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Seq-BEV: Semantic Bird-Eye-View Map Generation
in Full View Using Sequential Images for

Autonomous Driving
Shuang Gao , Student Member, IEEE, Qiang Wang , Member, IEEE, and Yuxiang Sun , Member, IEEE

Abstract— Semantic Bird-Eye-View (BEV) map is a straight-
forward data representation for environment perception. It can
be used for downstream tasks, such as motion planning and
trajectory prediction. However, taking as input a front-view
image from a single camera, most existing methods can only
provide V-shaped semantic BEV maps, which limits the field-of-
view for the BEV maps. To provide a solution to this problem,
we propose a novel end-to-end network to generate semantic BEV
maps in full view by taking as input the equidistant sequential
images. Specifically, we design a self-adapted sequence fusion
module to fuse the features from different images in a distance
sequence. In addition, a road-aware view transformation module
is introduced to wrap the front-view feature map into BEV
based on an attention mechanism. We also create a dataset with
semantic labels in full BEV from the public nuScenes data. The
experimental results demonstrate the effectiveness of our design
and the superiority over the state-of-the-art methods.

Index Terms— Semantic BEV maps, sequential images, view
transformation, autonomous driving.

I. INTRODUCTION

SEMANTIC scene understanding is a fundamental com-
ponent for autonomous driving. Suitable formats of data

representation for semantic scene understanding could facili-
tate downstream tasks, such as motion planning [1], [2], [3],
[4] and trajectory prediction [5], [6]. Compared with semantic
segmentation in front view, semantic maps in bird-eye-view
(BEV) are more appropriate for the downstream tasks in
autonomous driving due to the following reasons: 1) the
distances and geometric relationships between the ego-vehicle
and other road users can be explicitly indicated; 2) semantic
BEV maps have no distortions that appear on front-view
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Fig. 1. Comparison between V-shaped semantic BEV map and full BEV
map. The corresponding equidistant sequence of RGB images is shown in
(a), where three image frames, Fi−2, Fi−1, and Fi , are displayed from top
to bottom. (b) is a V-shaped BEV map generated from the last frame, Fi ,
which is limited by the camera FOV. We can see that the car on the right side
of the ego-vehicle cannot be seen in the V-shaped BEV map. (c) is the BEV
map in the full view that enlarges the FOV by utilizing the supplementary
information captured from the other two frames. Note that the green half-circle
represents the position of the ego-vehicle on the BEV maps. The different
colors represent different semantic classes.

semantic segmentation maps. For example, the same object
keeps the same size no matter how far the object is from the
camera; 3) semantic BEV maps are high-level abstractions
of the surrounding environment. So, using such maps to
train control networks for autonomous driving in simulation
environments, like CARLA [7], could alleviate the domain gap
issue when deploying the networks in the real world.

To generate semantic BEV maps using front-view images,
traditional methods involve a number of algorithms, such as
geometric projection and semantic segmentation. Recently,
deep learning-based end-to-end methods have shown great
potential [8], [9], [10], [11], [12]. However, most existing
methods that take as input the front-view image from a single
camera suffer from the limited Field of View (FOV) issue.
As illustrated in Fig. 1, due to the lack of visual information
that is outside the FOV of the front-view camera, the BEV
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map generated from a single front-view image is limited by
the camera FOV, leading to a V-shaped BEV map, in which a
large portion of the map is occupied by invalid pixels, leading
to incomplete use of the map. In contrast, the full-view BEV
map provides a wider FoV and all of the pixels are utilized.
To get a full-view map, some works [13], [14], [15], [16]
use images from multiple cameras around the ego-vehicle.
However, those methods usually need to simultaneously pro-
cess 6 or more images, which increases time and computing
costs. Furthermore, our method enhances robustness by relying
solely on a front-view camera, ensuring a complete front-view
BEV map even if side cameras fail. This resilience benefits
real-world deployment, where hardware failures or occlusions
may occur. Additionally, multi-camera systems require precise
calibration, which can degrade over time due to vibrations
and temperature changes, leading to potential performance
degradation. Furthermore, our single-camera approach is more
cost-effective than multi-camera setups. There are also some
attempts [16], [17] using the images from a temporal sequence
to get more views of the environment. But in practice, the
ego-vehicle could slow down or stop for a while on roads to
wait for pedestrians or traffic lights. In such cases, the camera
may repeatedly capture redundant images for the same scene,
and existing methods could fail to get a larger view or full
view when receiving these redundant images.

To provide a solution to this issue, we propose a novel net-
work, Seq-BEV, which takes as input the equidistant sequential
images and directly outputs semantic BEV maps in full view
(i.e., 180◦ field-of-view). Equidistant sequential images are
defined as those sampled at consistent distance intervals based
on the ego vehicle’s travel distance rather than temporal inter-
vals. Our network is end-to-end trainable. It is composed of a
sequence fusion module and a road-aware view transformation
module. The former fuses the equidistant sequential images
during the feature extraction process, and the latter transforms
the front-view features into BEV with an attention mechanism.

