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Abstract— Global localization can estimate geo-referenced
locations (e.g., longitude and latitude), which is a fundamental
capability for autonomous vehicles. Most existing solutions rely
on the Global Navigation Satellite Systems (GNSS). Their accu-
racy could be degraded by the multi-path effects or occlusions of
GNSS signals in urban environments. Some GNSS-free methods
could achieve global localization by comparing the current
on-line sensory data with pre-built databases/maps. However,
they require tedious human efforts to drive a vehicle to collect
and maintain the databases/maps. Moreover, most of these
methods use front-looking cameras or LiDARs, so the captured
data could be easily contaminated by dynamic objects (e.g.,
moving vehicles and pedestrians). To provide a solution to these
problems, this paper proposes a novel global localization method
by comparing an image from a sky-looking fish-eye camera
with the publicly available OpenStreetMap (OSM), and using
particle filter to achieve real-time metric localization in dynamic
traffic environments. To evaluate our method, we extend a
public dataset with OSM data, which are retrieved through the
given geo-referenced location information. Experimental results
demonstrate the effectiveness and efficiency of our method.

Index Terms— Cross-modal localization, sky-looking camera,
OpenStreetMap, GNSS-degraded environments.

I. INTRODUCTION

LOCALIZATION is a fundamental capability for
autonomous vehicles [1]. It can provide location

information for downstream tasks, such as decision making,
path planning, and autonomous navigation [2], etc. There are
mainly two types of localization for autonomous vehicles:
global localization and local localization. Global localization
aims to localize a vehicle against a geo-referenced database
or map without initial guess [3]. Local localization aims
to estimate relative poses with respect to previous poses
or a small-size local map. For global localization, most of
existing methods rely on the Global Navigation Satellite
Systems (GNSS). However, GNSS is not always reliable or
even sometimes unavailable due to occlusions or multi-path
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effects of GNSS signals [4], especially in dense urban
environments, such as urban canyons. To improve the
GNSS localization accuracy, 3-D city models and digital
maps with environmental knowledge (e.g., street layouts
and building heights) have been used to identify and use
Non-Line-Of-Sight signals in some early works [5], [6].

To relieve the need of GNSS, place recognition and
re-localization with visual cameras or LiDARs have been
extensively studied in the research community [7], [8], [9],
[10], [11], [12], [13]. These methods generally consist of
an off-line stage and an on-line stage. During the off-line
stage, a data-collection vehicle usually equipped with expen-
sive global localization equipment is employed to build a
geo-referenced image or point-cloud database/map. During
the on-line stage, images or point clouds captured from
vehicle-mounted sensors are compared with the geo-referenced
database/map to determine the current location of the vehicle.

Despite the effectiveness of these methods, they still suf-
fer from several issues. Firstly, building and maintaining
the geo-referenced databases/maps is tedious, expensive, and
time-consuming. Secondly, dynamic objects (e.g., vehicles
and pedestrians) may cause discrepancies between the sen-
sor data captured on-line and those stored in the pre-built
databases/maps. Thirdly, in most existing vision-based meth-
ods, due to the limited field-of-view, the overlap between the
image captured on-line and those stored in the database may
not be large enough to accurately determine the locations.

To provide a solution to above issues, this paper proposes a
novel cross-modal method using a sky-looking fish-eye camera
as on-line observation and OSM as pre-built map, followed
by a filter to achieve global localization in GNSS-degraded
dynamic and complex urban traffic environments. Due to its
free and open nature, OSM has been used in many appli-
cations [14], [15]. One novelty of our method is that we
innovatively use a sky-looking fish-eye camera for localiza-
tion, which has the advantage of avoiding disturbances from
dynamic objects and can get a large field-of-view. Moreover,
we adopt the combination of on-vehicle visual information
and OSM to relieve the need for GNSS to achieve global
localization. Since we use OSM to build our database, the
tedious database building work using a data-collection vehicle
can be alleviated.

To the best of our knowledge, this is the first solution using
a sky-looking fish-eye camera and OSM to achieve global
localization. Our method can be easily integrated into existing
localization systems (e.g., LiDAR, radar, or front-looking
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camera based methods) to enhance their robustness by
providing redundancy from different sensory sources (i.e., sky-
looking Fish-eye camera). To evaluate our method, we extend
an existing public dataset [16] with OSM data retrieved
through the given geo-referenced location information. Our
code is open-sourced.1 The contributions of this work are
summarized as follows:

1) We propose a novel cross-modal global localization
method with a sky-looking fish-eye camera and OSM
data for dynamic and complex urban environments.

2) We design a novel topology-geometry based hybrid
(TGH) descriptor to represent both the fish-eye image
and OSM data to narrow the modality gap.

3) We test our method on different computing platforms
including PC and embedded devices to demonstrate the
real-time efficiency of our method.

This paper is structured as follows. Section II reviews the
related work. Section III describes our descriptor extraction
and weighting model in detail. Experiments and results are
presented in section IV. Conclusions and future work are
drawn in the last section.

