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Multimodal-XAD: Explainable Autonomous Driving
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Abstract— In recent years, deep learning-based end-to-end
autonomous driving has become increasingly popular. However,
deep neural networks are like black boxes. Their outputs are
generally not explainable, making them not reliable to be
used in real-world environments. To provide a solution to this
problem, we propose an explainable deep neural network that
jointly predicts driving actions and multimodal environment
descriptions of traffic scenes, including bird-eye-view (BEV) maps
and natural-language environment descriptions. In this network,
both the context information from BEV perception and the
local information from semantic perception are considered before
producing the driving actions and natural-language environment
descriptions. To evaluate our network, we build a new dataset
with hand-labelled ground truth for driving actions and mul-
timodal environment descriptions. Experimental results show
that the combination of context information and local infor-
mation enhances the prediction performance of driving action
and environment description, thereby improving the safety and
explainability of our end-to-end autonomous driving network.

Index Terms— Autonomous driving, decision making, multi-
modal explanations, BEV perception, explainable AI (XAI).

I. INTRODUCTION

OVER the past years, the research on autonomous driving
has made great progress due to the impressive advance-

ment of deep learning technologies [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11]. However, most existing deep
learning-based autonomous driving networks suffer from the
issue of lacking explainability, because deep neural networks
are like black boxes. Without explainable control commands,
it is unsafe to deploy these technologies in real-world envi-
ronments. To provide explanations to autonomous driving
networks, many methods [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26] have been
proposed. The explanations provided by these methods can be
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Fig. 1. The overview of our proposed method. The NL Description refers
to the natural-language environment descriptions.

generally categorized into two types: visual explanation [12],
[13], [14], [15], [16], [17] and natural-language explana-
tion [18], [19], [20], [21], [22], [23], [24], [25], [26]. The
visual explanation usually explains the network outputs by
visualizing the inner process of the network [27], [28], [29],
such as saliency maps and attention heat maps. The natural-
language explanation [18], [19], [20], [21], [22], [23], [24],
[25], [26] explains the network outputs in the form of phrases,
such as driving action reasons and goals. Compared with the
visual explanation, the natural-language explanation is easier
to interpret and can give end users a better understanding
of what triggers a particular behavior [18]. However, the
natural-language explanation lacks the ability to describe how
the inner process of the network works. Therefore, combining
both visual and natural-language explanations may be a more
effective way to explain the outputs of autonomous driving
networks. So, in this work, we propose an explainable deep
neural network that jointly predicts driving actions and the
corresponding explanations in multimodal formats, including
bird-eye-view (BEV) maps and natural-language environment
descriptions for traffic scenes.

Recently, BEV perception for traffic scenes has attracted
great attention because the BEV map is very straightforward
for many downstream tasks [30], such as motion planning,
behavioral intention prediction [31], etc. The existing meth-
ods on BEV perception can be generally divided into three
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categories according to the used sensors: point cloud-based
methods [32], [33], [34], [35], vision-based methods [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48] and multimodal methods [49], [50], [51], [52]. The
point cloud-based methods use point clouds produced by
LiDAR or radar. The vision-based methods use RGB images
produced by visual cameras. They need to transform the visual
information from the Perspective View (PV) to BEV. The
multimodal methods integrate data from various sensors, such
as cameras, LiDAR and radar, to obtain BEV perception. Com-
pared with the point cloud-based and multimodal methods,
the vision-based methods are cost-effective but with relatively
inferior semantic perception performance [30]. Moreover, the
unsatisfactory BEV segmentation results of vision-based meth-
ods may further influence the downstream tasks. In other
words, error accumulations may happen to the downstream
tasks of BEV perception.

To alleviate the error accumulation, our proposed method
considers both the context information from BEV perception
and the local information from semantic perception (i.e.,
the semantic segmentation from surrounding images) before
predicting driving actions and natural-language environment
descriptions. Fig. 1 shows the overview of our proposed
method. To train and evaluate our network, we release
a new dataset containing 12, 000 image sequences. Each
sequence includes images from surrounding cameras and the
hand-labelled ground truth for driving actions, as well as
multimodal descriptions of traffic scenes. The experimental
results show that the combination of context information and
local information improves the prediction performance of both
driving actions and environment descriptions, which increases
the safety and explainability of the autonomous driving net-
work. The contributions of this work are summarized as
follows:

1) A novel explainable decision-making network for
autonomous driving is proposed by considering both
the context information from BEV perception and local
information from semantic perception.

2) The multimodal environment descriptions of traffic
scenes, including BEV maps and natural-language envi-
ronment descriptions, are applied to explain the driving
actions.

3) A large-scale dataset containing 12, 000 image
sequences is released. Each image sequence contains
the hand-labelled ground truth for driving actions,
as well as BEV maps and natural-language environment
descriptions of traffic scenes.