To the best of our knowledge, our network is the first
solution to use equidistant sequential images to get a semantic
BEV map in full view. To train and evaluate the proposed
network, we create a dataset with semantic BEV map labels
in full view from the nuScenes dataset [18]. The experimental
results demonstrate our effectiveness and superiority. The
contributions of this work are summarized as follows:

1) We propose a novel semantic BEV map generation
network that takes as input a set of equidistant sequen-
tial images sampled at uniform distance intervals and
outputs a semantic BEV map in full view.

2) We design a new self-adapted sequence fusion module to
fuse the features from different images, which provides
complementary information to get more views.

3) We provide a new method for view transformation by
first extracting the attention of road planes and then
projecting attention-based features to BEV.

4) We create a dataset with semantic ground-truth labels in
full view from the nuScenes dataset to train and test our
method. Our code and dataset are publicly available.1

1Our code and dataset: https://github.com/lab-sun/Seq-BEV

The remainder of this paper is structured as follows.
Section II reviews related work. Section III describes our
network in detail. The experimental results are discussed in
Section IV. Finally, we conclude our work and discuss several
promising research directions in Section V.

II. RELATED WORK

A. Semantic Scene Understanding in Front View

Most research work in semantic scene understanding
focuses on classifying each pixel in an image captured by
a front-view camera into individual classes. These works
are known as semantic image segmentation. The Fully Con-
volutional Network (FCN) [19] is the milestone for deep
learning-based semantic segmentation, which introduces the
encoder-decoder structure. However, the spatial resolution of
the feature map is reduced dramatically by the encoder, posing
a risk of information loss. Zhao et al. [20] designed a pyramid
pooling module in Pyramid Scene Parsing Network (PSPNet)
to exploit the global context information. Different from
PSPNet, DeepLab family [21], [22] uses atrous convolution
to capture larger-scale context information with a relatively
low amount of parameters. Recently, attention-based methods,
such as Vision Transformer (ViT) [23], have been widely
investigated in semantic segmentation because the attention
operation could also increase the receptive field and capture
the global salient feature. Based on ViT, Strudel et al. [24]
proposed Segmenter, which is capable of modeling global
context at the early stage of the network. Cheng et al. [25]
designed Mask2Former, which is a generic framework for
addressing segmentation tasks with masked attention. Segment
Anything Model (SAM) [26] is proposed as a foundational
model increasing the generalization of segmentation. Besides
using only RGB images, there are also semantic segmentation
methods using multi-modal images [27], [28], [29], [30], [31],
[32], [33], such as RGB-Depth or RGB-Thermal images.

B. Semantic Scene Understanding in BEV

Different from semantic image segmentation, producing
semantic BEV maps is a generation task. Lu et al. [8]
proposed VED, conducting the view transformation through
the variational encoder–decoder, but this model loses the
spatial information due to the bottleneck of the network. Rei-
her et al. [34] employed a method that integrates information
from cameras oriented in various directions to generate a com-
plete 360◦ BEV map directly from semantically segmented
images. View Parsing Network (VPN) [10] makes use of
Multilayer Perceptron (MLP) to convert the view and cope
with the shortage of the semantic BEV dataset by using the
simulation environment. Roddick and Cipolla [13] made use of
the internal and external parameters of the camera in the PON
and projected the front view into the bird-eye view with the
designed dense transformer layers. The rise of the Transformer
framework provides a new insight into this view-transforming
problem. TIM [35] approached this problem as a sequence-
to-sequence prediction task, using cross-attention to transform
image columns to BEV polar rays. Gong et al. [36], based on
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the TIM, proposed GitNet and exploited the geometric prior
in their method. Zhao et al. [37] proposed TaDe, decomposing
the BEV map generation into a BEV understanding stage and
a view transformation stage.

Some 3-D detection tasks also involve view transformation.
For example, based on the Transformer framework, BEV-
Former [17] introduces spatiotemporal transformer, fusing the
information in the temporal sequential images from 6 cameras
facing different directions. Later, the authors improved the
network and developed BEVFormer V2 [16] with perspec-
tive space supervision. Li et al. [38] proposed BEVDepth,
leveraging explicit depth information to supervise the view
transformation.

C. Sequence Fusion

We aim to predict a BEV semantic map in full view from the
equidistant sequential images. However, most of the related lit-
erature studies on the temporal sequence, so temporal sequence
fusion methods are also reviewed. Using 2-D Convolutional
Neural Networks (CNN) is a common way to process images.
Some methods utilize the 2-D CNN to extract the spatial
features of each individual image in a sequence and then
conduct the temporal connection in the early-fusion or late-
fusion step [39], [40]. Although the 2-D CNN achieves great
success in image processing, these methods fail to fuse the
low-level features during feature extraction and perform poorly
in temporal modeling. Compared to the 2-D convolution,
3-D CNN is suitable for simultaneously learning spatial and
temporal features. Ying et al. [41] proposed the D3Dnet, using
the deformable 3-D convolution to incorporate spatio-temporal
information for video super-resolution. However, the network
size of 3-D CNN methods is larger than the 2-D coun-
terparts, making it computationally inefficient and prone to
over-fitting [42]. Long Short-Term Memory (LSTM) [43] is
a commonly used method in some video-analysis work [44],
[45] to aggregate long-term memory in a sequence, but suffer
from a slow computation speed.