II. RELATED WORK

This section reviews two streams of cross-modal global
localization methods using public aerial data. The first stream
adopts the Ground-to-Aerial matching framework. Ground
means that the on-line data are captured by an on-vehicle
sensor (e.g., camera or LiDAR). Aerial means that the off-line
database is built with geo-referenced aerial or satellite images.
The second stream adopts the Ground-to-OSM framework.
The key problem in cross-modal localization lies in how to
bridge the modality gap.

A. Ground-to-Aerial Matching

1) Vision-Based Methods: Some early methods use
hand-crafted image features, such as key points, lines, and
planes, to match images captured by an on-vehicle camera with
the images from a geo-referenced aerial-image database [17],
[18], [19], [20]. These methods rely on geometric informa-
tion and features to build their descriptors for matching.
Differently, Radwan et al. [21] used semantic-level textual
information (i.e., shop, restaurant, or street names) to match
camera images with a Google Map. Instead of using hand-
crafted features, Kim et al. [22] used a Siamese network to
learn embeddings from a ground-image sequence and satel-
lite images, which are then used to update particle weights
during filtering. Similarly, Hu et al. [23] also used a Siamese
network to measure the similarity between ground and aerial
images. The location of the query on-vehicle image is provided
by retrieving aerial images stored in a database. Then, the
authors extended [23] with a Markov localization framework
to ensure the temporal consistency of the matching results [24].
Different from CNN-based methods, TransGeo [25] is a pure
transformer-based approach, eliminating the need for aligned
image pairs during training. TransGeo exhibits good flexibility

1https://github.com/lab-sun/SkyLoc

Fig. 1. A hybrid descriptor is used to extract topological and geometric
information from both input fish-eye image and OSM at the same location.
The ROI of fish-eye image is transformed to the polar coordinate as shown in
(a), while operation for the ROI on OSM is based on the cylinder coordinate
(b). (c) is the OSM with the trajectory of the vehicle.

and generalization but, as a retrieval-based method, requires
additional registration to determine the vehicle’s relative pose
to the aerial image.

2) Point Cloud-Based Methods: Range sensors, compared
to visual sensors, are more robust to illumination and weather
changes [26]. They can also provide accurate depth measure-
ments. However, the modality gap between range sensor data
and aerial images is much larger. To narrow such modality gap,
Kummerle et al. [27] extracted edge points for both a satellite
image and point clouds provided by a 2-D laser scanner, which
are then used to estimate the position of a ground robot.
RSLNet [28] and its extension [29] all use synthetic radar
images generated from satellite images as the intermediate
modality for matching and network training. Self-supervised
learning technique is used in [29] to release the need of
ground truth required in [28]. Unlike the above methods that
directly use point clouds, some researchers extract high-level
representations for matching. Hussein et al. [30] used a LiDAR
to scan tree stems and matched them with tree crowns captured
in an aerial image to localize a ground robot. Miller et al. [31]
extracted semantic information for both a ground LiDAR point
cloud and a satellite image to calculate their similarity, which
is then used to update particle weights during filtering.

B. Ground-to-OSM Matching

1) Vision-Based Methods: Some early works achieve global
localization by comparing past trajectories of odometry with
road routes in OSM. For example, Floros et al. [32] combined
trajectory of an odometry with road information of OSM
by using champfer matching, which shows a 5m average
localization error in their results. Similarly, Bruaker et al. [33]
also localized a vehicle by matching the trajectory of an odom-
etry with road topological information from a OSM, while a
probabilistic framework is proposed for matching. Instead of
directly using road information, Panphattarasap et al. [34] pro-
posed a binary semantic descriptor to represent road junctions
and gaps between surrounding buildings for both images and
OMS. Multiple descriptors of consecutive input images are
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then combined together to improve the retrieval performance.
Based on [34], Samano et al. [35] used a triplet loss to
learn embeddings for both surrounding images and OSM
instead of extracting binary semantic descriptors. Similarly,
Zhou et al. [36] used the same approach to extract descriptors
for both vehicle-captured images and OSM, followed by a
particle filter for global localization instead of the retrieval
method used in [35]. Recently, Sarlin et al. [37] propose
OrienterNet, a deep neural network for sub-meter image
localization within OSM. It requires a coarse GPS prior to
build a local map from OSM and may struggle when the
query image includes many unregistered elements in OSM,
e.g., pedestrians or vehicles, limiting its suitability for some
highly dynamic urban scenarios.

2) Point Cloud-Based Methods: Similar to some vision-
based methods, Ruchti et al. [38] and Suger et al. [39] both
match LiDAR odometry trajectories to OSM road information,
focusing on urban environments and outer-urban environ-
ments, respectively. Unlike [38] and [39] which focus on
geometric information, [40] and [41] first extract semantic
information of the surroundings. A 4-bit semantic descriptor
and a scan-context based OSM descriptor were proposed
in [40] and [41] for matching, respectively. Global localization
is then achieved using particle filter and data retrieval in [40]
and [41], respectively. A localization error at about 20m on
KITTI sequence-00 was reported in [40].