4) The superiority of our proposed network over other
networks is demonstrated on both our released dataset
and the publicly available dataset. Our code and dataset
are publicly available.1

The remainder of this paper is structured as follows.
Section II reviews the related work. Section III presents the
details of our proposed network. Section IV discusses the
experimental results. Conclusions and future work are drawn
in the last section.

1https://github.com/lab-sun/Multimodal-XAD

II. RELATED WORK

A. Explainable Autonomous Driving Networks

As aforementioned, two main streams of methods, including
the visual explanation [12], [13], [14], [15], [16], [17] and
natural-language explanation [18], [19], [20], [21], [22], [23],
[24], [25], [26], are applied in explainable autonomous driving.
The visual explanation is obtained by visualizing the inner
process of the network. For example, Kim et al. [13] proposed
to use the visual attention heat map to highlight regions that
causally influence driving actions. Renz et al. [14] proposed
an explainable planning transformer, called PlanT. In this
network, by extracting and visualizing the attention weights,
objects that are relevant and crucial for the agent’s decision
could be identified to increase the explainability. The limitation
of visual explanations is that they are not easy to understand,
especially for end users.

Besides the visual explanation, natural-language explanation
has also been applied in some explainable autonomous driving
networks [18], [19], [20], [21], [22], [23], [24], [25], [26].
For example, Xu et al. [19] proposed a deep learning-based
network to jointly predict driving actions along with the cor-
responding natural-language reasons. While natural-language
explanations serve as effective aids in understanding the
decisions made by networks, they often fall short of reveal-
ing the inner process of networks. Taking into account the
limitations of the visual and natural-language explanations,
we believe that the multimodal explanation can better enhance
the explainability of networks.

B. Vision-Based BEV Perception

In recent years, many efforts [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48] have been made
in the field of vision-based BEV perception. For example,
Kim and Kum [36] proposed a method that utilizes inverse
perspective mapping to estimate the distance from a single
monocular image by assuming that all image pixels are on the
ground. However, the hard assumption that all pixels are on
the ground sacrifices the height discrimination. To address this
issue, Philion and Fidler [39] proposed a network to infer BEV
representations from arbitrary camera rigs. Pan et al. [42] pro-
posed the View Parsing Network (VPN) to parse the first-view
observations into a BEV semantic map. Zhou et al. [46]
proposed the Cross-View Transformers (CVT), an efficient
attention-based model for map-view semantic segmentation
from multiple cameras. Recently, to increase the robustness
of vision-based BEV perception, Chen et al. [48] proposed
the Masked BEV (M-BEV) perception framework to address
the emergence of camera crashes. Experimental results show
that the M-BEV framework significantly increases the per-
formance of the different models for various missing camera
emergencies.

C. Multimodality in Autonomous Driving

Multimodality has received great attention in autonomous
driving, because it could enhance the perception and
decision-making capabilities of autonomous vehicles [49],
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[50], [51], [52], [53], [54], [55], [56], [57], [58]. For exam-
ple, Prakash et al. [57] proposed a novel multimodal fusion
transformer, utilizing attention to integrate image and LiDAR
representations. Fang et al. [58] proposed a cognitive accident
prediction method by explicitly considering both the driver
attention and text descriptions of traffic scenes. Despite these
efforts in utilizing multimodality in autonomous driving, mul-
timodality in existing works is in terms of inputs, there is still
a research gap on how to utilize multimodality to enhance the
explainability of end-to-end driving networks, which deserves
further investigation. So, in this work, we propose to use
multimodal environment descriptions as outputs to explain the
driving actions.

D. Language-Driven Autonomous Driving Systems

Recently, with the rapid development of Large Language
Models (LLMs), there has been a notable trend towards
integrating LLMs into autonomous driving systems [59], [60],
[61], [62], [63]. It is believed that the generalization ability
of autonomous driving systems can be improved by utilizing
the commonsense reasoning of the LLMs [63]. Moreover,
the capability of LLMs in natural-language understanding
and generation can be used to enhance the explainability of
autonomous driving by producing contextually rich explana-
tions [61]. For example, Sima et al. [62] investigated how to
integrate the vision-language models (VLMs) into end-to-end
driving systems to improve the generalization. Fu et al. [63]
proposed to use the LLMs to understand traffic scenes in a
human-like manner and assess their capabilities to reason,
interpret, and memorize in complex scenarios.

E. Datasets for Autonomous Driving

So far, many real-world autonomous driving datasets have
been released, such as KITTI [64], CityScapes [65], Apol-
loscape [66], nuScenes [67], BDD100K [68], etc. However,
these datasets cannot encompass all situations, especially for
some corner cases and long-tail scenarios. To generate specific
scenarios at low cost, some simulators [69], [70] and world
models [71], [72] are proposed, by which the synthetic datasets
can be generated. For example, DriveDreamer [71] is able to
generate high-quality driving videos of realistic traffic scenes
and formulate reasonable driving policies. However, whether
it is real-world datasets or synthetic datasets, they cannot be
used for training explainable autonomous driving networks.
To develop and verify explainable networks, some explainable
datasets [18], [19], [26], [73], [74] have been proposed. The
limitations of these explainable datasets are that they only
contain natural-language explanations. To further increase the
explainability, we build a new dataset that contains driving
actions and multimodal environment descriptions. The details
of the proposed dataset are provided in section IV-A.

