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VTGNet: A Vision-Based Trajectory Generation
Network for Autonomous Vehicles in Urban
Environments

Peide Cai"”, Yuxiang Sun"”, Hengli Wang

Abstract—Traditional methods for autonomous driving are im-
plemented with many building blocks from perception, planning
and control, making them difficult to generalize to varied scenar-
ios due to complex assumptions and interdependencies. Recently,
the end-to-end driving method has emerged, which performs well
and generalizes to new environments by directly learning from
expert-provided data. However, many existing methods on this
topic neglect to check the confidence of the driving actions and
the ability to recover from driving mistakes. In this paper, we
develop an uncertainty-aware end-to-end trajectory generation
method based on imitation learning. It can extract spatiotemporal
features from the front-view camera images for scene understand-
ing, and then generate collision-free trajectories several seconds
into the future. The experimental results suggest that under various
weather and lighting conditions, our network can reliably generate
trajectories in different urban environments, such as turning at in-
tersections and slowing down for collision avoidance. Furthermore,
closed-loop driving tests suggest that the proposed method achieves
better cross-scene/platform driving results than the state-of-the-art
(SOTA) end-to-end control method, where our model can recover
from off-center and off-orientation errors and capture 80% of
dangerous cases with high uncertainty estimations.

Index Terms—End-to-end driving model, uncertainty-aware
visual navigation, imitation learning, path planning.

1. INTRODUCTION

ROM a global perspective, approximately 1.3 million peo-

ple die yearly due to road traffic [1], and nearly 94% of these
are related to human driving errors [2]. Autonomous vehicles
(AVs) may play an essential role in reducing this number, whilst
alleviating traffic congestion, cutting down air pollution and
reducing energy consumption in transportation by as much as
90% [3].
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Fig. 1. Different approaches for trajectory planning and decision-making for

autonomous vehicles.

In order to achieve autonomous driving, vehicles need to
perceive and understand their surroundings [4], then use the ex-
tracted information to generate collision-free trajectories to the
goal position. However, due to the highly complex environment
and an inability to test the system in a wide variety of scenarios
[5], achieving universal autonomous driving is still a challenge,
especially in real-world urban environments where trajectory
generation is a crucial task. Within this framework, the solution
trajectory can be represented as a time-parametrized function,
m(t) : [0,T] — X, where T is the planning horizon and X is
the configuration space of the vehicle [6]. Methods for planning
and decision-making for AVs can be divided into three main
categories [7], [8]: traditional sequential planning, end-to-end
control and end-to-end planning, which are illustrated in Fig. 1.

The traditional approaches are usually structured as a pipeline
of separate components (e.g., perception, planning and control)
linking sensory inputs to actuator outputs [9]. However, there
exist some major disadvantages of this approach. 1) Each com-
ponent needs to be individually specified and tuned, which is
difficult to generalize to varied scenarios due to their complex
interdependencies [10]. 2) The cost functions in most works
have to be carefully designed with complicated parameters. 3)
It is prone to error propagation. The accumulated error among
unstable modules may lead to false or missed alarms. For ex-
ample, in the unfortunate Tesla accident in 2016, an error in the
perception module, misclassification of a white trailer as sky,
propagated down the pipeline until failure [11].

Recently, a new paradigm based on deep learning, which
integrates perception, planning and control has achieved impres-
sive results on vehicle navigation [12]-[18]. Called end-to-end
control, this method formulates the driving problem as learning
a mapping from perceptual inputs (e.g., RGB images) directly
to vehicle control outputs (e.g., steering angle and throttle).
Another similar paradigm is end-to-end planning [8], [19]-[21],
which maps observations into future trajectories. Deep learning
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enables these systems to perform well and generalize to new
environments by self-optimising (learning) its behaviour from
data, allowing freedom from tuning rule-based parameters in all
foreseeable scenarios. However, these works have several short-
comings. 1) The driving ability of recovering from off-center
and off-orientation errors has not been considered or validated,
which is critical for real-world deployment. 2) Most works
only evaluate their models in simple environments with limited
complexity in terms of dynamic obstacles and weather/lighting
conditions. 3) Additionally, the generalization performance on
different types of vehicles with changing physical properties
has seldom been evaluated. 4) The neglected uncertainty of the
generated driving actions or trajectories prevents the users from
checking the correctness of the network output, which is crucial
in safety-critical driving tasks. 5) Finally, many works heavily
rely on post-processed detailed environmental maps for decision
making [20], [21], which are costly to create and transfer to new
scenarios.

