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Semantic-MoSeg: Semantics-Assisted
Moving-Obstacle Segmentation in Bird-Eye-View

for Autonomous Driving
Shiyu Meng , Student Member, IEEE, and Yuxiang Sun , Member, IEEE

Abstract— Bird-eye-view (BEV) perception for autonomous
driving has become popular in recent years. Among various
BEV perception tasks, moving-obstacle segmentation is very
important, since it can provide necessary information for
downstream tasks, such as motion planning and decision making,
in dynamic traffic environments. Many existing methods segment
moving obstacles with LiDAR point clouds. The point-wise
segmentation results can be easily projected into BEV since point
clouds are 3-D data. However, these methods could not produce
dense 2-D BEV segmentation maps, because LiDAR point clouds
are usually sparse. Moreover, 3-D LiDARs are still expensive to
vehicles. To provide a solution to these issues, this paper proposes
a semantics-assisted moving-obstacle segmentation network using
only low-cost visual cameras to produce segmentation results in
dense 2-D BEV maps. Our network takes as input visual images
from six surrounding cameras as well as the corresponding
semantic segmentation maps at the current and previous
moments, and directly outputs the BEV map for the current
moment. We also propose a movable-obstacle segmentation
auxiliary task to provide semantic information to further benefit
moving-obstacle segmentation. Extensive experimental results
on the public nuScenes and Lyft datasets demonstrate the
effectiveness and superiority of our network.

Index Terms— Moving-obstacle segmentation, bird-eye-view
perception, semantic segmentation, autonomous driving.

I. INTRODUCTION

RECENT years have witnessed great advancement of
autonomous driving technologies. To enable wide

applications of autonomous vehicles, accurate and reliable
moving-obstacle detection or segmentation in real dynamic
traffic environments is an essential capability. This is because
the perception of moving obstacles (e.g., moving cars
or walking pedestrians) provides critical information for
downstream tasks, such as motion planning [1], [2], decision
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making [3], [4], [5], and visual localization [6], [7], [8] in
dynamic traffic environments.

Moving-obstacle segmentation refers to segmenting obsta-
cles and discriminating their motion states (i.e., static or
moving). Many existing methods segment moving obstacles
in 2-D perspective-view images or 3-D LiDAR point clouds.
Some of them [9], [10] are offline methods using a
whole sequence of images, and some require prior-known
information, such as the manually-labeled mask for the first
image. Note that this work focuses only on online methods as
well as methods that do not require manually-labeled masks
during inference. Compared with segmentation on front-view
images, bird-eye-view (BEV) is more straightforward since
many downstream tasks (e.g., motion planning or prediction)
work on such maps [11], [12]. To achieve moving-obstacle
segmentation in BEV, we can use existing 3-D LiDAR
point cloud-based methods [13], [14], [15], [16] to first get
segmentation results in point clouds, and then project the
results into BEV space. However, the major issue of this
method is that the projected BEV maps are generally sparse
due to the sparsity of LiDAR point clouds. The sparse BEV
maps have many holes and gaps, making them hard to be
directly used by downstream tasks. LiDAR sensors also suffer
from high costs and computational burdens.

To provide a solution to the above issues, this paper
proposes to generate dense BEV maps using images from
low-cost visual cameras. Our network takes as input visual
images captured by six surrounding cameras mounted on
the ego-vehicle and directly generates the dense moving-
obstacle segmentation maps in BEV. The reason for adopting
six cameras in this work is to leverage the complementary
fields of view (FOV), allowing our method to generate 360◦

ego-centric BEV maps. Note that in some literature, moving
obstacle is also termed as moving object. Since this paper
focus on traffic environments for autonomous driving research,
the term moving obstacle would be more appropriate. In the
following text, we do not discriminate them. Moreover, there
exist some methods using visual images to generate semantic
BEV maps [17], [18], [19], [20]. The major difference between
our method and these methods is that we discriminate the
motion states (e.g., static or moving) for obstacles, but these
methods only segment obstacles at the semantics level (no
motion state). In addition, some methods [21], [22], [23] can
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only produce cone-shaped BEV maps due to the use of visual
information from one camera view. The main contribution of
this paper is a novel on-line method to produce dense moving-
obstacle segmentation results in BEV. Our method only needs
the images captured at the current and previous moments.
Images captured at future moments are not required. To the
best of our knowledge, this is the first work that produces
moving-obstacle segmentation results in BEV using sequential
images from multiple vehicle-mounted cameras. In addition,
our method incorporates assisted semantic information into
the network by proposing a movable-obstacle segmentation
auxiliary task, and shows that the semantic information of
movable obstacles could further benefit the moving-obstacles
segmentation performance. Our code is open-sourced.1 The
contributions of this work are summarized as follows:

1) We propose a novel end-to-end framework that directly
generates dense moving-obstacle segmentation results in
BEV space.