C. Difference From Previous Work

Similarly, our method also uses OSM as the reference
map. The major difference is that we use a low-cost sky-
looking camera for the observation model, which can avoid the
interference from dynamic objects on roads, while the other
methods ( [40] uses a LiDAR, [36] uses four cameras, [25]
uses a panoramic camera, [37] uses a front-looking camera)
may need to tackle the interference from dynamic objects
on the street. In [40], a compact binary semantic descriptor
(BSD) that captures the topological information (i.e., junction
type) is used to bridge the modality gap between on-board
measurement and OSM. Based on this compact representation,
we simultaneously use geometric information (i.e., building
outline) to further narrow the modality gap between sky-
looking fish-eye camera images and OSM. Lastly, different
from [25], [31], [36], [37], and [40], which may require GPUs
to achieve better efficiency, our method can directly run on a
GPU-free computing platform.

III. THE PROPOSED METHOD

Given a sky-looking fish-eye camera image IF at time t
and a street block-sized geo-referenced OSM Mosm , our goal
is to estimate the vehicle pose xt with respect to Mosm . Note
that Mosm is obtained by re-rendering the original OSM file
(see Fig. 1(c)) to retain only building areas, which are ren-
dered in black, to facilitate descriptor extraction (see Fig. 4).
We assume that the vehicle runs on a flat road, so the vehicle
pose consists of three variables: 2-D coordinates (x, y) and
orientation θ .

Fig. 2. Fish-eye camera images with typical sky shapes (top row) and the
corresponded local area in the re-rendered Mosm (bottom row).

A. Problem Formulation

As aforementioned, we use particle filter to achieve metric
localization. The key idea of particle filter is to use a number
of particles to estimate the posterior probability of the vehicle
pose. The optimal pose estimation can be achieved through
the expectation of the posterior probability distribution. Math-
ematically, given all observations from time 1 to time t , z1:t ,
and all the motion control inputs, u1:t , the posterior probability
p (xt | z1:t , u1:t ) can be calculated as:

p (xt | z1:t , u1:t ) = ηp (zt | xt )∫
p (xt | ut , xt−1) p (xt−1 | z1:t−1, u1:t−1) dxt−1, (1)

where η is a normalization constant, p (zt | xt ) represents the
likelihood from the observation at pose xt , the integral term is
the prior probability of the pose [42]. Here we use a LiDAR
odometry algorithm, LOAM [43] as our control input ut .
Note that other motion estimation algorithms that can provide
absolute scales can also be used as the control input here.

We use the KLD-sampling algorithm [44] to speed up
the process of weight calculation for particles by adaptively
adjusting the number of resampled particles during filtering.
The key idea is using Kullback-Leibler divergence (KLD) to
calculate how many particles are needed to approximate the
distribution of the current vehicle pose:

n =
1
2ϵ

χ2
k−1,1−δ

=
k − 1

2ϵ

{
1−

2
9(k − 1)

+

√
2

9(k − 1)
z1−δ

}3

, (2)

where n is the number of the needed particles, z1−δ is the
upper 1 − δ quantile of the standard Gaussian distribution, ϵ

is the upper error bound in KLD, and k is the number of bins
that contain at least one particle. In our case, k represents
the number of square-shape (Wbin ×Wbin , where Wbin is the
length of sides in terms of pixel) bins that contain at least one
particle on Mosm .

B. The Proposed TGH Descriptors

To associate IF with Mosm , we measure the similarity
between the on-line captured IF and a particle-centered patch
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Fig. 3. Descriptor extraction for input fish-eye image IF . The ROI of IF is
expanded into a polar coordinate and binarized to get the sky-looking mask.
The final descriptor is extracted based on the sky-pixel ratios for the divided
bins of the sky-looking mask.

in Mosm . However, directly comparing IF and Mosm is chal-
lenging due to the significant modality gap between fish-eye
camera images and OSM. Interestingly, IF and Mosm both
encode the structural information about roads and buildings,
as shown in Fig. 2. This shifts the problem to: How can
such information be embedded? For road structures, binary
semantic descriptor has shown its efficiency to embed junction
types [34], [40]. For buildings, IF and Mosm share simi-
lar geometric outlines, but describing such outlines with a
vector-based descriptor is nontrivial. Instead, we represent this
information implicitly using the ratio of non-building areas,
which can be easily extracted from both IF and Mosm . To keep
the method intuitive and efficient, we adopt a handcrafted
descriptor (i.e., TGH descriptor) rather than a neural network,
which usually requires a large amount of paired training data
and additional GPU resources for inference.