Towards addressing the above problems, we follow the more
generic end-to-end planning paradigm and propose VTGNet, an
uncertainty-aware vision-based trajectory generation network
for AVs. This paper is an extended version of [8] and the main
contributions are summarized as follows.

1) We propose an end-to-end driving network for AVs based
on imitation learning, which directly takes as input the
raw camera images rather than highly-engineered envi-
ronmental maps for trajectory generation.

2) We propose a new benchmark AddNoise to examine
the driving ability to recover from off-center and off-
orientation errors.

3) We compare our VIGNet with different baselines and
show its superiority under various weather/lighting condi-
tions (e.g., snowy, rainy and foggy) both on a large-scale
driving dataset and in a high-fidelity driving simulator with
dynamic obstacles.

4) We demonstrate the cross-scene/platform and error recov-
ery driving ability of VTGNet on the AddNoise bench-
mark.

5) We validate the effectiveness of the estimated uncertainty
by ablation studies and closed-loop driving tests.

6) We open source our code and collected synthetic driving
dataset for future studies on autonomous driving.!

II. RELATED WORK

End-to-End Control: ALVINN (autonomous land vehicle in
a neural network), proposed by Pomerleau [22] in 1989, is
a pioneer attempt to use the neural network for autonomous
driving. Due to the composition of a limited number of neural
network layers, this method only works in very simple scenarios.
In 2016, with the development of convolutional neural networks
(CNNs) and computing powers of GPUs, Bojarski et al. [12]
developed a more advanced driving model named DAVE-2.
It achieves autonomous lane following in relatively simple
real-world scenarios, such as flat or barrier-free roads, in which
the front-view camera is used to stream the images and transmit

Uhttps://github.com/caipeide/ VTGNet

them into CNNs to compute steering commands. Follow-up
works include [16], [13] and [23]. However, these works only
target lane-following tasks, and since they only consider the
camera input for decision making, a wrong turn may be taken
at intersections for the lack of high-level navigation commands.
Moreover, only simple environments with low-level complexity
are considered in these works.

Incorporating Intentions Into Driving Networks: In order to
resolve the ambiguities at intersections, driving models proposed
by Codevilla et al. [15], [18] have been designed to receive not
only the perceptual inputs but also high-level driving intentions
(i.e., keep straight and turn left). In this way, the network
becomes more controllable. Similarly, Cai er al. [24] realize
high-speed autonomous drifting in racing scenarios guided by
route information with deep reinforcement learning. However,
the driving policy is only demonstrated in static enviroments.
Hecker et al. [25] trained a driving model to use 360-degree
camera images equipped with GPS-based route information
to predict future steering and speed controls. However, this
work was only evaluated offline on a pre-collected dataset.
Closed-loop online driving abilities such as slowing down for
pedestrians/vehicles are not presented.

End-to-End Planning Using Temporal Information: To make
the driving models more generic, new methods have been re-
cently proposed for end-to-end trajectory planning [8], [19]-
[21]. These methods commonly use recurrent neural networks
(RNNs) to handle temporal sequential information (e.g., im-
ages). For example, Bergqvist et al. [19] designed and tested
several path planning networks with various types of input in-
cluding gray-scale images and ego-motions. The results showed
that the path generated by long short-term memory (LSTM) or
CNN-LSTM is smooth and feasible in many situations. How-
ever, this work only considered lane following tasks in simple
areas. To handle more complex driving situations, Rhinehart
et al. [20] consider the future trajectories as a distribution
conditioned on post-processed top-view feature maps rather
than raw camera images, from which a set of possible paths
can be sampled. Similarly, Bansal ef al. [21] proposed to use
top-view environmental representations to generate trajectories
with RNNs. However, the detailed top-down views used in these
two works are expensive to create, maintain and transfer, and
they rely on prebuilt high-resolution maps of the driving areas.