III. THE PROPOSED NETWORK

A. The Network Architecture

As shown in Fig. 2, our proposed network, named
Multimodal-XAD, mainly consists of five components:

encoder, BEV module, semantic understanding (S-U) mod-
ule, context embedding (C-E) module, and action-description
(A-D) module. The network takes as input the images along
with the intrinsics and extrinsics from surrounding monoc-
ular cameras (including the front camera, front left camera,
front right camera, back camera, back left camera, and back
right camera) to predict driving actions along with the mul-
timodal environment descriptions, namely, BEV maps and
natural-language environment descriptions of traffic scenes.

Let X i [k] denote the k-th image in the sequence X i [1 : n]

with an intrinsic matrix Ii [k] ∈ R3×3 and an extrinsic matrix
Ei [k] ∈ R3×4, where X i is the image sequence with several
images from different surrounding cameras, i is the index
of the image sequence in the dataset, n is the number of
surrounding cameras. Here, we have X i [k] ∈ Rh×w×c, where
h, w and c denote height, width and number of channels
for an image, respectively. Given that many traffic scenes
are complex, multiple driving actions may be applicable.
So, Multimodal-XAD is designed to predict multiple driving
actions Ai . Here, 4 categories of driving actions are adopted,
including “move forward”, “turn left/change to left lane”, “turn
right/change to right lane”, and “stop/slow down”. So, the
driving action can be denoted as Ai ∈ {0, 1}

4.
For the multimodal environment descriptions of traffic

scenes, both BEV maps Dbev
i and the natural-language envi-

ronment descriptions Dnl
i are predicted. The BEV map is

defined as the multi-class semantic BEV grid map of traffic
scenes. The size and resolution of the BEV map are 100
meter × 100 meter and 0.5 meter × 0.5 meter, respectively.
The number of semantic classes is 4, including road, vehicle,
road/lane divider and background. So, BEV maps can be
denoted as Dbev

i ∈ {0, 1, 2, 3}
200×200. The natural-language

environment description Dnl
i contains 8 categories, including

“traffic light allows”, “front area is clear”, “solid line on
the left”, “solid line on the right”, “front left area is clear”,
“back left area is clear”, “front right area is clear”, and “back
right area is clear”. So, the natural-language environment
description can be denoted as Dnl

i ∈ {0, 1}
8. The process of

Multimodal-XAD ( fxad) is described as follows:

fxad(X i , Ii , Ei ) → (Ai , Dbev
i , Dnl

i ), 1 ≤ i ≤ T, (1)

where i and T are the index and total number of image
sequences in the dataset, respectively.

We adopt EfficientNet [75] as the encoder to extract features
due to its trade-off between accuracy and efficiency [76]. The
encoder takes as input the image sequence X i and outputs
features Fi of images from 6 cameras. Then, the features Fi
are fed into the BEV module and S-U module at the same
time.

The BEV module is designed based on the Lift-Splat [39].
It contains two modules, including BEV decoder ( fdec) and
BEV generator ( fgen). The function of the BEV module is to
predict BEV maps Dbev

i of traffic scenes. The process of the
BEV module is described as follows:

fgen( fdec(Fi , Ii , Ei )) → Dbev
i , 1 ≤ i ≤ T, (2)

where i and T are the index and total number of image
sequences in the dataset, respectively. As the multi-class
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Fig. 2. The architecture of our proposed network. (a) shows the workflow of the network. The network takes as input the images along with the intrinsics
and extrinsics from surrounding monocular cameras to jointly predict driving actions and multimodal environment descriptions. (b) shows the details of the
S-U module, context block, embedding block and predictors. For the convolution and pooling layers, k refers to kernel size, s refers to the stride, and p refers
to the padding. The figure is best viewed in color.

semantic BEV grid maps, BEV maps Dbev
i show the over-

all perception of traffic environments within 100 meter ×

100 meter area. Consequently, BEV maps Dbev
i contain the

context information of the traffic scenes.
The S-U module includes the Atrous Spatial Pyramid Pool-

ing (ASPP, faspp) [77], convolution layer ( fconv, kernel size
of 1 × 1, stride of 1, padding of 0), batch normalization layer
( fbn), ReLu activation layer ( frelu), and dropout layer ( fdrop,
dropout rate of 0.5). We refer readers to [77] for more details
about the ASPP. The function of the S-U module is to enable
the network to understand traffic scenes at the pixel level. It is
worth noting that the inputs of the S-U module are the features
Fi [1 : 5] of images from the 5 cameras (i.e., the front, front
left, front right, back left, and back right cameras). The feature
Fi [6] of the image from the back camera is not fed into the S-U
module. The outputs of the S-U module are semantic features
Si [1:5] of images from the 5 cameras. Unlike the BEV maps
Dbev

i that focus on the overall perception of traffic scenes,
semantic features Si [1:5] focus on the road details of images
captured by different cameras. Consequently, semantic features
Si [1:5] contain the local information of the traffic scenes. The
process of the S-U module is described as follows:

fdrop( frelu( fbn( fconv( faspp(Fi [1 : 5]))))) → Si [1 : 5],

1 ≤ i ≤ T, (3)

where i and T are the index and total number of image
sequences in the dataset, respectively.