To efficiently model the sequence input in both spatial
and temporal dimensions, Lin et al. [46] designed Temporal
Shift Module (TSM), which shifts the information along the
temporal dimension in the process of feature extraction. Mixed
Temporal Convolutional kernels (MixTConv) [47] combined
the concept of depthwise convolution and TSM and got an
impressive result in action recognition. Later, Yang et al. [48]
integrated the modified TSM into the transformer framework
for video instance segmentation.

D. Difference From Previous Works

In this work, we propose an end-to-end road-aware semantic
BEV generation network, Seq-BEV, that takes as input equidis-
tant sequential images and outputs a semantic BEV map in full
view.

Our network differs from previous works in three aspects:
1) The implementation of the view transformation in our
Seq-BEV is more straightforward because we integrate the
attention mechanism and the learnable Inverse Perspective
Mapping (IPM) algorithm [49], which is in line with the

traditional geometric view transformation pipeline; 2) As more
environmental information is required to produce a full-BEV
map, we resort to equidistant sequential images that are
uniform in distance to complement the FOV limit. To process
the equidistant sequential images, we fuse the sequential
information from the individual image by shifting the channels
in the sequential dimension, and we design a self-adapted
shifting algorithm to make the sequence fusion suit for the
training process; 3) We adopt a two-stream structure to extract
the spatial and sequential features separately. This two-stream
structure ensures the completeness of the spatial and sequential
information.

III. THE PROPOSED NETWORK

A. The Overall Architecture

Our motivation is to generate semantic BEV maps in
full view using sequential images that are sampled at equal
distances. The structure of our network is illustrated in Fig. 2.
As we can see, our network has two streams that respectively
take as input single and sequential images at the same time.
The two kinds of inputs are respectively fed into the spatial and
sequential encoders, where the low-level features and high-
level features are extracted at different stages of the encoder.

To complement the vision information from the equidis-
tant sequential images and get the full view, we design a
self-adapted sequence fusion module in the sequential encoder.
This is a parameter-free module that can directly manipu-
late the feature tensor. The spatial low-level feature and the
sequential low-level feature are fused into the S&S fusion
feature via convolution operation. The S&S refers to spatial
and sequential. To be specific, the feature maps extracted from
the spatial and sequential encoders are first concatenated along
the channel dimension. To effectively fuse the spatial and
sequential low-level features while preserving their original
size, a 3 × 3 convolution is then applied. This operation
enhances the integration of spatial and temporal information,
contributing to more effective feature fusion. The road-aware
view transformation module takes as input the S&S fusion
feature and computes the road layout attention under explicit
supervision before projecting it into the road BEV feature.
We concatenate the high-level features and the road BEV
feature, producing the fused feature, and then send it to the
decoder to get the semantic BEV map in full view.

B. The Two-Stream Encoder

We design a two-stream encoder to extract the spatial and
sequential features, respectively. In such a way, the spatial
integrity of the images can be preserved when performing the
equidistant sequence fusion. The structures of the spatial and
sequential encoders are similar. The only difference is that
there is a sequence fusion module in the sequential encoder.
So, in the following text, we do not particularly distinguish the
spatial encoder from the sequential encoder and briefly term
both of them as encoder.

We use the DeepLab V3+ [22] to extract the features and
choose MobileNet V2 [50] as the backbone. MobileNet V2 is
a lightweight network that requires relatively few computation
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Fig. 2. The overall architecture of our proposed Seq-BEV network. It mainly consists of a spatial encoder, a sequential encoder, and a road-aware view
transformation module. We feed the single and equidistant sequential images into the spatial encoder and sequential encoder, respectively. In both the encoders,
we take out the low-level features and high-level features. The former encodes the structural features, which are fed into the road-aware view transformation
module as the input to find the road layout attention. The latter encodes the higher-level semantic information generated by a set of dilated convolutions
with various dilation rates. In addition, the sequence fusion module in the sequential encoder fuses the information from different images. The road-aware
view transformation module first extracts the road layout attention and then projects the attention-contained feature into the bird-eye view to get the road
BEV feature. Finally, the high-level features and road BEV feature are concatenated as the fused feature, which is fed into the decoder to recover the map
resolution.

resources. In the encoder, we take out the low-level features
FL from the low stage of the backbone and the high-level
features FH from the high stage of the backbone. The
low-level features keep the higher resolution and richer spatial
information but contain relatively less semantic information.
The spatial information covered in the low-level features, such
as geometrical structure, could be helpful for our road layout
attention extraction.