Our work corresponds to the idea of end-to-end planning
but differs from the other works in three main aspects: 1) Our
method is free from detailed top-view feature/environmental
maps and is directly based on highly accessible raw camera
images for scene understanding and trajectory generation. 2)
The history sequential input is redundant and may contribute
differently to the model [26], which, however, is neglected by
prior RNN-based driving models. In the spirit of advancements
in text translation [27] and graph representation learning [28],
we design a self-attention LSTM module to better use the
temporal information. 3) Our method is extensively evaluated
both on a large-scale driving dataset (offline, open-loop) and in
a high-fidelity driving simulator (online, closed-loop).

Learning Uncertainty-Aware Navigation Policies: Recently,
several methods have been proposed for uncertainty estimation
in deep neural networks. Kendall ef al. [29] proposed that there
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Architecture of the proposed VT'GNet, which consists of a feature extractor and a trajectory generator. VTGNet is composed of three sub-networks

that are selectively activated for three common tasks: turn left, turn right and keep straight. MobileNet-V2 is used as the feature extractor with 17 bottleneck

convolutional layers. LSTM is used to process the spatiotemporal information.
sequential information before feeding it into the LSTM. The output of VTGNet

We also adopt a self-attention mechanism to measure the importance of the past
is two-branched: 1) A vector of size 22 x 3 indicating the trajectory in the future

22 frames (velocity and x, y positions in the body frame), and 2) a vector of size 22 x 3 indicating the uncertainty of the generated trajectory.

are two types of uncertainties: the aleatoric uncertainty and the
epistemic uncertainty. The epistemic uncertainty is the model
uncertainty, which can be reduced by adding sufficient data.
Aleatoric uncertainty, also known as data uncertainty, captures
the uncertainty from the observed input data. Tai et al. [30]
accomplished uncertainty-aware visual-based navigation by us-
ing data uncertainty to choose the safest action among multiple
network outputs. Fan ef al. [31] also used the data uncertainty to
achieve resilient behaviors in prior unknown environments for
indoor navigation. Similar to these works, we show performance
improvements by explicitly modeling the data uncertainty into
deep networks. Differently, we find this method is still insuffi-
cient for hard-coded safety on autonomous driving, which opens
possible avenues for future research in this area.

III. METHODOLOGY
A. Network Architecture

The overall architecture of the proposed VTGNet is shown
in Fig. 2(a). At each time step ¢, the inputs to the network
are camera images Z; = {Z',...,7'?} and the movement in-
formation of the vehicle m; = {m!,...,m!?} in the past 12
frames. The output of the network is the predicted trajectory
T: and corresponding uncertainty o;, which are conditioned
on the high-level driving command ¢; and observations. The
preview horizon of the generated trajectory is set to 3 s (i.e., 22
frames), which is double the average human perception-brake
reaction time (RT) of 1.5 s to stop a vehicle [32]. Therefore,
the generated trajectory can be denoted as 7; = {7, ..., T22}.
Here, m* € R?and 7% € R? both contain the velocity and z,
positions in the current body frame. Similarly, the trajectory
uncertainty is denoted as o; = {o!,..., %2}, where 0% € R3
contains uncertainties of the velocity and z, y positions.

For implementation, we construct three sub-networks that can
be selected by the given command ¢; to conduct different tasks,
i.e., turn left, turn right and keep straight, similar to other works
[15], [18]. In practice, as in [29], we train the network to predict
the log variance logo? because it is more numerically stable than
regressing the variance.