Then, BEV maps Dbev
i and the semantic features Si [1 : 5]

are both fed into the C-E module. The C-E module consists
of two parts: the context block ( fcb) and the embedding block
( feb). The context block includes the convolution layer ( fconv,
kernel size of 3 × 3, stride of (2, 1), padding of 1), batch
normalization layer ( fbn), ReLu activation layer ( frelu), and
pooling layer ( fpool, kernel size of 5 × 4). The embedding
block includes the convolution layer (kernel size of 3 × 3,
stride of 1, padding of 1), batch normalization layer ( fbn),
and ReLu activation layer ( frelu). So, we have fcb(∗) =

fpool( frelu( fbn( fconv(∗)))), and feb(∗) = frelu( fbn( fconv(∗))).
In the C-E module, BEV maps Dbev

i and semantic features
Si [1 : 5] are separately fed into the context block and the
embedding block to obtain the embedded features Gi and
L i [1 : 5], respectively. Then, Gi is concatenated with each
L i [k] (k ≤ 5) as the concatenated features Ci . As aforemen-
tioned, BEV maps Dbev

i contain the context information of
traffic scenes. So, considering that Gi is the embedded features
for Dbev

i , the context information from Dbev
i is embedded into

Gi . Similarly, the local information from Si [1 : 5] is embedded
into L i [1 : 5]. Eventually, by concatenating Gi and L i [1 : 5],
the context and local information of traffic scenes are both
encoded into the concatenated features Ci . The process of the
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C-E module is described as follows:

( fcb(Dbev
i ) ⊕ feb(Si [1 : 5])) → Ci , 1 ≤ i ≤ T, (4)

where i and T are the index and total number of image
sequences in the dataset, respectively.

Finally, the concatenated features Ci are fed into the A-D
module to predict the driving actions and the natural-language
environment descriptions. The A-D module is consisted of the
action predictor ( fap) and the description predictor ( fdp). In the
A-D module, the concatenated features Ci are flattened and fed
into the action and description predictors to predict the driving
actions and the natural-language environment descriptions.
Both the action predictor and description predictor contain
the two fully connected layers ( ffc). The Sigmoid function
( fsgm) is applied as the activation function after the second
fully connected layer with the threshold of 0.5. So, we have
fap(∗) = fsgm( ffc( ffc(∗))), and fdp(∗) = fsgm( ffc( ffc(∗))).
The process of the A-D module is described as follows:

( fap(Ci ), fdp(Ci )) → (Ai , Dnl
i ), 1 ≤ i ≤ T, (5)

where i and T are the index and total number of image
sequences in the dataset, respectively.

B. Training Details

The networks are trained with the NVIDIA GeForce
RTX 3090 GPU. We first pre-train the encoder and BEV
module using the nuScenes dataset for 30 epochs with the
batch size of 12. Then, we train Multimodal-XAD based on
our proposed dataset for 60 epochs with the batch size of
8. It is worth noting that not all image sequences of the
nuScenes dataset are used in the pre-training process. The
image sequences of our proposed dataset are picked out and
not used during pre-training. We adopt the Adam optimizer
with the initial learning rate of 1 × 10−4 and weight decay
of 1 × 10−8. Our network is trained with a multi-task loss
function, which is calculated as follows:

Ltotal = λ1Lact + λ2Lnl
desc + λ3Lbev

desc, (6)

where Ltotal is the total loss, Lact and Lnl
desc are the binary

cross entropy losses for predictions of driving actions and
natural-language environment descriptions, respectively. Lbev

desc
is the cross entropy loss for predictions of BEV maps. λ1,
λ2 and λ3 are the weight parameters that determine the
relative importance between driving actions, natural-language
environment descriptions and BEV maps, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset

Tab. I shows the comparison of different explainable
datasets of autonomous driving. For these available explain-
able datasets, they only contain natural-language explanations.
To further increase the explainability, combining visual and
natural-language explanations may be a more effective way to
explain the outputs of autonomous driving networks. To this
end, we build the nuScenes Action and multimodal envi-
ronment Descriptions (nu-A2D) dataset that contains driving
actions and multimodal environment descriptions.