In contrast, the high-level features encode more semantic
information, and these high-level features could be invariant
in scale because they pass through the multi-scale dilated
convolutions. In the front-view image, the same-sized objects
may have various scales due to the different distances from the
camera. So, the high-level features would be more suitable for
sensing objects on roads. It should be noted that the low- and
high-level features are extracted from the 3rd and 17th layers
of the backbone, respectively. The 3rd layer corresponds to
the one following the first downsampling operation, while the
17th layer represents the final layer of the feature extractor.

C. The Sequence Fusion Module

We design a self-adapted sequence fusion module to fuse
the complementary information from the equidistant sequential
images and get a semantic BEV map in full view. This module
fuses the sequential features by applying varying degrees of
grouping and shifting operations, based on the number of

training iterations. The input and output sizes (i.e., channel
and resolution) of the self-adapted sequence fusion module
are the same, thus, it can be inserted into existing networks
seamlessly.

The self-adapted sequence fusion module is shown in Fig. 3.
The sequential feature is a 4 dimension tensor, which is
denoted as Fseq ∈ RB×S×C×H×W , where B, S, C, H, W are
the batch size, numbers of the images in the sequence, number
of channels, height, and width, respectively. The example
provided shows a sequence of three frames, with different
colors representing each one. The fusing operation is inspired
by TSM [46]. The channel dimension is divided into groups,
each containing a subset of the image features. As shown in
Fig. 3, we assign two channels per group for demonstration.
The groups are then shifted according to a defined principle
to fuse the features across frames. However, TSM relies on
a fixed-size grouping (e.g., 1/8 of the channel dimension),
where the group size is a pre-defined parameter. Selecting an
inappropriate group size can result in suboptimal outcomes.

In experimentation, we observed that as the network train-
ing progresses, its feature extraction capacity improves, and
a larger shift portion becomes necessary for more effec-
tive fusion. In response to this observation, we introduced
a self-adaptive mechanism to the sequence fusion pro-
cess. First, we divide the channel dimension into n groups
{G1, G2, . . . , Gn

}. The proposed self-adapted fusion method
dynamically adjusts the number of channels within each group
according to the training iterations. The number of channels
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Fig. 3. The demonstration of the sequence fusion module. This module helps
the network fuse the equidistant sequential information without any additional
trainable parameters. The different sequence features are represented in
different colors. Here, we assign two channels in each group as an example and
move the groups with varying strides in either upward or downward directions.
Taking the first group as an example, the vacancy due to the shifted operation
is padded with the out-shifted elements. In practice, the number of channels
of a group is determined by the current training iterations in a self-adapted
manner.

Fig. 4. The pipeline of the road-aware view transformation module. The
module takes as input the front view low-level feature maps from both
spatial and sequential encoders. The road attention is extracted under the
auxiliary supervision to emphasize the road plane before performing the
spatial transformation. The STN regresses a projection matrix and then wraps
the road-attention-contained feature into the BEV feature. Conducting the
view transformation with the road attention mechanism could alleviate the
limitation caused by the flat road assumption.

in each group is determined by the following calculation:

α = 1/min{⌊C/N⌋, max(⌊λIt/Ic⌋, 1)}, (1)
m = αC/N , (2)

where α is the grouping coefficient, which is a dynamic
parameter intended to adjust the channel number in a group
according to the current number of iterations. N and C are the
minimum number of groups and the total channel number of
the current feature tensor, respectively. The total number and
the current number of the iterations are denoted as It and Ic,
respectively. λ is a parameter that indicates the reliability of
the network feature extraction capability. The larger λ is, the
fewer channels are assigned to each group. Here, we set λ as
0.5 empirically. ⌊·⌋ represents the round down operation. m is
the current channel number in a group.

As illustrated in Fig. 3, after determining m, each group is
shifted by varying strides in either the upward or downward
direction. This module does not consume extra computation
costs because the self-adapted grouping and shifting operations
need no learnable parameters. We conduct the sequence fusion
at the 2nd, 4th, 7th, and 14th layer of the backbone network
before the downsampling operations. It is worth noting that
the shifting operation exchanges the channels across different
frames, disrupting the spatial integrity of individual frames.
To address this, we employ a spatial encoder to extract the
feature map from each image, enhancing spatial modeling
capabilities.

D. The Road-Aware View Transformation Module

Most current view transformation approaches employ
data-driven methods to generate BEV maps, relying on the
complex mapping relationships learned by deep neural net-
works. However, this process often lacks interpretability.
To achieve a more reliable and explainable view transfor-
mation, we project front-view features onto the BEV plane
using a learnable homography transformation, which is applied
after extracting attention from the road surface. The use of
a learnable homography enhances the interpretability of the
transformation while incorporating road-aware features helps
mitigate the distortion commonly associated with the flat-
ground assumption [51].

To acquire an accurate road layout during the view transfor-
mation, we conduct a road attention extraction in an auxiliary
supervision manner before projecting the front view feature
into the bird-eye view. As shown in Fig. 4, the road-aware
view transformation module consists of the auxiliary road
attention extractor and the learning-based Spatial Transformer
Network (STN).