1) Sky-Looking Mask and Descriptor Extraction: Given a
IF , we first extract a square-shaped region-of-interest (ROI)
at the center of IF instead of using all pixels. In this way,
pixels from roads, pedestrians, and vehicles can be removed.
Only the top parts of buildings and the sky are kept. This
could make the structure appearance of IF more close to Mosm .
We empirically set the size of the ROI as 900 × 900 pixels,
which can keep enough information while maintain a good
efficiency. The ROI is then expanded horizontally to correct
the image distortion, followed by grayscale conversion. Otsu’s
method [45] is then used to binarize the ROI with adaptive
threshold, assigning a value of 255 to sky pixels and 0 to
building pixels. In this way, we can get a binary sky-looking
mask (see Fig. 3(c)).

Similar to the binary semantic descriptors in [40], we design
our descriptor by first dividing the sky-looking mask into
24 bins along the column direction, in which each bin covers
15◦ out of 360◦. Each bin is then divided into 2 parts, that
is, the top part (i.e., the first 2/3 rows of the mask) and the
down part (i.e., the last 1/3 rows of the mask), see Fig. 3.
For geometric information, we count the sky pixels (i.e., non-
building areas) in both top and down parts in each bin to
respectively calculate the sky-pixel ratios, denoted as γ (BinT

k )

and γ (BinD
k ), respectively. Bink represents the k-th bin, T is

short for the top part, and D is short for the down part. The
descriptor vector of the geometric information can be obtained

Algorithm 1 TGH Descriptor Extraction
Input: Sky-looking fish-eye image IF
Output: TGH Descriptor DesTGH

1 begin
2 Get the ROI of IF and horizontally expand it, noted

as IH
3 Classify pixels in IH as sky or building using

binarization operation, noted as IB
4 Divide IB into 24 bins, {Bink}, k ∈ {1, 2 . . . , 24}
5 for each Bink do
6 Count sky pixels in top part, get γ (BinT

k )

7 Count sky pixels in down part, get γ (BinD
k )

8 end
9 Desgeo_T ← {γ (BinT

k )}, Desgeo_D ← {γ (BinD
k )}

10 Desgeo ← {Desgeo_T, Desgeo_D}

11 for each biti do
12 Find two corresponding bins, Bink1 and Bink2
13 if (γ (BinT

k1) ≥ τ T
1 & γ (BinD

k1) ≥ τ D
1 ) &

14 (γ (BinT
k2) ≥ τ T

1 & γ (BinD
k2) ≥ τ D

1 ) then
15 biti = 1
16 end
17 else if (γ (BinT

k1) ≥ τ T
2 & γ (BinD

k1) ≥ τ D
2 ) ∥

18 (γ (BinT
k2) ≥ τ T

2 & γ (BinD
k2) ≥ τ D

2 ) then
19 biti = 1
20 end
21 else
22 biti = 0
23 end
24 end
25 Destopo ← {biti }, i ∈ {1, 2, 3, 4}
26 return DesTGH ← {Desgeo, Destopo}

27 end

as Desgeo=[γ (BinT
1 ), . . . , γ (BinT

24), γ (BinD
1 ), . . . , γ (BinD

24)],
where Des and geo is short for descriptor, and geometric,
respectively. Desgeo here implicitly embed the building out-
liers from IF to some extent. For topological information,
we design a 4-bit binary descriptor Destopo to indicate the
presence of a road in the vehicle’s heading direction(H), back
direction(B), left direction(L), and right direction(R). Each
bit covers two bins of the mask, as shown in Fig. 3(c).
If the sky pixel ratios of such two bins satisfy conditions
listed in Algorithm 1 (see thresholds setting in Tab. I), the
corresponding bit of Destopo is set as 1 (i.e., a road exists
in this direction), otherwise 0. Let biti denotes the i-th bit
of Destopo, where i ∈ {1, 2, 3, 4} follows the heading-back-
le f t-right order. The whole process of the TGH descriptor
extraction is shown in Algorithm 1.

2) OSM ROI and Descriptor Extraction: Given a particle
par i with pose (x i

p, yi
p, θ

i
p), where i represents i-th particle,

we first extract a circle-shaped ROI centered at (x i
p, yi

p) with
a diameter of φp (see IV). We then orient the ROI according
θ i

p before the descriptor extraction (see Fig. 4). Similarly,
we convert the OSM ROI as grayscale and then binarize it,
where non-building pixels approximately correspond to the sky
pixels in the sky-looking mask.
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Fig. 4. Example of descriptor extraction for a given particle on OSM.
A cylinder coordinate is adapted on the OSM to get the ROI. Then the final
descriptor can be obtained as the same way for fish-eye image.

TABLE I
PARAMETERS USED IN TGH DESCRIPTOR AND KLD-SAMPLING

Similar to the TGH descriptor for IF , we divide the OSM
ROI into 24 bins based on a cylinder coordinate, where each
bin covers 15◦ out of 360◦. Each bin is then further divided
into center part (inner 2/3 radius) and marginal part (outer
1/3 radius), as shown in Fig. 4. Here we do not expand the
ROI horizontally, since there is not distortion in Mosm and
circle-shaped ROI is much more close to the raw IF . Then
we count pixels belonged to the non-building area within both
center part and marginal part in each bin to calculate the “sky”-
pixel ratio, denoted as γ (BinC

k ) and γ (BinM
k ), respectively.