2) We propose a geometry-aware BEV feature representa-
tion method that incorporates the semantic prior, camera
intrinsic/extrinsic parameters, and attention module.

3) We introduce an auxiliary task, class-agnostic semantic
segmentation for movable obstacles to further enhance
our moving-obstacle segmentation performance.

4) We evaluate our network on both the large-scale
nuScenes [24] and Lyft [25] datasets. The results
demonstrate the superiority of our designed network.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III details our proposed
network. Section IV presents the experimental results and
discussions. The conclusions and future work are drawn in
the last section.

II. RELATED WORK

This section will summarize several related areas of our
work, including semantic segmentation, moving obstacle
segmentation, and BEV representations from images.

A. Semantic Segmentation

Semantic segmentation is a task that assigns each pixel in
an image with a semantic class [26]. Many works have been
done in this area. For example, Badrinarayanan et al. [27]
proposed the encoder-decoder architecture in SegNet for
semantic segmentation. Lo et al. [28] employed an asymmetric
convolution structure and dilated convolution to solve the pixel
classification task. Gao [29] used two parallel convolutional
layers with different dilation rates to expand the FOV
for boosting the performance of semantic segmentation.
Xiao et al. [30] proposed BASeg, a CNN-based method
consisting of semantic, boundary and aggregation streams,
to learn boundary-aware features for semantic segmentation.
Wang et al. [31] proposed a multi-view adapter-pair module
to efficiently adapt pre-trained single-modality semantic
segmentation networks to multi-modal networks.

1https://github.com/lab-sun/Semantic-MoSeg

B. Moving-Obstacle Segmentation

In contrast to semantic segmentation, the moving-obstacle
segmentation task focuses on the obstacle state instead of
detailed semantic classes. According to the sensors used,
existing methods can be generally classified as vision-
based methods and LiDAR-based methods. For vision-based
methods, Sun et al. [32], [33] proposed to segment moving
objects with traditional algorithms using an RGB-D camera.
Vertens et al. [34] proposed a deep learning-based method
to segment moving objects from front-view images and
their corresponding optical flow information. Jain et al. [35]
proposed an automatic segmentation of foreground prominent
objects in videos combining the motion information. Liu
and Wang [36] proposed a CNN-based motion segmentation
method based on consecutive depth maps generated from
LiDAR data. Siam et al. [37] proposed a two-stream CNN-
based network to conduct object detection and motion
segmentation task. For LiDAR-based methods, Sun et al. [13]
proposed a sparse tensor-based end-to-end moving-obstacle
segmentation network using point clouds from a 3-D
LiDAR. Chen et al. [38] proposed an off-line moving
object segmentation method with cluster and Kalman filter.
Sun et al. [39] applied a CNN-based network with the
meta-kernel convolution to range images from point clouds
and applied a back projection to get point-wise predictions.
Kim et al. [40] proposed a solution to segment moving
obstacles given a sequence of range images from point clouds
and project the outputs back to LiDAR space.

C. BEV Perception From Visual Images

Traditional BEV perception methods mainly rely on the
Inverse Perspective Mapping (IPM) algorithm [41]. The major
issue of the IPM algorithm is the flat-road assumption, making
the methods not suitable for uneven road environments.
Deep learning-based end-to-end methods can avoid this issue.
Lu et al. [21] proposed an end-to-end approach to learn
the monocular occupancy BEV maps with a monocular
camera. Roddick and Cipolla [42] proposed an end-to-
end deep learning solution via a Bayesian occupancy grid
framework. Can et al. [18] proposed a transformer-based deep
neural network to transform the perspective view to BEV.
Dwivedi et al. [43] proposed a deep neural network to produce
semantic BEV maps with lifted 2-D semantic features. Zhou
and Krähenbühl [44] designed an attention-based model and
implicitly learned a mapping from individual camera views
into map-view representation.