1) The Feature Extractor: Once a specific branch is chosen
by a high-level command, the images Z; are first processed
separately and in turn by an image module F; implemented
with CNNs, which extracts a feature vector f; € R%'2 from
each image. We use MobileNet-V2 [33] as F; to extract visual
features. It consists of 17 bottleneck convolutional blocks, and
each block uses the depthwise separable convolutions rather than
a fully convolutional operator. We refer readers to [33] for more
details of this module. Then, a balance module F}, implemented
with fully connected (FC) layers expands the dimension of each
history movement vector m* from 3 to 128 (% ) to balance the
influence of the vision and motion feature vectors, for which
we draw on the experience of [34]. The outputs of these two
modules are then concatenated together at every history time
step into combined vectors of length 640, represented by

X =< Fy(TF), Fy(m*) >, 1 <k <12, (1)

where < - > represents the concatenation operation, F;(Z*) is
the output of the image module for the k-th image, F,(m*) is
the output of the balance module for the k-th motion state vector,
and fF is the k-th combined vector.

2) The Trajectory Generator: To better use the sequential
information, the set of f. = {f!,..., f1?} is first concatenated
and processed by FC layers to generate attentions ajp, ..., a2
to measure the relative importance of the past information.
We use softmax to activate the last layer so that Z}Q ap = 1.
Then, we feed the modulated features {a; f1, ..., a12 f}2} into a
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¥ Changing lanes for collision
avoidance (9.5%)
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Fig. 3. Dataset distribution and splitting. For each situation, the split ratio of
training, validation and test is 7:1:2. The staked column bar on the right shows
the distribution of data in the keeping straight situation, where we have balanced
the portion for usual and unusual driving cases. The turning situation does not
contain significant interaction with the road agents.

three-layer LSTM to generate the spatiotemporal feature f; €
R256 of the surroundings. It is further compressed by 2 FC layers
to get two vectors, both of size 22 x 3, which represent the
trajectory 7; and uncertainty o; generated at time step ¢ for the
future 22 frames.

3) Loss Function: As the name suggests, the basic idea of
imitation learning is to train a network that mimics human
behaviors, which can be solved with supervised learning. Let
T/ denote the expert-provided trajectory in the training dataset
at sample time 7, and 6 denote the learnable parameters of the
network F'. Then, the optimal parameters 6* can be trained by
minimizing the average prediction loss:

0" = arg minZE (F (Zy,my, ¢50),T,)) 2
0 ¢

where L is the per-sample loss at sample 7. We follow the training
method for data uncertainty in [29] and define L as

=T

2
20;

1
L + élogaf. (3)

B. Dataset Generation and Analysis

‘We build our dataset from the RobotCar dataset, which was
recorded in dynamic urban areas from May 6, 2014 to November
13, 2015. This dataset captures scenarios with various weather
and lighting conditions, along with some long-term changes
such as construction and roadworks. The front-view images are
recorded by a Point Grey Bumblebee XB3 camera on top of the
vehicle. In addition, the ground-truth positions and velocities
are acquired from the fused GPS/inertial solution at a frequency
of 50 Hz.

1) Data Generation: From the RobotCar dataset, we aim to
extract both camera images and movement information to train
and test VTGNet. Therefore, the data without GPS information
is first filtered out and a total of 29 driving routes are collected.
Another issue that needs to be considered is data balance.
Specificallly, we need to balance the portion for different driving
cases (e.g., car following, slowing down for collision avoidance,
etc.) and the distribution of driving samples in varied environ-
mental conditions. The final dataset distribution is shown in
Fig. 3 and in Table I.