The auxiliary road attention extractor employs SENet [52] to
emphasize the informative components in the feature map. The
input feature Fin , which is produced by the low-level encoders,
is fed into the extractor, and through a squeeze operation
compresses the global spatial information into a 1 × 1 × C
feature Fsq , where C refers to the number of channels.
The following excitation operation captures the channel-wise
relations in Fsq via two fully connected (FC) layers and
generates Fex . Fex can be seen as a set of channel weights
that indicates the salient features with a high score. Finally,
the informative components are selected by multiplying Fin
and Fex . The above steps can be formulated as:

Fsq =
1

H ′ × W ′

H ′∑
u=1

W ′∑
v=1

Fin(u, v), (3)

Fex = FC(Fsq , W), (4)
FRL = Fin ⊗ Fex , (5)

where H ′ and W ′ are the height and width of the input feature
map Fin . The fully-connected operation is denoted as FC(·)

and W is the learnable parameter. ⊗ represents element-wise
multiplication. Fig. 5 qualitatively demonstrates sample salient
features extracted by the attention mechanism. To get a more
reliable road layout segmentation, we conduct this attention
extraction under the auxiliary road layout supervision.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 12,2025 at 13:03:34 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: Seq-BEV: SEMANTIC BIRD-EYE-VIEW MAP GENERATION IN FULL VIEW USING SEQUENTIAL IMAGES 11459

Fig. 5. Qualitative demonstrations of the attention extracted by the road
attention extractor. (a) original images; (b) class activation map (CAM)
visualization for the Road class. The region with warmer colors corresponds
to the more attention-focused area.

The view transformation is implemented on the feature map
FRL , which encodes the road plane attention. The STN [49]
is employed to regress a 3 × 3 projection matrix θ via the
localization net. Then, with the projection matrix, the grid
generator creates a sampling grid before sending it to the
sampler. The sampler samples FRL at the sampling grid points.
We refer readers to STN [49] for more details. Usually, the
geometric projection methods suffer from the flat ground
assumption, leading to distortions for objects above roads or
distortions for roads that are not flat. But our proposed view
transformation method focuses on the road plane through the
attention mechanism before the projection, which alleviates
the limitation of the flat road assumption.

E. Loss Functions

We use two losses in this work. One is the auxiliary loss
LAux , which supervises the road attention extractor. The other
is the BEV loss LB EV , which enables the network to produce
semantic BEV maps. Due to the class imbalance issue in
the dataset, the Focal Loss [53] is used as LAux and LB EV .
We train our network in an end-to-end manner. The overall
loss function is formulated as:

L = LB EV + γLAux , (6)

where γ is the weighting parameter to balance the two losses.
We empirically set γ as 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset

We create our dataset from nuScenes [18], which includes
850 annotated scenes with 3-D object bounding boxes, seman-
tic high-definition (HD) maps, etc. The ground-truth labels of
our dataset include the semantic BEV maps and the road layout
labels. The former is generated by projecting the 3-D bounding
boxes to the HD map. The latter is created by overlaying the
HD map segment on the front view image to get the road
layout labels.

Compared to the other nuScenes-based BEV segmentation
dataset, the one we created breaks the V-shape view limitation
and is easier to load, saving much loading time to the network.

Fig. 6. Impacts caused by backbone selection in terms of mIoU and mAP.
The blue solid line indicates the results measured by mIoU, while the green
dotted line corresponds to the mAP measurements. In addition, the area of the
solid orange circle reflects the number of parameters within the network for
various backbone architectures. The area of the hollow purple circle represents
the FPS performance of each respective backbone.

Note that the projections may not be correct if the ground is
uneven. We divide the labeled 850 scenes into 548 training
sets, 150 validation sets, and 148 test sets, excluding some
incorrectly projected scenes (e.g., uneven roads). To achieve
equal-distance sampling, three images with equal intervals
are sampled using the ego-pose information provided by the
dataset to construct a sequence. We set three dataset groups
with different distance intervals for the experiment. Specifi-
cally, each group with the sequence comprises three images
acquired at distances of 10, 20, and 30 meters, respectively,
or at angular displacements exceeding 30◦. The input images
are normalized to the resolution of 256 × 512. The output
semantic BEV grid maps are with the resolution of 150×150,
each pixel encodes an area of 0.2 × 0.2 m2.

B. Training Details

We train our network with NVIDIA GeForce RTX 3090.
To balance the memory consumption and the time cost, we set
the batch size to 8. We train our network for 50 epochs
using the AdamW optimizer. We initialize the learning rate
as 5 × 10−4 and adopt the cosine annealing scheme [54]
to adjust the learning rate during training. The warm-up
strategy is employed for the learning rate adjustment. This
strategy gradually increases the learning rate until the preset
epoch for warm up ends (the 20th epoch in our network),
and then decreases the learning rate according to the decay
scheme. The momentum and weight decay are set to 0.9 and
5×10−4, respectively. MobileNet V2 is used as our backbone
and initialized with the pre-trained weight. The rest of our
network parameters are initialized randomly. The sequence
fusion is inserted into the 2nd, 4th, 7th, and 14th block of
the backbone, and the minimum number of groups for the
self-adapt grouping N is set to 24.