Due to the practical use of BEV maps, scene understanding
in BEV using images has recently gathered significant
attention. However, most current research focuses mainly
on semantic segmentation [45], [46], [47]. The category
classification, not the status classification, is the problem to be
solved. Meanwhile, these approaches take previous and future
information as input, which is not suitable for real autonomous
driving applications.
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Fig. 1. The overall structure of our proposed network. At each timestamp, the collected six visual images are displayed on the left, and their corresponding
semantic masks are displayed on the right. The auxiliary task and the main task respectively mean the movable-obstacle segmentation task and the
moving-obstacle segmentation task. F and S respectively represent the visual images and corresponding semantic prior information. The appearance feature
is the feature extracted by the feature extractor. EMC represents ego-motion compensation. The color in the moving-obstacle segmentation map represents
moving obstacles (i.e., moving vehicles and pedestrians). The color in the movable-obstacle segmentation map represents the movable obstacles. The and

colors respectively represent drivable areas and the ego-vehicle. Note that our network does not segment them. They are just displayed for visualization.

III. THE PROPOSED NETWORK

A. The Overall Architecture

Fig. 1 shows the structure of our network Semantic-MoSeg.
It can be seen that it mainly consists of four modules: feature
extractor, geometry-guided BEV generation (G2BG) module,
moving-obstacle segmentation module, and movable-obstacle
segmentation module (i.e., the auxiliary task). Our network
takes as input two sets of six images from the surrounding
cameras mounted on the ego-vehicle that are captured at
different moments (the time interval is fixed) and directly
generates moving-obstacle segmentation maps and movable-
obstacle segmentation maps of the current moment.

As shown in Fig. 1, semantic segmentation is first performed
on six input images from the surrounding cameras using [48]
to generate semantic segmentation maps St =

{
S1

t , . . . , Sn
t
}

at
the current moment t , where n ∈ {1, . . . , 6}. The segmentation
maps are visualized in 3-channel color images. The semantic
segmentation maps are adopted as our prior information. The
input images and the corresponding semantic segmentation
maps are concatenated to form 6-channel images. Secondly,
a feature extractor is adopted to extract visual features from the
6-channel images from the current and previous moments. All
the images share the same feature extractor module. Thirdly,
the G2BG module transforms the perspective-view features to

BEV and produces BEV feature maps for the consecutive two
moments. Finally, the moving-obstacle segmentation module
and the movable-obstacle segmentation module are employed
to produce the respective segmentation results. The movable-
obstacle and moving-obstacle segmentation maps are both with
the size of Nc × H × W , where Nc is the number of classes,
H and W represent height and width.

B. Feature Extractor

As aforementioned, the input data to the feature extractor
are the concatenated 6-channel images from Ft and St at
current and previous moments. We choose EfficientNet-B4
[49] as our backbone for the feature extractor due to its
lightweight architecture. Specifically, we adopt EfficientNet-
B4 with the random initialization scheme. We modify
the input channel number of the first layer so that the
feature extractor can take as input the concatenated images.
The concatenated images are finally downsampled with a
factor of 8.

C. Geometry-Guided BEV Generation (G2BG)

The G2BG module is designed to generate BEV features.
We follow [17] to transform perspective-view features to BEV
feature maps by predicted depth distributions. Firstly, depth
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Fig. 2. The structure of our proposed depth prediction module. The input of
this module is the output of the feature extractor module. I.R.T represents the
camera intrinsic matrix (3×3), extrinsic rotation matrix (3×3), and extrinsic
translation vector (3 × 1). The ground truth for depth prediction is the sparse
depth from LiDAR point clouds, which are overlaid on the RGB images for
visualization. Please zoom in to see details.

prediction is conducted based on the features produced by
the feature extractor, which is shown in Fig. 2. We simply
flatten the camera intrinsic matrix (3 × 3) and extrinsic matrix
(3 × 3 rotation and 3 × 1 translation) into a vector with
the length of 21. To further enhance the depth prediction,
we design a depth position attention (DPA) module. The
size of the convolution kernel in the DPA module is 3 × 3.
Specifically, the sparse depth data from the LiDAR point
clouds is utilized as the supervision signal to train the depth
prediction network. With the predicted depth, we project the
perspective-view features to BEV features.