This data is then reconstructed for training and testing in this
work, where we need to equip every image with the trajectory
of the ego-vehicle in the past 1.5 s and the future 3 s. For

TABLE I
THE ENVIRONMENTAL DISTRIBUTIONS OF OUR DATASET

Environments | # Turn Left # Turn Right # Keep Straight
Sun 3705 5355 7921

Rain 3369 4401 16548
Snow 1280 3975 6089
Dusk 1059 1194 4836
Night 2339 2705 10930
Overcast 2733 3103 7016

Fig. 4. Dataset distribution map. We plot and cluster the locations of all the
samples from our dataset. Clusters with more samples have a brighter color and
are larger in size.

implementation, we first interpolate the ground-truth universal
transverse mercator (UTM) position and velocity series to the
image timestamps, which are recorded at 15 Hz, and then
convert their coordinates to the vehicle body frame. After this,
we manually label every image with a corresponding intention
command indicating the driving direction of the vehicle based on
the ground-truth trajectories. For example, when the ego-vehicle
approaches an intersection and plans to take a right turn, we
change the command from keep straight to turn right. When the
steering is completed, we recover the command to keep straight.
Finally, we crop the raw images to the shape of (1247, 384)
by removing the sky and hood on the top/bottom of the images
because these areas are less informative for scene understanding.
We believe that the learning process is more efficient by doing so.

2) Data Analysis: Our final dataset contains 88,558 images
of driving sequences in Oxford for 61.52 km, which covers 6
environmental conditions: overcast, sun, rain, snow, dusk and
night. Each environment has a special style of visual appearance.
For example, in the rain scenario, the roads are often covered
by fallen leaves, and sometimes raindrops on the camera lens
cause blurry areas in the image. In the night scenario, the shutter
speed is much slower than it is in the daytime, which can lead to
motion artifacts around objects when the vehicle moves. In the
snow scenario, the undrivable areas are often covered by white
snow, contrasting sharply with the drivable areas. Sample visual
appearances can be seen in Fig. 8. In addition, to visualize how
the dataset distributes geologically, we plot the locations on an
aerial map in Fig. 4.
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MODELS: THE QUANTITATIVE EVALUATION RESULTS FOR DIFFERENT MODELS. ENVIRONMENTS: THE EVALUATION RESULTS OF VTGNET IN DIFFERENT
WEATHER/LIGHTING CONDITIONS. SMALLER NUMBERS ARE BETTER. THE BOLD FONT HIGHLIGHTS THE BEST RESULT IN EACH COLUMN

TABLE II

423

CNNState-FC. This network takes as input both image and

Accel & Eace Ead Ex & Era

Models (m/s?) (m/s) (m/s%) (m) (m) (m) (m)

CNN-FC [16] 0.181 1.104 0.313 1.621 0.268 1.545 3.271

CNN-LSTM [16] 0.488 0.995 0.564 1.461 0.269 1.380 2.907

CNNState-FC [19] 0.326 0.477 0.399 0.628 0.242 0.521 1.444

VTGNet (ours) 0.325 0.289 0.311 0.426 0.188 0.335 1.036

Environments

Sun 0.402 0.286 0.339 0.470 0.193 0.372 1.120

Rain 0.294 0.270 0.299 0.409 0.172 0.329 0.962

Dusk 0.350 0.359 0.353 0.421 0.185 0.332 1.095

Night 0.318 0.310 0.308 0.414 0.205 0.310 1.040

Overcast 0.337 0.311 0.336 0.508 0.204 0.418 1.226

Snow 0.262 0.236 0.247 0.329 0.171 0.237 0.818
r T T T T T T T T T T T 1 planning baselines on the same training set. They are introduced
: Image, 512 (£ Tglisltzep : as follows, and are shown in Fig. 5.' '
LT e _ . CNN-FC. This network takes as input the image sequences.
| (@) CNN-FC | The CNN:s first extract the visual features in the past 12 frames
| . Trajectory 22x3 | (1.5 s), and then these features are concatenated together to be
| 12U S—lrdl — @y, v | compressed by FC layers. This method follows the idea of TCNN
| | introduced in [16].
. | CNN-LSTM. This network takes as input the image sequences.
I (b) CNN-LSTM |  The extracted features in the past 12 frames are processed by a
| | three-layer LSTM block into a vector € R%'2. The vector is
: 512 (£ Trajectory 22x3 : then compressed by FC layers. This method follows the idea of
| 123 FY —> ®xv | CNN-LSTM introduced in [16].
I |
I |

o ————

(c) CNNState-FC
512 (¢
(5 @_’B
®

Trajectory 22x3

= | FCJ|=—> (x,y,v)

— Data Flow @ Concatenation | Linear LSTM Layer

Fig. 5. Different baselines for comparison. The feature extractor for these
networks is the same as that in our proposed VTGNet shown in Fig. 2.