C. Ablation Study

To verify the effectiveness of our network structure and
to choose appropriate parameters for our network, we con-
duct several ablation experiments. The mean Intersection over
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TABLE I
THE ABLATION STUDY RESULTS (%) ON DIFFERENT VARIANTS. THERE ARE TWO GROUPS OF TESTS, WHOSE INPUT IS THE SINGLE IMAGE (SGL) AND

THE SEQUENTIAL IMAGES (SEQ), RESPECTIVELY. IN EACH GROUP, WE COMPARE THE RESULTS FROM THE THREE VARIANTS, WHICH ARE THE
SEMANTIC SEGMENTATION BASELINE METHOD, THE PLAIN VIEW TRANSFORMATION VARIANT, AND THE ROAD-AWARE ONE. THOSE

VARIANTS ARE DENOTED AS BASELINE, PLVT, AND RAVT IN THIS TABLE. THE BOLD FONT HIGHLIGHTS
THE BEST RESULTS IN EACH GROUP

Union (mIoU) and the mean Average Precision (mAP) are
employed to quantitatively evaluate the performance of our
network.

1) Ablation on Backbone: We compare the performance
of our network with different backbones in the encoders,
including MobileNet V2 [50], MobileNet V3 [55], ResNet
family [56], and Xception [57]. Similar to our proposed Seq-
BEV, we modify each backbone to get the low-level feature
and the high-level feature and also insert the multiple sequence
fusion modules into the backbones.

Fig. 6 demonstrates the results, which shows the trade-off
between the network performance and the number of parame-
ters. The network runtime is assessed in terms of Frames Per
Second (FPS) on the RTX 3090 GPU and represented visually
by the hollow purple circle, whose area is inversely propor-
tional to the number of network parameters. It is observed that
MobileNet V2, which has the fewest parameters, achieves a
frame rate of 28.04 FPS while delivering satisfactory perfor-
mance. So, MobileNet V2 is chosen as our backbone.

2) Ablation on Different Variants: This ablation study is
divided into two groups, which takes as input single (SGL)
image and equidistant sequential (SEQ) images, respectively.
Note that the self-adapted sequence fusion module is removed
from the SGL group. For the first group, we employ the
semantic segmentation network DeepLab V3+ [22] as the
baseline. For the second group, we add the plain STN to
the baseline as our view transformation module. We term
this variant as PLVT. For the third group, we integrate the
road-attention extractor with the view transformation to test
the performance of the road-aware mechanism. We name this
road-aware variant RAVT.

Tab. I displays the results. We can see that our pro-
posed Seq-BEV (the SEQ-RAVT variant), which contains
the sequential input fusion module and the road-aware view
transformation module, achieves the best performance in terms
of both mIoU and mAP. The data in the table leads to
the conclusion that all the variants that take as input the
sequential images get a superior performance against their
counterparts. Comparing PLVT and RAVT, we can see that
the prediction performance increases due to the incorporation
of road attention.

3) Ablation on Sequence Fusion Module: We fuse the
information of different images from a sequence by shifting
the sequential channel in a feature map. Since this fusion
module directly manipulates the feature tensor without any
learnable parameters, it can be flexibly inserted into any
position of a CNN. So, the insert position of this sequence
fusion module needs to be chosen.

In our Seq-BEV, we select MobileNet V2 as our backbone
network. The MobileNet V2 is stacked by the inverted residual
blocks, which consist of an expansion layer, a depthwise layer,
and a projection layer. In this ablation study, we test the
performance of the Seq-BEV with the sequence fusion module
inserted before different layers.

In addition, we design a self-adapted mechanism to group
different channel numbers in the sequence dimension accord-
ing to the training process. Here, we also compare the
performance of our proposed self-adapted grouping strategy
with that of the fixed grouping method. We set 3 fixed groups,
dividing the channel dimension into 8, 16, and 24 groups,
respectively.

Tab. III displays the results. From the table, we can see that
the self-adapted grouping strategy improves the network per-
formance in terms of mIoU. Moreover, the network achieves
the best results when we insert the sequence fusion module
before the depthwise layer. We conjecture the reason for
this superior performance is the expansion operation in the
expansion layer, which extends the dimension of the feature
map. It can be seen as a process of data decompression. Thus,
the feature map produced by the expansion layer could provide
enough information for the sequence fusion.

4) Ablation on the Network Structure: In this ablation study,
we first conduct experiments to determine the best way to
combine the road BEV feature and the high-level features.
Then, we adjust the input feature map of the road-aware
view transformation module to choose the most effective Seq-
BEV structure. In addition, an ablation study is conducted to
determine the optimal loss weighting factor, denoted as γ , for
appropriately balancing the BEV loss, LB EV , and the auxiliary
loss, LAux .