Secondly, we conduct ego-motion compensation (EMC) on
the BEV features. Since the differences between the current
images and the previous images are caused by both the ego-
vehicle motion and object motion. We adopt the vehicle pose
between the two moments to conduct EMC. The idea is to
transform all the previous features into the coordinate system
at the current moment.

Finally, the coarse BEV feature maps are further refined by
exploiting the temporal information between the two moments.
A residual module is proposed to find the difference between
the coarse BEV feature maps at the two moments:

ˆbevt = bevt + bevt − bevt−1, (1)

where bevt is the output of the residual block, ˆbevt is
the difference. The bevt is doubled to avoid ˆbevt to be
zero. Then, we concatenate the residuals calculated from the
previous moment as the output of the G2BG module. The
idea behind the residual module is that the static parts would
become smaller after subtraction, which in turn amplifies the
differences between the moving part and static part.

D. Moving-Obstacle Segmentation

We design the moving-obstacle segmentation module based
on a modified DenseNet [50], atrous spatial pyramid pooling,
and skip connections. At the end of the module, a moving-
obstacle segmentation head is added, which is a 2-D
convolutional layer, to provide dense pixel-wise prediction.
The BEV map range is 100m × 100m with a unit length of
0.5m. So, the resolution of the BEV map is 200 × 200.

E. Movable-Obstacle Segmentation

The movable-obstacle segmentation module is designed as
the auxiliary task, to endow the network with the ability
to inherently and implicitly learn what kind of obstacles
are possible to move. The class-agnostic movable-obstacle
segmentation task here is a binary segmentation task (i.e,
movable or non-movable). For example, both pedestrians
and parked cars are considered as the same class (i.e.,
movable objects). The task enhances our moving-obstacle
segmentation performance since moving objects should be
movable objects (e.g., pedestrians, vehicles). Note that
movable is a concept of semantics. It does not involve motion
states. We adopt the same network as that of the moving-
obstacle segmentation module and share the same parameters
between them. The only difference is that we replace
a movable-obstacle segmentation head with the moving-
obstacle segmentation head to achieve the movable-obstacle
segmentation.

F. Loss Functions

We use the binary cross entropy (BCE) loss for both moving
and movable segmentation, as well as the depth distribution
prediction. The three losses are denoted as Lmoving , Lmovable,
and Ldepth . We follow [51] to compute the depth loss. The
total loss is:

Ltotal = α · Lmoving + β · Lmovable + γ · Ldepth, (2)

where α, β, and γ are learnable parameters to weight the three
losses.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets

To evaluate the performance of the proposed method,
we conduct experiments on two public datasets: nuScenes [24]
and Lyft [25]. The nuScenes dataset includes 1, 000 scenes
with visual images from six vehicle-mounted cameras and
point clouds from a 3-D LiDAR sensor. Among the scenes,
850 scenes are given ground-truth annotations. The moving-
obstacle ground-truth labels are generated by filtering the
attributes and projecting the provided ground-truth bounding
boxes into BEV to obtain 2-D polygons. The moving obstacles
in nuScenes have the attributes of pedestrian.moving
and vehicle.moving. All the images in the same scene are
used either for training, validation, or testing. We randomly
split the 850 scenes into training (550 scenes), validation
(150 scenes), and testing (150 scenes). The Lyft dataset also
provides multi-view information captured by visual sensors
mounted on the roof of the ego-vehicle. There are 180 scenes
with ground-truth annotations. We randomly split 36 scenes
for testing.

B. Implementation Details

We implement our network with PyTorch and the PyTorch-
Lightning [52] library. The network is trained on NVIDIA
RTX 3090. The resolution of the input images is resized
to 224 × 480 for the experiments. The proposed network
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TABLE I
THE RESULTS OF ABLATION STUDY ON DIFFERENT FEATURE EXTRAC-

TORS. Movable REPRESENTS MOVABLE-OBSTACLE SEGMENTATION.
Moving REPRESENTS MOVING-OBSTACLE SEGMENTATION

processes a sequence of 6 camera images and outputs BEV
maps with 200×200 resolution at 50cm unit length in both the
x and y directions. If not stated differently in the experiments,
the time interval for our experiment is the time between two
adjacent key frames.