TABLE I
EXPLAINABLE DATASETS FOR AUTONOMOUS DRIVING. THE SIZE REFERS

TO THE NUMBER OF EXPLANATIONS IN THE DATASET. THE ACTION
REFERS TO THE DRIVING ACTION

TABLE II
THE CATEGORIES OF DRIVING ACTIONS AND NATURAL-LANGUAGE

ENVIRONMENT DESCRIPTIONS (LABELLED AS NL DESCRIPTION) IN
OUR PROPOSED NU-A2D DATASET. THE RATIO REFERS TO THE

PERCENTAGE OF EACH CATEGORY IN THE DATASET

In the nu-A2D dataset, 12, 000 image sequences are selected
from the nuScenes [67] dataset. Each image sequence contains
6 images from surrounding cameras along with the ground
truth of driving actions, natural-language environment descrip-
tions and BEV maps for traffic scenes. The ground truth of
driving actions and natural-language environment descriptions
are manually labelled by ourselves. For each image sequence,
we need to observe 6 images from surrounding cameras
to determine and label the appropriate driving actions and
natural-language environment descriptions. Specifically, 4 cat-
egories of driving actions and 8 categories of natural-language
environment descriptions are adopted for the nu-A2D dataset.
Tab. II summarizes the categories and ratios of driving actions
and natural-language environment descriptions. The ground
truth of the BEV map is obtained by projecting 3D bounding
boxes of objects into the BEV plane and transforming map
layers from the nuScenes map into the ego-vehicle frame.

B. Evaluation Metrics

To evaluate the prediction performance of BEV maps, the
Intersection over Union (IoU) values for road, vehicle and
road/lane divider are calculated. Take the semantic class of
road for example, its IoU value is calculated as follows:

IoU =
Area of Intersection

Area of Union
× 100%, (7)

where the area of intersection refers to the area where both the
predicted BEV map and the ground truth have the semantic
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TABLE III
COMPARATIVE RESULTS OF THE PREDICTION PERFORMANCE OF DRIVING ACTIONS FOR DIFFERENT NETWORKS. LABEL F DENOTES “MOVE

FORWARD”, LABEL S DENOTES “STOP/SLOW DOWN”, LABEL L DENOTES “TURN LEFT/CHANGE TO LEFT LANE” AND LABEL R DENOTES
“TURN RIGHT/CHANGE TO RIGHT LANE”. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

class of road. The area of union refers to the total area
where either the predicted BEV map or the ground truth has
the semantic class of road. The mean IoU (mIoU) is also
calculated to show the average IoU value for all semantic
classes.

To evaluate the prediction performance of driving actions
and natural-language environment descriptions, the standard
F1 score metric is employed in this work. Specifically, the
overall and mean F1 score are used. The overall F1 score is
calculated as:

F1act
oval =

1
N

N∑
i=1

F1(Ai , Âi ), (8)

F1desc
oval =

1
M

M∑
j=1

F1(D j , D̂ j ), (9)

where F1act
oval and F1desc

oval are the overall F1 scores for the
predictions of driving actions and natural-language environ-
ment descriptions, respectively. Ai and Âi are the prediction
and ground truth for driving actions, respectively. D j and
D̂ j are the prediction and ground truth for natural-language
environment descriptions, respectively. N and M are the
numbers of the driving action predictions and natural-language
environment description predictions, respectively.

Given that the nu-A2D dataset is imbalanced, in which
the ratio between each category of driving actions and
natural-language environment descriptions is different (see
detail in Tab. II), we also calculate the mean F1 score for
predictions of driving actions and natural-language environ-
ment descriptions. The mean F1 score for the predictions of
driving actions is calculated as follows:

F1act
m =

1
4
(

1
N f

N f∑
i=1

F1(Af
i , Âf

i ) +
1

N s

N s∑
j=1

F1(As
j , Âs

j )

+
1
N l

N l∑
k=1

F1(Al
k, Âl

k) +
1

N r

N r∑
p=1

F1(Ar
p, Âr

p)), (10)

where F1act
m is the mean F1 score for predictions of driving

actions. N f, N s, N l, and N r are the numbers of the predictions
for “move forward”, “stop/slow down”, “turn left/change to
left lane” and “turn right/change to right lane”, respectively.
Af

i and Âf
i represent the prediction and ground truth for “move

forward”, respectively. The same naming rules are used for As
j ,

Âs
j , Al

k , Âl
k , Ar

p and Âr
p.

The mean F1 score for the predictions of natural-language
environment descriptions is calculated as follows:

F1desc
m =

1
8

8∑
e=1

(
1

Me

Me∑
i=1

F1(De
i , D̂e

i )), (11)

where F1desc
m is the mean F1 score for predictions of

natural-language environment descriptions. There are 8 cat-
egories of natural-language environment descriptions, so e
ranges from 1 to 8. Me represents the number of the pre-
dictions of each natural-language environment description
category. De

i and D̂e
i represent the prediction and ground truth

for each natural-language environment description category,
respectively.