Element-wise addition and concatenation are two common
ways to combine the separate features. We report the results
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TABLE II
THE ABLATION STUDY RESULTS (%) ON THE COMBINATION METHOD OF THE ROAD BEV FEATURE AND THE HIGH-LEVEL FEATURE. WE APPLY

ELEMENT-WISE ADDITION AND CONCATENATION TO COMBINE THE TWO FEATURES, RESPECTIVELY. IN ORDER TO MAINTAIN THE SAME
CHANNEL SIZE OF THE FEATURE MAP PRODUCED BY THE SEPARATE METHODS, WE USE THE CONVOLUTION LAYER AFTER THE

CONCATENATE OPERATION. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

TABLE III
THE ABLATION STUDY RESULTS (%) ON THE SEQUENCE FUSION MOD-

ULE. WE TEST THE NETWORKS WITH DIFFERENT INSERTION POSI-
TIONS AND CHANNEL GROUPING SCHEMES AT THE SAME TIME.

THE SEQUENCE FUSION MODULE IS RESPECTIVELY INSERTED
BEFORE THE EXPANSION LAYER, DEPTHWISE LAYER, AND

PROJECTION LAYER. TO TEST THE PERFORMANCE OF
THE DESIGNED SELF-ADAPTED GROUPING MECHA-

NISM, WE COMPARE IT WITH 3 FIXED GROUPING
CONFIGURATIONS, CONSISTING OF 8, 16,

AND 24 GROUPS

of the network that adopts the two combination methods in
Tab. II. Note that in order to keep the feature dimension
unchanged, a convolution layer is applied after the concate-
nation operation. According to the results from Tab. II, the
concatenation method gets the best performance in terms of
mIoU and mAP. We also note that the element-wise addition
method performs better in the segmentation of small objects on
the road, like obstacles, vehicles, and pedestrians. The reason
for this case may be that compared with the obvious road
feature, those small object features become negligible ones
during the convolution operation in the concatenation method,
leading to inferior performance.

We use the low-level feature as the input of the road-aware
view transformation module. The low-level feature maps
preserve the high resolution and hence encode rich spatial
information, such as geometrical structure, which may be suit-
able for road layout extraction. To verify this idea, we change
the input of the road-aware view transformation module to
the high-level feature or both the low-level and high-level
features. Tab. IV shows the experiment results. We can see that
the road-aware view transformation module conducted on the
low-level feature has the higher mIoU with 38.86%, compared
with the others. This is also true for the metric mAP. This
result validates the applicability of low-level features to road
attention extraction.

The entire network is trained under the supervision of
both the BEV loss, LB EV , and an auxiliary loss, LAux .
A suitable weighting factor can balance the influence of these

losses on the training process. Tab. V presents the network’s
performance across varying loss weights, based on which we
assign a value of 1.0 to this factor.

5) Ablation on the Distance Intervals: The distance
sequence employed in our network is designed to address blind
spots resulting from the limited field of view. These distance
intervals can be adjusted as long as the sequential images
capture environmental details beyond the frame’s visual range.
To evaluate the effectiveness of the sequence fusion and
determine the optimal distance configuration for processing
inputs, we conducted an ablation study on various distance
intervals. In this experiment, we utilized intervals of 10, 20,
and 30 meters.

The experiment results are displayed in Tab. VI, demon-
strating that the network achieves the highest performance
when processing images at 10-meter intervals. These findings
suggest that increasing the distance between images may
lead to a decline in the accuracy of generating the full-view
semantic BEV map, as larger intervals fail to capture the
necessary environmental information in blind spots.

D. Comparative Results

1) The Quantitative Results: We evaluate the performance
of our Seq-BEV with some state-of-the-art semantic BEV
generation methods, including Cross-view Transformation
(CVT) [58], Variational Encoder-Decoder Networks (VED)
[8], MonoLayout [59], and View Parsing Network (VPN)
[10]. Those methods originally take a single image as input.
In order to compare them with our Seq-BEV, we modify
those networks and enable them to predict the full BEV
map with sequential images as well. To maintain the original
network structure, we keep the original network unchanged to
extract the spatial feature while we duplicate the encoders of
those networks to fuse the sequential feature. Then, we feed
the spatial and temporal features together into the decoder
for the semantic BEV map generation. In addition, we also
compare our Seq-BEV with some state-of-the-art BEV detec-
tion networks, such as BEVFormer [17], BEVdepth [38]
and MatrixVT [60], by changing the detection head into
the segmentation one. Keeping the original input settings as
the same, the temporal sequential images from 6 vehicle-
surrounding cameras are fed into those networks. However, the
multi-view inputs slow down the training process. To trade off
the computing resources and the training efficiency, we only
use the BEVFormer-tiny for the comparison.
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TABLE IV
THE ABLATION STUDY RESULTS (%) ON THE INPUT FEATURE OF THE ROAD-AWARE VIEW TRANSFORMATION MODULE. WE CONDUCT THIS

EXPERIMENT BY SENDING THE HIGH-LEVEL FEATURE, LOW-LEVEL FEATURE, AND BOTH OF THEM TO THE ROAD LAYOUT ATTENTION
EXTRACTOR. THE NETWORK THAT TAKES AS INPUT THE LOW-LEVEL FEATURE GETS THE BEST PERFORMANCE, WHICH IMPLIES

THAT THE LOW-LEVEL FEATURE ENCODES RICH SPATIAL INFORMATION AND IS SUITABLE FOR THIS TASK. THE BOLD FONT
HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

Fig. 7. Sample qualitative results for the full BEV semantic map generation networks. The results from the different networks testing with the same input
are displayed in each row. Due to the space limit, we only show one image from a sequence here. The proposed Seq-BEV is more sensitive to small road
objects and provides the more clear road layout. The comparative results demonstrate the superiority of our network.