The Adam optimizer with decoupled weight decay [53] are
adopted for training. The initial learning rate is set as 10−3.
We adopt the MultiStepLR to decay the learning rate during
training. In particular, we train all the experiments under mixed
precision. The training data are randomly shuffled before each
epoch. Since we perform the shuffle operation on the whole
set of consecutive frames, the order of the image sequences is
not influenced.

C. Evaluation Metrics

We adopt two evaluation metrics for quantitative evaluation:
Precision and Intersection-over-Union (IoU) [54]:

Precision =
TP

TP + FP
, IoU =

TP
TP + FP + FN

, (3)

where TP, FP, and FN represent true positives, false positives,
and false negatives, respectively. Note that our metrics are
calculated with respect to the ground truth at the current
moment.

D. Ablation Study

We create several variants of our network to verify the
effectiveness of our design. We train all the variants up to
30 epochs and report the best results on the nuScenes dataset
for moving-obstacle segmentation.

1) Ablation on Feature Extractor: The EfficientNet has
variants from B0-B7, where B5-B7 contains more parameters,
which improves network performance but also increases com-
putational cost. To trade off performance and computational
cost, we only conduct the ablations using EfficientNet B0-B4.
From Tab. I, we can see that the variant with EfficientNet-B4
provides the best performance. So, unless otherwise specified,
EfficientNet-B4 is adopted as the feature extractor for our
experiments.

2) Ablation on Ego-Motion Compensation: This ablation
study is to demonstrate that introducing ego-motion com-
pensation could increase the moving-obstacle segmentation
performance. Tab. II shows the results. We can see that with
the ego-motion compensation, the IoU of the moving-obstacle

segmentation has been improved with 0.85%, and the precision
has been improved with 0.89%.

3) Ablation on Geometry Awareness: This ablation study
is to demonstrate the benefits of introducing the camera’s
intrinsic/extrinsic parameters. The results are shown in Tab. II.
It can be illustrated that the camera parameters are beneficial to
the moving-obstacle segmentation performance. From Variant-
6, we can see that with the intrinsic and extrinsic parameters,
the IoU of our method has been improved by 0.34%.
It also improves precision by 1.29% in the movable-obstacle
segmentation.

4) Ablation on Residual Block: This ablation study aims to
demonstrate the effectiveness of the residual block. Tab. II
shows the results. It can be seen that the residual layer
is positive on moving-obstacle segmentation based on the
residuals of the time-series feature maps. From Variant-
5, we can find that with the residual operation, the IoU
of our network has been improved by 0.99%, and the
precision has been improved by 1.24%. It can be observed
that with the amplified difference between the static and
moving obstacles, it is easier for the network to find moving
obstacles.

5) Ablation on Depth Supervision: This ablation study
aims to demonstrate the depth supervision performance.
The results are shown in Tab. III. As aforementioned, the
spare depth ground truth is obtained from the LiDAR point
cloud. It can be seen that with the depth supervision, the
IoU of our network has been improved by 1.14%, and
the precision of segmenting moving obstacles has been
improved by 1.13%. This indicates that depth supervision
could further benefit the moving-obstacle segmentation
performance.

6) Ablation on Auxiliary Task: This ablation study is
designed to demonstrate whether adding the auxiliary task, that
is, the movable-obstacle segmentation, is helpful for boosting
the performance of our moving-obstacle segmentation. The
experimental results are displayed in Tab. III. We can see that
the auxiliary task to learn the features from movable obstacles
in the surroundings is helpful in improving moving-obstacle
segmentation performance. This is reasonable because moving
obstacles have to be movable.

7) Ablation on Detection Ranges: This ablation study is
designed to demonstrate the robustness and performance of
our network on different detection ranges. Here, we have three
different settings: 100m×100m resolution at 50cm unit length,
80m × 80m resolution at 40cm unit length, and 100m × 50m
resolution at 25cm unit length. Tab. IV shows the results.
It can be seen that our network performs robustly at different
detection ranges.

8) Ablation on Loss Weights: This ablation study is to verify
whether using learnable weights for the losses is helpful. The
results are displayed in Tab. V. We can see that the IoU results
with the learnable weights are better than those without the
learnable weights. Setting the weights equal to each other is
still effective but sub-optimal. Generally, it is helpful to use
the learnable weights.