C. Comparative Results

Tab. III and Tab. IV show the comparative results of the
prediction performance of driving actions and multimodal
environment descriptions, respectively. Decision Model [25]
is trained on the A2D dataset (without BEV maps) to jointly
predict the driving actions and the natural-language environ-
ment descriptions. Both VPN [42] and CVT [46] are modified
and trained on the nu-A2D dataset to jointly predict the driving
actions and multimodal environment descriptions. In VPN and
CVT, the driving action and natural-language environment
description are predicted only based on the context information
of traffic scenes. To ensure the fairness of comparison, VPN,
CVT and Multimodal-XAD are all pre-trained with the same
epochs on the nuScenes dataset before training on the nu-A2D
dataset.

As shown in Tab. III, both the F1act
m and F1act

oval of
Multimodal-XAD are higher than those of the other networks.
Specifically, the F1act

m of Multimodal-XAD is about 10%,
21% and 2% higher than those of Decision Model, VPN and
CVT, respectively. The F1act

oval of Multimodal-XAD is about
6%, 6% and 2% higher than those of Decision Model, VPN
and CVT, respectively. These comparative results show that
Multimodal-XAD presents better prediction performance of
driving action than the other networks. The better prediction
performance of driving actions would lead to higher safety for
autonomous driving. Tab. IV shows the comparative results
of the prediction performance of multimodal environment
descriptions for different networks. The F1desc

m and F1desc
oval of

Multimodal-XAD and CVT are very close and higher than
those of Decision Model and VPN. Specifically, the F1desc

m
of Multimodal-XAD is about 4% and 1% higher than those
of Decision Model and VPN, respectively. The F1desc

oval of
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TABLE IV
COMPARATIVE RESULTS OF THE PREDICTION PERFORMANCE OF MULTIMODAL ENVIRONMENT DESCRIPTIONS FOR DIFFERENT NETWORKS. THE

NATURAL-LANGUAGE ENVIRONMENT DESCRIPTION IS LABELLED AS NL DESCRIPTION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

Multimodal-XAD is about 5% and 4% higher than those of
Decision Model and VPN, respectively. For the mIoU of BEV
maps, Multimodal-XAD is about 8% and 9% higher than
those of VPN and CVT, respectively. The better prediction
performance of multimodal environment descriptions could
lead to more effective and accurate explanations for driving
actions.

As aforementioned, the segmentation performance of
vision-based BEV perception is limited and can further influ-
ence the prediction performance of downstream tasks. Unlike
VPN and CVT, Multimodal-XAD predicts driving actions and
natural-language environment descriptions based on both the
context information from BEV perception and local informa-
tion from semantic perception. So, the utilization of the local
information may alleviate the error accumulation. We believe
that this may be the possible reason why the prediction per-
formance of Multimodal-XAD is better than VPN and CVT.
On the other hand, Decision Model predicts the driving actions
and natural-language environment descriptions only based on
the local information. The absence of context information
hinders Decision Model from attaining a more comprehensive
understanding of traffic scenes. This may be the reason the
prediction performance of Multimodal-XAD is better than
Decision Model.

To evaluate the computational complexity of different net-
works, three key metrics are used, including the number of
parameters (Param), Floating Point Operations (FLOPs), and
Frames Per Second (FPS) for the inference. As shown in
Tab. V, the Param of Decision Model and CVT are very
close, which are both lower than Multimodal-XAD. How-
ever, Multimodal-XAD has the lowest FLOPs among these
networks, resulting in the highest FPS for inference.

Fig. 3 shows sample qualitative results for different net-
works. Complex traffic scenes are chosen to validate the
prediction performance and generalization capability of our
proposed network. Unlike the other networks, all driving
action predictions and most natural-language environment

TABLE V
COMPUTATIONAL COMPLEXITY FOR DIFFERENT NETWORKS ON THE NU-

A2D DATASET. THE INFERENCE SPEED IS TESTED USING AN NVIDIA
GEFORCE RTX 3060 GPU

description predictions of Multimodal-XAD are the same as
ground truth, which demonstrates that Multimodal-XAD is
able to perceive and understand traffic scenes and predict
the correct driving actions and natural-language environment
descriptions. For the visualization results of BEV maps,
Multimodal-XAD generates more precise and clear BEV
maps than the other networks. Specifically, we can see that
Multimodal-XAD is more sensitive to vehicles and road/lane
dividers compared to the other networks, which is critical for
safe navigation.