TABLE V
THE ABLATION STUDY RESULTS (%) ON THE LOSS WEIGHT FACTORS

γ . WE SET IT TO 0.5, 0.1, 1.0, 1.5, 2.0, AND 10.0. THE BOLD FONT
HIGHLIGHTS THE BEST RESULTS

The results are shown in Tab. VII. Testing with our own full
BEV semantic map, the proposed Seq-BEV achieves 38.86%
in mIoU and 57.69% in mAP, outperforming all the other
methods for most categories. We find that our method is
more effective in segmenting small objects, especially for the
pedestrian category. It can also be seen that the performance
of the original networks is better than the modified networks
that take as input sequential images. The reason behind this

result may be that the fusion of sequential information requires
a special design to get better performance.

2) The Qualitative Demonstrations: Fig. 7 shows sample
qualitative demonstrations. Due to space limitation, we only
displayed the semantic BEV maps generated by the networks
that achieved better quantitative results. We can see that our
Seq-BEV produces a more accurate semantic full-BEV map.
From the first two rows, compared with the other methods, our
Seq-BEV is more sensitive to small objects, such as obstacles
or pedestrians on the road. However, the predicted position
of the small objects is not perfect because these categories
account for a small proportion of the dataset. Moreover, the
size of the vehicle predicted by Seq-BEV is closer to the real
one. We credit this to the multi-scale dilated convolutions,
which are used to process the high-level feature and make it
invariant in scale. The last row demonstrates the semantic BEV
prediction at nighttime, which indicates that Seq-BEV can still
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TABLE VI
THE ABLATION STUDY RESULTS (%) ON THE DISTANCE INTERVALS. SEQ-BEV PROCESSES THE IMAGES AT SPECIFIC DISTANCE INTERVALS TO

CAPTURE ENVIRONMENTAL DETAILS BEYOND THE FRAME’S VISUAL RANGE. IN THIS ANALYSIS, DISTANCE INTERVALS OF 10, 20, AND 30
METERS ARE USED TO IDENTIFY THE OPTIMAL CONFIGURATION. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

TABLE VII
THE COMPARATIVE RESULTS (%) COMPARED WITH THE STATE-OF-THE-ART METHODS. WE CONDUCT TWO GROUPS OF TESTS. ONE IS THE ORIGINAL

NETWORK, WHICH TAKES AS INPUT A SINGLE IMAGE. THE OTHER IS THE MODIFIED NETWORK, WHICH TAKES AS INPUT SEQUENTIAL IMAGES.
WE USE SGL AND SEQ TO DISTINGUISH THE TWO GROUPS. SOME BEV-BASED DETECTION METHODS ARE ALSO COMPARED BY ADDING

THE SEGMENTATION HEAD. FV MEANS THAT THE FRONT-VIEW CAMERA IMAGES ARE TAKEN AS INPUT. MV MEANS THAT THE
INPUT IS FROM MULTI-VIEW CAMERAS. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS IN EACH COLUMN

generate a clear and precise result under dark illumination
conditions.

However, challenges may arise when the ego-vehicle is
stationary while other vehicles remain in motion, such as
waiting at an intersection. Since our sequential processing is
triggered by changes in distance and the distance remains
unchanged in such scenarios, our method is less robust to
predict the BEV maps, especially in detecting dynamic objects.
A possible solution to alleviate this limitation would be to
integrate additional sensors, such as event cameras, to enhance
the detection of dynamic objects.

V. CONCLUSION AND FUTURE WORK

We presented here a novel road-aware semantic BEV net-
work, Seq-BEV, that takes as input the equidistant sequence
images and directly outputs a semantic full-BEV map. In this
work, we developed a self-adapted sequence fusion module
and a road-aware view transformation module. We conducted
extensive experiments to verify the effectiveness of the net-
work structure and the designed modules. The proposed
network was also compared with the other state-of-the-art
methods and achieved superior performance. Although our
Seq-BEV provides acceptable semantic BEV maps, the pre-
diction of small objects is still not satisfactory. In the future,
we plan to alleviate this issue by generating more training

data with small objects using generative artificial intelligence
technologies. We will also integrate other sensors, such event
cameras, to enhance the detection of dynamic objects when
the ego-vehicle is stationary. To make the BEV maps more
practical in real applications, we plan to add more semantic
classes, such as traffic signs, into the BEV maps in the future.
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