9) Ablation on Semantic Prior Information: This ablation
study is to demonstrate the benefit brought by the semantic
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TABLE II
THE RESULTS OF ABLATION STUDY ON DIFFERENT MODULE COMPONENTS IN G2BG. Geometry-Aware MEANS TO USE THE CAMERA PARAMETERS

TO GUIDE THE GENERATION OF THE BEV FEATURES. THE RESULTS DEMONSTRATE THE EFFECTIVENESS OF DIFFERENT COMPONENTS OF THE
G2BG MODULE FOR THE MOVING-OBSTACLE AND MOVABLE-OBSTACLE SEGMENTATION TASKS

Fig. 3. Sample qualitative demonstrations for moving-obstacle segmentation under different weather and lighting conditions: sunny, rainy, cloudy, and
nighttime. The colors , , and respectively represent moving obstacles, ego-vehicle, and drivable areas. The six visual images are from the front camera,
front-left camera, front-right camera, back camera, back-left camera, and back-right camera. Note that the ego-vehicle and drivable area are only used for
visualization. Our network does not segment them. The left texts show the ID of the scenes, where S is short for scene.

TABLE III
THE RESULTS OF ABLATION STUDY ON THE DEPTH SUPERVISION

AND AUXILIARY TASK. Movable AND Moving REPRESENT THE
MOVABLE-OBSTACLE AND MOVING-OBSTACLE SEGMENTATION

TASKS, RESPECTIVELY

prior information. The results are displayed in Tab. VI. The
variant Visual-only refers to using the captured visual multi-
view images as input. The variant Prior-only refers to using

TABLE IV
THE RESULTS OF ABLATION STUDY ON DIFFERENT RANGES. Movable

AND Moving REPRESENT THE MOVABLE-OBSTACLE AND MOVING-
OBSTACLE SEGMENTATION TASKS, RESPECTIVELY

the semantic-prior information as input. The variant Element-
wise summation refers to using the addition between visual
multi-view images as input. We can see that the moving-
obstacle segmentation performance is gradually enhanced
as the input information is gradually enriched. Moreover,
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TABLE V
THE RESULTS OF ABLATION STUDY ON LOSS WEIGHTS. Movable

AND Moving REPRESENT THE MOVABLE-OBSTACLE AND MOVING-
OBSTACLE SEGMENTATION TASKS, RESPECTIVELY. ✓ AND ✗

RESPECTIVELY REPRESENT WITH AND WITHOUT THE LEARN-
ABLE WEIGHTS. FOR ✗, WE SIMPLY SET THE WEIGHTS

EQUAL TO EACH OTHER

TABLE VI
THE RESULTS OF ABLATION STUDY ON SEMANTIC PRIOR INFORMATION.

Movable AND Moving REPRESENT THE MOVABLE-OBSTACLE AND
MOVING-OBSTACLE SEGMENTATION TASKS, RESPECTIVELY

TABLE VII
COMPARATIVE RESULTS OF DIFFERENT METHODS ON THE NUSCENES

DATASET. Moving REPRESENTS MOVING-OBSTACLE SEGMENTATION.
THE TABLE DEMONSTRATES THE SUPERIORITY AND EFFECTIVE-

NESS OF OUR METHOD

Fig. 4. The generated optical flow from the visual images of the six cameras.
The left part shows the multi-view visual images, and the right part shows
the corresponding optical flow maps.

feature concatenation achieves better performance compared
to element-wise summation. The reason may be that the
concatenation is helpful for our method to adaptively learn
feature maps. The incorporation of semantic information could
make the network segment moving obstacles more easily.

In summary, our network generally outperforms the other
variants, which demonstrates the effectiveness of our design.
With different strategies, the different components boost
the performance in terms of IoU and precision. This
demonstrates that it is beneficial to incorporate all the proposed
components.

E. Comparative Experiments

In this section, we compare our method with the
existing methods (i.e., BEV-MODNet [55], SMSnet [34], and
MODNet [37]), and create several baselines (i.e., LSS-MoSeg,
CVT-MoSeg, and Fiery-MoSeg) for comparison. For all the
compared methods, the output layers are modified to generate
moving-obstacle segmentation maps in BEV. The detailed
descriptions for the compared methods are listed as follows:

• BEV-MODNet: This method is proposed for BEV
moving object detection based on the front-view images.
We first generate the optical flow for the multi-view visual
images, as shown in Fig. 4. Then we re-implement the
model based on the architecture and adopt the multi-view
visual images as inputs.