C is short for center and M is short for marginal. The
geometry part Des par i

geo and topology part Des par i

topo of Des par i

TGH
for particle par i are extracted by following the same process
in Algorithm 1 (i.e., line 5-26). However, different thresholds
are chosen, considering the gap between polar and cylinder
coordinate. More details can be found in Tab. I.

C. Observation/Weighting Model

The observation, or weighting model in particle filter is used
to update particle weights during the filtering process. A higher
weight indicates that the live sensor input data is much more
likely captured when the robot is under a state as like the given
particle. In our case, such similarity/weight is computed by the
distance between descriptors extracted from IF and Mosm .

Given a TGH descriptor Des F
TGH = {Des F

geo, Des F
topo} of IF

and Des par i

TGH = {Des par i

geo , Des par i

topo } of particle par i at time t ,
the final weight for par i is the combination of two parts,
including topology similarity w

par i

topo and geometry similarity

w
par i

geo . Similar to [36] and [40], we use Hamming distance
dham to calculate the topology similarity as follow:

w
par i

topo = 1− 0.2dham(Des F
topo, Des par i

topo ), (3)

The reason for choosing 0.2 as the factor is to make sure those
particles with higher Hamming distance can be still kept in
a certain probability after re-sampling. As for the geometry
similarity, we use cos distance dcos , which is widely adapted
to evaluate the similarity between two distributions. Des F

geo

Fig. 5. The Mosm with the trajectory of the vehicle. Figure (a), (b), (c), and
(d) corresponds to Seq-01, 02, 03, and 04 without expansion, whose length
is 562.5m, 723.9m, 657.0m, and 232.5m, respectively.

and Des par i

geo can be regarded as distributions of sky or building
pixels. Specifically, we first calculate cos distance between the
top part Des F

geo_T of Des F
TGH and the center part Des par i

geo_C of

Des par i

TGH . Similarly, we then calculate the cos distance between
the corresponding down part and marginal part. To reduce the
gap caused by the difference of bin size and the bin shape
used for extracting Des F

TGH and Des par i

TGH , we combine these
two cos distances by weighting factors. The final geometry
similarity w

par i

geo can be obtained as follow:

w
par i

geo = λdcos(Des F
geo_T, Des par i

geo_C)

+ ωdcos(Des F
geo_D, Des par i

geo_M), (4)

where λ and ω are weights satisfying λ + ω = 1. The final
weight of particle par i can be obtained as follow:

w par i
= αw

par i

topo + βw
par i

geo , (5)

where α and β are weights satisfying α+β = 1. More details
about values of weights are shown in Tab. I.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Dataset

We build our dataset based on the UrbanLoco dataset [16]
by supplementing the OSM data. The UrbanLoco dataset con-
tains 13 sequences collected in San Francisco and Hong Kong,
covering a total length of over 40 km. There are front-looking
camera images, LiDAR point clouds, and RTK GNSS poses
recorded in each sequence. However, only four sequences
have sky-looking fish-eye camera images, including HK-
Data20190426-1, HK-Data20190426-2, HK-Data20190316-1,
and HK-Data20190316-2. These four sequences are collected
in urban canyon areas (i.e., the Whampooa and Ma Tau Kok
areas in Hong Kong), as shown in Fig. 5. We make our dataset
using the aforementioned four sequences. We sample the
fish-eye images at the GNSS collection rate (i.e., 1 Hz) to get
the ground truth pose. Since the down-sampled sequences are
too short, we reverse the sequence (i.e., seems like reversing
the car) at the end of the original sequence. In this way, the
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sequence is expanded twice long, renamed as Seq-01, 02, 03,
and 04, respectively, as shown in Fig. 7. Note that RTK-GNSS
trajectories of Seq-03 and 04 are not accurate enough due
to severe signal occlusions along the data collection route.
So, we refine their ground truth trajectories based on the
relative trajectories estimated by LOAM. We understand that
the evaluated sequences are limited, and more data will be
valuable to better assess the generalizability of SkyLoc.