To further validate the prediction performance of our
Multimodal-XAD, we have tested it on the BDD-OIA [19]
dataset. In the BDD-OIA dataset, each image is labelled
with 4 driving actions and 21 natural-language reasons. Our
Multimodal-XAD is modified to jointly predict the driving
actions and corresponding reasons. Tab. VI shows the com-
parative results of the prediction performance for different
networks on the BDD-OIA dataset. In Tab. VI, F1act

m and
F1act

oval refer to the mean and overall F1 scores for predictions
of driving actions, respectively. F1rea

m and F1rea
oval refer to

the mean and overall F1 scores for predictions of natural-
language reasons, respectively. For F1act

m , F1act
oval and F1rea

m ,
our Multimodal-XAD is the highest among all these networks.
For F1rea

oval, Multimodal-XAD and Interrelation Model are very
close and higher than the other networks. These comparative
results demonstrate that our proposed Multimodal-XAD has
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TABLE VI
COMPARATIVE RESULTS OF THE PREDICTION PERFORMANCE FOR DIFFERENT NETWORKS ON THE BDD-OIA [19] DATASET. LABEL F DENOTES “MOVE

FORWARD”, LABEL S DENOTES “STOP/SLOW DOWN”, LABEL L DENOTES “TURN LEFT/CHANGE TO LEFT LANE” AND LABEL R DENOTES “TURN
RIGHT/CHANGE TO RIGHT LANE”. F1REA

M AND F1REA
OVAL REFER TO THE MEAN AND OVERALL F1 SCORES FOR PREDICTIONS OF NATURAL-

LANGUAGE REASONS, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

better prediction performance in terms of both driving actions
and the corresponding natural-language reason than the other
networks.

D. Ablation Study

In the ablation study, we first investigate the influence of the
context and local information on the prediction performance
of driving actions and multimodal environment descriptions.
Tab. VII shows the ablation study results of the prediction
performance of driving actions for different networks. For the
No Context network, the context information is not fed into
the C-E Module to concatenate with the local information. The
driving actions and natural-language environment descriptions
of the No Context network are predicted only based on
the local information from the semantic perception. On the
opposite, for the No Local network, the local information
is not fed into the C-E Module to concatenate with the
context information. The driving actions and natural-language
environment descriptions of the No Local network are pre-
dicted only based on the context information from the BEV
perception. As shown in Tab. VII, both the F1act

m and F1act
oval of

Multimodal-XAD are higher than those of the No Context
and No Local networks. These results validate that the
combination of context and local information would improve
the prediction performance of driving actions.

Tab. VIII shows the ablation study results of the prediction
performance of multimodal environment descriptions for dif-
ferent networks. As shown in Tab. VIII, both the F1desc

m and
F1desc

oval of Multimodal-XAD are higher than those of the No
Context and No Local networks. These results validate
that the combination of the context and local information
could improve the prediction performance of natural-language
environment description. For the prediction performance of
BEV maps, the mIoU of Multimodal-XAD, No Context
and No Local networks are at the same level. This indicates
that using context and local information to predict driving
actions and natural-language environment descriptions has
little impact on the prediction of BEV maps.

The influence of the natural-language environment descrip-
tion on the prediction performance of driving actions and
BEV maps is also investigated. As shown in Tab. VII, both
the F1act

m and F1act
oval of Multimodal-XAD are higher than

those of the network without natural-language environment
description (labelled as No NLD). This result shows that the

natural-language environment description would improve the
prediction performance of driving actions. For the prediction
performance of BEV maps (as shown in Tab. VIII), the mIoU
of Multimodal-XAD is lower than the No NLD network,
which shows that the natural-language environment description
has no positive influence on the prediction of BEV maps.

Fig. 3 also shows sample qualitative results for the
No Context, No Local and No NLD networks. For
the No Context and No Local networks, the predic-
tion performance of driving actions and natural-language
environment descriptions are worse than Multimodal-XAD,
indicating that the combination of context and local infor-
mation could improve the prediction performance of driving
actions natural-language environment descriptions. For the
No NLD network, the explainability is lower compared to
Multimodal-XAD due to the lack of natural-language envi-
ronment descriptions.

In this section, we further investigate the influence of dif-
ferent encoders on the prediction performance of Multimodal-
XAD. Fig. 4 shows the ablation study results of the prediction
performance for Multimodal-XAD networks with different
EfficientNet variants, including Efficient-B0 to Efficient-B7.
The left figure shows the F1 scores of the driving action
and natural-language environment description predictions of
Multimodal-XAD networks with different encoders. As shown
in the left figure of Fig. 4, both the F1act

m and F1act
oval of

Multimodal-XAD with the Efficient-B4 has the highest F1
score. This result shows that the driving action prediction
performance of Multimodal-XAD with the Efficient-B4 is the
best among all the networks with different encoders. For
the prediction performance of natural-language environment
description, both the F1desc

m and F1desc
oval of Multimodal-XAD

with Efficient-B6 is the highest. The F1desc
m and F1desc

oval of
Multimodal-XAD with Efficient-B4 is the fourth highest and
second highest, respectively.

The right figure of Fig. 4 shows the IoU of different classes
of BEV map predictions of Multimodal-XAD with different
encoders. As shown in the right figure of Fig. 4, the rising
trend of the prediction performance of BEV maps can be
seen when increasing the complexity of EfficientNet from
B0 to B7. Therefore, to trade off prediction performance and
computation cost, we choose EfficientNet-B4 as the default
encoder of our Multimodal-XAD.