• SMSnet: This method is designed to detect moving
objects in a perspective view based on two consecutive
time-stamp inputs. We adopt the multi-view visual images
as inputs and project the detection results via the IPM
algorithm. We train this baseline from scratch.

• MODNet: The MODNet method is proposed for
perspective-view detection based on the visual image and
its corresponding optical flow. We generate the optical
flow for the visual images and project the segmentation
results to BEV via the IPM algorithm. We train this
baseline from scratch.

• LSS-MoSeg: This baseline is based on the LSS
method [17]. The input of LSS is the monocular images
at a single moment. Since moving-obstacle segmentation
requires sequential data, we change the time interval
length to 2 moments. We name this baseline as LSS-
MoSeg.

• CVT-MoSeg: This baseline is based on the CVT
approach [17]. We change the time interval of the CVT
method to 2. We name this baseline as CVT-MoSeg.

• Fiery-MoSeg: This baseline is based on the Fiery
method [45]. The original Fiery is for semantic
segmentation with sequential data. Since the future
information could not be used for online applications,
such as autonomous driving. So, we omit the sub-
module using future features in [45]. We set the
time interval length to 2. We name this baseline as
Fiery-MoSeg.

• LiDAR2Dense: This baseline is based on PointPil-
lars [56]. It adopts the same moving-obstacle seg-
mentation head as ours to generate dense predictions.
Here, we only use the 3-D coordinates of the point
clouds as input. The other information, such as
intensity, is discarded. Since our output is dense BEV
maps for moving obstacles, we name this baseline as
LiDAR2Dense.
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Fig. 5. Sample qualitative demonstrations of our network for moving-obstacle segmentation on the nuScenes dataset. The first, second, third, and fourth rows
respectively show the cloudy, sunny, night, and rainy conditions. The colors , , and respectively represent moving obstacles, ego-vehicle, and drivable
areas. The six visual images are from the front camera, front-left camera, front-right camera, back camera, back-left camera, and back-right camera. Note that
the ego-vehicle and drivable area are only used for visualization. Our network does not segment them. The left texts show the ID of the scenes, where S is
short for scene.

As shown in Tab. VII, we can see that our Semantic-
MoSeg achieves the best performance compared with all
the other methods, which demonstrates our superiority.
Fig. 3 qualitatively demonstrates sample comparative results
for moving-obstacle segmentation. We can see that the
segmentation performance of our Semantic-MoSeg generally
outperforms the other methods. This could be attributed
to the effective representation of multi-view visual features
and the integration of the auxiliary movable-obstacle features.
The LSS-MoSeg, CVT-MoSeg, and Fiery-MoSeg baselines
lack movable-obstacle features, which are helpful for moving-
obstacle segmentation. Furthermore, the SMSnet and MODNet
methods require post-projection and optical flow calculation,
introducing intermediate errors that might affect segmentation
performance. Specifically, the first row shows a cloudy
scenario. We can see that there are moving trucks, cars, and
pedestrians in the scene. Our network is the only one that can
segment both moving vehicles and pedestrians. The second
row shows a sunny scenario. Our network is the only one
that segments moving cars and pedestrians under BEV space.

For the remaining comparative methods, they both miss the
pedestrians crossing the road. The third row shows a nighttime
scenario. Under such light conditions, streetlights and vehicle
headlights share similar visual appearances. We can see that
our results are more complete than the other baselines. The
other baselines all miss some segmentation to some degree,
especially when objects are far from the ego vehicle. The
fourth row shows a rainy scenario. Under such weather
conditions, although the lens of the cameras are blurred,
our network still detects all the moving vehicles. The last
row shows a scenario with on-coming and nearby headlights
under a rainy night condition. Although the light is weak and
there is interference from water ripples, our network can still
accurately segment the moving obstacles.