B. Experimental Setup

We assume that vehicles always run on roads and follow the
traffic rules (e.g., cannot make u-turns in the middle of roads).
Thus, we evenly distribute 40, 000 particles on the road area,
and constrain the particle orientation θp within a range with a
tolerance ϕ along the road orientation to reduce the number of
particles that have invalid poses (e.g., particles in the middle
of the road but with a 90◦ heading direction). So, given a
road with a◦ orientation, the orientations of particles within
this road should satisfy the requirement: θp ∈ [a −

ϕ
2 , a + ϕ

2 ]

or [a+180− ϕ
2 , a+180+ ϕ

2 ]. The a is calculated with the two
junctions at the two ends of the road. In this work, we set ϕ as
30◦ and evenly distribute the θp with a resolution of 1◦. We use
a larger ROI of IF for Seq-02, i.e., 1300×1300 pixels. We set
φp as around 50m for Seq-01 and 02, and around 25m for Seq-
03 and 04 because the building density is much higher in these
two sequences. Besides, Wbin = 15 is used for Seq-03 and
04 to better estimate the distribution of sampled particles in
narrow street areas. To achieve real-time performance, we pre-
extract descriptors from the given Mosm to build a database,
which takes about 20s for 200, 000 particles on an intel
core i7 computer. During filtering processes, Des par i

TGH can be
approximated by the descriptor that is extracted at the closest
location to par i in the database. A KD-search tree is used
to accelerate searching. The descriptor for the closest point
in the database might have a different orientation from the
particle par i . So, we further align the retrieved descriptor with
par i according to θ i

p by sifting the column of the retrieved
descriptor. The more data points in the database are sampled,
the more accurate such approximation would be. Empirically,
a larger map Mosm usually needs more data points to build
such a database.

C. Performance Evaluation

1) Baselines: Since work [36], [40] are not open-sourced,
we are unable to directly compare with them. So, we cre-
ate some baselines for comparison. The work [40] extracts
BSD descriptors for both Mosm and on-line LiDAR scans to
update particle weights during filtering. Similarly, we use road
junctions on the heading, back, right, and left of the vehicle
to build the BSD descriptor. In the first baseline, LOAM is
used to provide pose estimation to update the control input ut .
A perfect BSD-based observation model is used. Specifically,
we first find the corresponding coordinates (i.e., x , y, θ ) on
OSM according to the ground truth poses of the vehicle. Then
BSD descriptors extracted at these positions from the OSM
are used as on-line observations. So, the BSD descriptors
for the on-line observations are exactly the same as those

Fig. 6. The average absolute error with standard deviation for each single
running step after successful convergence. The first, middle, and bottom row
represents results for Seq-01, 02, and 03, respectively.

for the particles whose locations are identical to the on-line
sensor in the OSM. We name this baseline as the BSD-based
method (BSD). We use this baseline as the upper limit for
the BSD-based method when using a practical motion model.
As for the second baseline, we only set particle weights as
0 when particles are outside the road area, namely, the Road
Net-based method (RN). Motion estimation from LOAM is
used to update ut . This baseline only uses road information
in its observation model like [32]. In the third baseline,
we replace the original observation model in our method with a
perfect observation model similar to the first baseline BSD. So,
the TGH descriptors for the on-line observations are exactly
the same as those for the particles whose locations are identical
to the on-line sensor in the OSM. Such baseline is noted
as ours with Perfect Observation model (ours-PO), which
refers to the upper limit for the performance of the TGH-based
method when using a practical motion mode.

We run our method and three baselines on Seq-01, 02,
03, 04, and their reversed versions, totally eight sequences.
We run ten times of all the methods on each sequence. The
filtering process is considered as converged when the standard
deviation of all the current particles pose are less than a pre-
defined threshold. Here, we set the standard deviation as 40
pixel (around 6m) for both x and y, as well as 10◦ for θ . Some
localization results in one runtime are as shown in Fig. 7.

2) Localization Accuracy and Convergence: We use the
successful convergence rate Psc = |L|/ntest and average
running steps to achieve successful convergence, Ssc =

1
|L|

∑
l∈L sl , to evaluate the performance of convergence. |L|
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Fig. 7. Examples for qualitative performance of localization. Figures in each row are based on the same method. In each picture, the top trajectory is the
expanded part, and the dotted line connects the place where we reverse the sequence (see Part A of section IV).

is the cardinality of L , in which L = {l} is the set of
testing runs that can achieve successful convergence. ntest
represents total testing times. sl is the number of run-
ning steps for successful convergence in l-th testing run.
Once a filtering process is successfully converged, we cal-
culate the average error for translation and orientation as

Etrans =
1

N−sl

∑N
j=sl

√(
x̃ l

j − x j

)2
+

(
ỹl

j − y j

)2
and Eori =

1
N−sl

∑N
j=sl

∣∣∣∣↼R (R(θ̃ l
j )
−1R(θ j ))

∣∣∣∣. j refers to j-th frame.

