset with hand-labelled ground
truth including 4 kinds of driving actions and 6 kinds of
natural-language descriptions of surrounding environment of
the ego-vehicle. The comparative experiments are performed
and the superiority of our network over other methods is
demonstrated on both our datasets and a public dataset. The
relationship between the decision-making actions and the cor-
responding natural-language explanations has been discussed
through ablation studies. In the future, we would like to
further enhance the explainability of the proposed NLE-DM
by revealing the internal working principles of the network,
which may improve the explainability of the network.
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