The influence of the relative importance between driving
actions, natural-language environment descriptions and BEV
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Fig. 3. Sample qualitative results of predictions of driving actions and multimodal environment descriptions for different networks. The label “GT” denotes
the ground truth for driving action and multimodal environment descriptions. For the predictions of natural-language environment description (labelled as NL
description), the green one denotes correct prediction, and the red one denotes wrong predictions. The figure is best viewed in color.
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TABLE VII
ABLATION STUDY RESULTS OF THE PREDICTION PERFORMANCE OF DRIVING ACTIONS FOR DIFFERENT NETWORKS. LABEL F DENOTES “MOVE

FORWARD”, LABEL S DENOTES “STOP/SLOW DOWN”, LABEL L DENOTES “TURN LEFT/CHANGE TO LEFT LANE” AND LABEL R DENOTES
“TURN RIGHT/CHANGE TO RIGHT LANE”. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

TABLE VIII
ABLATION STUDY RESULTS OF THE PREDICTION PERFORMANCE OF MULTIMODAL ENVIRONMENT DESCRIPTIONS FOR DIFFERENT NETWORKS. THE

NATURAL-LANGUAGE ENVIRONMENT DESCRIPTION IS LABELLED AS NL DESCRIPTION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

Fig. 4. Ablation study results of the prediction performance of Multimodal-XAD with different encoders of the EfficientNet family. The left figure shows
the F1 scores of the driving action and natural-language environment description predictions. The right figure shows the IoU of predictions of BEV maps.
EffNet is the short for EfficientNet. The figure is best viewed in color.

TABLE IX
THE ABLATION STUDY RESULTS OF PREDICTION PERFORMANCE FOR

MULTIMODAL-XAD NETWORKS WITH DIFFERENT RELATIVE IMPOR-
TANCE BETWEEN DRIVING ACTIONS, NATURAL-LANGUAGE ENVI-

RONMENT DESCRIPTIONS AND BEV MAPS. THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD FONT

maps on the prediction performance of Multimodal-XAD is
also investigated in the ablation study. The relative importance
is determined by λ1, λ2 and λ3 on the loss function (6).
Here, we have tested four different configurations of rel-

ative importance. As shown in Tab. IX, Multimodal-XAD
with higher importance of driving actions (λ1 = 2) has
the best prediction performance of driving actions. Similarly,
Multimodal-XAD with higher importance of natural-language
environment descriptions (λ2 = 2) and BEV maps (λ3 = 2)
exhibit the best prediction performance in natural-language
descriptions and BEV maps, respectively. To achieve a more
balanced performance of driving actions, natural-language
environment descriptions and BEV maps, we chose λ1 : λ2 :

λ3 = 1 : 1 : 1 as the default configuration for our Multimodal-
XAD.

E. Limitations

Despite the superiority of our proposed Multimodal-
XAD, there are still some limitations. Firstly, the prediction
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performance of the multimodal environment description is
evaluated by calculating the IoU of the BEV map and
the F1 score of the natural-language environment descrip-
tion, respectively. To better measure the explainability of
Multimodal-XAD, a new metric that could comprehensively
evaluate the multimodal environment description should be
exploited. Secondly, the driving action is coupled with the
BEV perception by using the context information to predict
the driving action in Multimodal-XAD. However, we believe
that driving action and BEV perception could be more tightly
coupled to improve the prediction performance of driving
actions. For example, we can apply the generative adversarial
network (GAN), in which the driving action predictor is
served as the generator and the BEV module is served as the
discriminator.

V. CONCLUSION AND FUTURE WORK

To improve the safety and explainability of deep
learning-based autonomous driving, we proposed an explain-
able autonomous driving network that jointly predicts the
driving actions and the multimodal environment descriptions
of traffic scenes, including BEV maps and natural-language
environment descriptions. In the proposed network, both
the context information from BEV perception and the local
information from semantic perception are considered before
predicting the driving actions and natural-language environ-
ment descriptions. A new dataset containing 12, 000 image
sequences is released. Each image sequence contains 6 frames
from surrounding visual cameras, as well as hand-labelled
ground truth for driving actions and multimodal environ-
ment descriptions. The experimental results show that the
combination of context information and local information
improves the prediction performance of both driving actions
and environment descriptions.

Regarding future work, one promising research direc-
tion could be the utilization of temporal information in
Multimodal-XAD. At the current stage, the input of our
proposed network is the image sequence from surround-
ing cameras. In other words, no temporal information is
considered before predicting driving actions and multimodal
environment descriptions. However, the real-world traffic envi-
ronment is dynamic and interactive. So, we believe that
utilizing the consecutive image sequence that contains tempo-
ral information of traffic scenes may improve the safety and
explainability of Multimodal-XAD.
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