(x̃ l
j , ỹl

j , θ̃
l
j ) is the estimation pose of the vehicle at frame j

in l-th testing run. (x j , y j , θ j ) is the ground-truth pose. N
is the frame number of the testing sequence. R(·) ∈ SO(2)

is the rotation matrix of the given orientation.
↼

R (·) is the
orientation of the given 2D rotation matrix. The average Etrans
and average Eori with standard deviations are then calculated
based on all the successful convergence filtering processes,
which are used to evaluate the localization accuracy. As shown

in Tab. II, our method can achieve similar localization accuracy
as BSD. The values of average Etrans for all the successful
converged sequences are less than 4.6m. The values of average
Eori are less than 3.3◦. When using our method on all
sequences except sequence 02-reverse, the average running
steps for successful convergence are smaller compared to BSD.
This indicates that our method can successfully converge faster
than BSD. Our method can also achieve a high successful
convergence rate. Indeed, BSD has a perfect observation model
without noise, which means such results are very difficult or
even impossible to be obtained when using practical sensors.
It is worth noting that our method outperforms all the other
baselines when we using a perfect TGH-based observation
model from the perspective of convergence performance with
high competitive localization accuracy. This shows that our
TGH-based observation model has a higher upper limit than
the BSD-based observation model. We interestingly find that
RN baseline can only localize the vehicle on the Seq-02 and
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02-reverse with larger Ssc. We consider RN-based method as
a kind of “lazy” particle filter, which treats every particle
equally. It only drops particles when they are not on roads.
The reason why such “lazy” filter can successfully converge
could be that the trajectory of the running vehicle is unique in
the Mosm , while this is not common in urban environments.
We also observe that in challenging scenarios, successful
convergence can be difficult to achieve, leading to failures. For
instance, on the Seq-04, only ours-PO manages to converge
successfully with a Psc value of 0.2. Moreover, our method
and all the other baselines are unable to successfully converge
on Seq-04-reverse. We conjecture the primary reason is the
lack of enough consecutive and distinguished observations.
The junction types, building layouts, structures, and even
appearances are highly similar and repeated in Seq-03 and
Seq-04. In cases with insufficient observations, such as Seq-
04 and Seq-04-reverse, our method fails. While when more
consecutive observations are available, as in Seq-03 and 03-
reverse, our method still able to successfully converge even in
such challenging environments. To enhance the performance
in challenging scenarios with limited observations. We believe
that incorporating features such as street signs and shop names
captured in images and registered in OSM provide promising
potentials.

We also visualize the average absolute errors of localization,

including ϵ j (trans) = 1
|L|

∑
l∈L

√(
x̃ l

j − x j

)2
+

(
ỹl

j − y j

)2

and ϵ j (ori) = 1
|L|

∑
l∈L

∣∣∣∣↼R (R(θ̃ l
j )
−1R(θ j ))

∣∣∣∣ for each running

step- j once the filtering is converged, as well as their standard
deviations. The ϵ j (trans) is divided into longitudinal (that
is, along the head of the vehicle) and lateral errors (i.e.,
perpendicular to the heading of the vehicle). As shown in
Fig. 6, our method can provide a good estimation for both
translation and orientation, where the errors are respectively
less than 10m and 20◦ in most of the single running step.
We can also observe that the longitudinal errors are generally
larger than the lateral errors. We conjecture that the primary
reason lies in the road width being significantly smaller than
its length. The field of view in the lateral direction of the road
is more sensitive than in the longitudinal direction, making
fish-eye images captured at different locations across the road
width more distinguishable. Therefore, it would be better to set
different uncertainties for longitudinal and lateral estimations
when using our method in navigation or localization systems.

3) Dead-Reckoning Distance Traveled Before Successful
Localization: Similar to [46], we calculate the probability of
travelling a given distance x without successful localization
in the target map, P(x). In [46], it follows a key-frame-
based place recognition manner, while ours follows a filtering
manner. Therefore, successful localization in our case can only
occur after the filtering process has converged. To determine
whether successful localization has occurred, we calculate
Relative Translation Error (RTE) and Relative Rotation Error
(RRE) for each step after successful convergence (more details
about RTE and RRE can be found in [3]). Localization is
considered successful when RTE<7.5m and RRE<10◦. For
each test, a uniformly distributed random frame is selected

Fig. 8. Probability of travelling a given distance before successful localiza-
tion.

as the starting point for the filtering process. We conduct
100 trials per sequence and record the travelled distance at
the first instance of successful localization. Results for each
scenario (e.g., Scene-01 refers to Seq-01 and Seq-01-reverse
combined) are presented in Fig. 8. The vehicle successfully
localizes itself within 600m and 700m in 95% of the time for
Scene-01 and Scene-02, respectively. In Scene-03, due to more
challenging environmental conditions, the vehicle localizes
itself within 850m in 95% of the time.

Sum of distance travelled without

P(x) =
localization for greater or equal to x meters

Total distance travelled
(6)

D. Ablation Study

In this part, we investigate how much the topological
information and geometric information contribute in TGH.
We run our method with DesTGH, Destopo, or Desgeo on all
the sequences except Seq-04 and 04-reverse for ten times,
respectively. Results for Psc and Ssc are displayed in Tab. III.
We can see that the combination of Desgeo and Destopo is
able to improve the robustness of global localization. For
example, using DesTGH can achieve higher values of Psc
on the sequences 02, 03, and 03-reverse compared to using
only Desgeo or Destopo. Meanwhile, using both topological
information and geometric information allows a better con-
vergence speed on the sequences 01-reverse and 03-reverse.
In general, only using Destopo and Desgeo is not very stable,
they sometimes even lead to failures, while the proposed
DesTGH allows more robust performance.