F. Qualitative Demonstrations

We also demonstrate some qualitative results of our
method on both moving-obstacles and movable-obstacles
segmentation, which are displayed in Fig. 5 and Fig. 6. We can
see that our Semantic-MoSeg generalizes well to unseen
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Fig. 6. Sample qualitative demonstrations of our network for auxiliary task, movable-obstacle segmentation, on the nuScenes dataset. The first, second,
third, and fourth rows respectively show the cloudy, sunny, night, and rainy conditions. The colors , , and respectively represent movable obstacles,
ego-vehicle, and drivable areas. The six visual images are captured from the front camera, front-left camera, front-right camera, back camera, back-left camera,
and back-right camera. Note that the ego-vehicle and drivable area are only used for visualization. Our network does not segment them. The left texts show
the ID of the scenes, where S is short for scene.

TABLE VIII
ROBUSTNESS EVALUATION OF OUR NETWORK ON THE LYFT DATASET.

Movable AND Moving REPRESENT THE MOVABLE-OBSTACLE AND
MOVING-OBSTACLE SEGMENTATION TASKS, RESPECTIVELY

environments under various weather and lighting conditions,
including sunny, rainy, cloudy, and nighttime.

G. Robustness Evaluation

1) Robustness on Different Datasets: To demonstrate the
robustness of our method, we evaluate our network on
the other public dataset, Lyft. We get the moving-obstacle
ground truth by filtering and merging the annotated attributes
in the same way as the nuScenes dataset. The range for

moving-obstacle segmentation is also 100m ×100m. Tab. VIII
displays the experimental results. We can see that compared to
the results on the nuScenes dataset, our network exhibits robust
performance on the Lyft dataset. Meanwhile, our method
can also exhibit robustness on our auxiliary movable-obstacle
segmentation task.

2) Robustness on Different Views: To validate the robust-
ness of our method on different views, we randomly remove
an image from an viewpoint among the six viewpoints
during test, and then apply the saved model weights to the
remaining images. Fig. 7 shows the results. We can see
that the performance of our network varies when removing
different views, but generally is robust when front-left, front-
right, back-right, or back-right is removed. Our method
performs best in terms of mean IoU (mIoU) from the front-
left view, and performs best in terms of mean Precision
(mPre) from the back-right view. When front or back view
is removed, the performance of our network is degraded.
We conjecture the reason is that the front view encodes more
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Fig. 7. Robustness evaluation of our network with different camera views on the nuScenes dataset. The results demonstrate our stability and robustness.
Movable and Moving represent the movable-obstacle and moving-obstacle segmentation tasks, respectively. mPre and mIoU are the mean values of precision
and IoU, respectively.

Fig. 8. Sample qualitative demonstrations for moving-obstacle instance
segmentation on the nuScenes dataset. The rows from top to bottom
respectively show cloudy, night, rainy, and sunny conditions.

information and most road environment information appears
in the front region. The back view is just the opposite of the
front view, so it also encodes more information. In general,
we can see that the mIoU and mPre results have a similar
trend of performance variations.

H. Application Study

In this section, we demonstrate one application of
our proposed network, that is, moving-obstacle instance
segmentation. This application makes full use of the moving-
obstacles segmentation results. We set the time interval as
2 adjacent keyframes. A simple moving-obstacle instance
segmentation head with several convolutional layers is added
to our model to distinguish different moving obstacles at
the instance level. We retrain the model, and the qualitative

demonstrations are shown in Fig. 8. We can see that our
network is able to produce moving-obstacle BEV maps at the
instance level.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel end-to-end network for
online moving-obstacle segmentation in BEV with multiple
images captured at different moments. We solve the problem
by projecting the perspective-view feature maps to BEV
and incorporating camera intrinsic/extrinsic parameters and
prior semantic information explicitly. Moreover, an auxiliary
task, movable-obstacle segmentation, is introduced to further
improve our moving-obstacle segmentation performance.
Extensive experiments on the nuScenes and Lyft datasets
demonstrate the robustness and superiority of our proposed
approach in moving-obstacle segmentation. Despite the
superiority of our proposed network, there still exist some
limitations. Our proposed method currently relies only on
visual cameras, which inherently limits the robustness to
challenging scenarios, such as low illumination and adverse
weather conditions. In the future work, we would like to
incorporate multi-modal sensor data, such as LiDAR point
clouds or thermal images, which may complement visual cues
to enhance the segmentation robustness. In addition, we would
like to explore the potential of moving-obstacle segmentation
for other downstream tasks, such as panoptic segmentation and
localization.
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