E. Parameter Tuning for Re-Sampling

To have a better understanding of the influence of KLD-
based re-sampling on our method, we investigate the influence
of re-sampling parameters (i.e., ϵ, δ, and Wbin) on the number
of particles, Psc, and Ssc. For each parameter, we change its
value while keeping the others unchanged, and then we run
our method ten times. The experiment is conducted on Seq-03.
Examples of the change of particle numbers during the filtering
process can be found in Fig. 9, where the y-axis uses the log-
scale. It can be easily found that ϵ has the greatest influence on
the number of particles. When ϵ becomes larger, the number
of particles reduces rapidly. Differently, the relation between
the number of particles and Wbin cannot be easily determined
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TABLE II
AVERAGE Etrans AND AVERAGE Eori WITH STANDARD DEVIATION, AVERAGE RUNNING STEPS FOR SUCCESSFUL CONVERGENCE Ssc , AND SUCCESSFUL

CONVERGENCE RATE Psc IN URBANLOCO DATASET

TABLE III
Psc AND Ssc FOR USING DESCRIPTOR DesTGH , DesTOPO , OR DesGEO

TABLE IV
Psc AND Ssc FOR DIFFERENT RE-SAMPLING PARAMETERS

by the partial derivative of (2). When Wbin is larger, the value
of the statistic result k is generally smaller, leading to the fast
reduction of the number of particles (see Fig. 9(a)). As shown
in Fig. 9(c), the influence of δ on the number of particles is
small during the filtering process. This is because

√
2

9(k−1)
is

much smaller than z1−δ with different values of δ, especially
at the early stage of the filtering process. Intuitively, filtering
processes usually converge faster when the number of particles
decreases faster. As displayed in Tab. IV, we can find that the
vehicle can localize itself faster with a larger ϵ or a larger
Wbin . However, the filtering process becomes not very stable
with larger value of ϵ and Wbin , resulting in a low successful
convergence rate Psc. Empirically, smaller ϵ and Wbin could

Fig. 9. The influence of re-sampling parameters on the change of particles
number. The sub-figures (a), (b), and (c) represent the influences of Wbin , ϵ,
and δ on particles number, respectively.

greatly reduce the failure chance of localization. However,
it might cause too slow reduction for the number of particles,
which usually requires more computational time. It might be
better to use smaller values in more challenging environments,
where usually have highly similar building structures, high
building densities, and narrow streets.

F. Computational Cost

To show the efficiency of our method, we evaluate the
computational costs of different parts during the filtering
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TABLE V
COMPUTATIONAL COST OF THE FILTERING PROCESS IMPLEMENTED ON

DIFFERENT PLATFORMS

Fig. 10. Computational cost of the filtering process for Seq-01 using a
NVIDIA Jeston Xavier NX kit.

process in Tab. V. They are measured on three different
platforms: a PC with i7-11700KF CPU (3.6 GHz) and 32-GB
RAM, an Intel NUC Kit with i5-1135G7 CPU (2.4 GHz)
and 16-GB RAM, and a NVIDIA Jetson Xavier NX kit with
6-core Careml ARM CPU and 8-GB RAM. We run our method
three times on Seq-01 on each platform. We then calculate
the average time cost µ for each part of our method during
filtering. 3 is the maximum time cost of a single running step
during filtering.

Specifically, the dataset loading contains loading the Mosm
descriptor dataset and constructing the KD tree, which takes
the longest time. The particle filtering initialization can be
finished within 220ms. We consider these two parts as the
initial phase, which only needs to be conducted once. As for
the other parts (i.e., DesTGH extraction time, time for par-
ticle weights update, time for particle number update, and
KLD-based particle re-sampling time), the total average time
cost is less than 50ms on all the three platforms. Generally,
the proposed method can run fast with real-time performance.

V. CONCLUSION AND FUTURE WORK

We presented here a novel method to globally localize a
vehicle by using a sky-looking fish-eye camera and OSM in
GNSS-degraded environments. We have shown quantitative
and qualitative results for global localization performance in
challenging scenarios. The proposed method can efficiently
run in real-time even on embedding platforms. However, our
method still suffers from overexposure caused by sunlight, and
affected by various heights of buildings. Our method requires
a motion model with an absolute scale to update the state of
particles, making it more suitable as a low-cost add-on for
a localization system rather than functioning as a standalone
system. Moreover, our method is expected to work only in
high-rise environments. It might fail when the height and
density of buildings are too low, where the TGH descriptor

cannot be well extracted due to the lack of enough observations
for building tops. In the future, we plan to combine IMU
with the fish-eye camera as the VIO to release the need of
an additional motion model.
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