IV. EXPERIMENTS ON THE ROBOTCAR DATASET
A. Training Details and Baselines

We implement the proposed VI'GNet with Pytorch, and train
it on the dataset introduced in Section IV with the NVIDIA
1080Ti graphics card. The split ratio of training, validation
and test is set to 7:1:2. We use the Adam optimizer[35] with
an initial learning rate of 0.0001 and batch size of 15. The
network is trained to converge when no further decrease in
the validation loss can be observed. For comparison, we also
train and fine-tune three other vision-based end-to-end trajectory

movement sequences. The extracted features are concatenated
and compressed with FC layers. This method follows the idea
of Merging Model introduced in [19].

We adopt 7 metrics to evaluate the performance of different
networks. These are the average values computed over the entire
test dataset.

® Accel measures the smoothness of the generated trajectory,

which is the average acceleration of the preview time. The
lower its values, the smoother and more comfortable the
corresponding trajectories.

e &, and &,.. measures the mean velocity and acceleration

error, respectively, in the preview horizon of a trajectory.

e &,qrepresents the average displacement error [36]. It is the

L2 distance between the generated and the ground-truth
trajectory.

e &, and &, represents the lateral and longitudinal error,

respectively, of a trajectory.

e Erq is the final displacement error [36], which means the

L2 distance between the final waypoints of the generated
and ground-truth trajectories.

B. Quantitative Analysis

1) Comparison to Baselines: We first show the evaluation
results on the test set from different model architectures in
Table II-Models.
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Fig. 6. Displacement error on the generated waypoints for different models.

The black lines indicate the standard deviation.

Trajectory Smoothness: Table II reveals that CNN-FC gen-
erates the smoothest trajectories with the lowest Accel value
(0.181). VITGNet ranks second place (0.325). CNN-LSTM per-
forms worst on this metric with the highest Accel (0.488).

Error Analyses: From the second to the last column of Table I1,
we can see that VTGNet generates more accurate trajectories
than the other models in terms of the error-related metrics such
as &, and &,4. This superior performance indicates that our
model performs more like humans than the other models. The
displacement error over the 3.0 s preview horizon from different
models is shown in Fig. 6. Their errors and related variance
all increase as the preview time increases, and our VIGNet
achieves the best results with the smallest values. In addition, we
can infer the reasonability of our network design by comparing
the results from different baseline models, which are discussed
as follows.

Table II shows that both CNN-LSTM and CNNState-FC
perform better than CNN-FC with less errors. The superiority
of CNN-LSTM indicates that the recurrent architecture, such as
LSTM, is much more efficient than the FC layers in process-
ing spatiotemporal information. We conjecture that the LSTM
module can infer the hidden state, such as environmental changes
among the frames, which leads to better performance on this im-
itation learning task. However, it is difficult for the FC layers to
extract valuable information directly from the consecutive visual
features. On the other hand, the superiority of CNNState-FC
indicates that past movement is beneficial for trajectory genera-
tion, which functions as the state memory, similar to the memory
of humans. Although the position and orientation information is
contained in the raw images, using a CNN alone is not sufficient
to extract this information and generate future trajectories.

2) Comparison Among Different Environments: In this sec-
tion, we test and evaluate our VTGNet separately on different
environments with various lighting and weather conditions,
with the aim to see whether this architecture can generalize
to different visual appearances. The results are shown in Ta-
ble II-Environments. It can be seen that VTGNet achieves robust
results under different conditions and performs best in the snow
environment. In this scene, the generated trajectories have the
lowest acceleration (0.262 m/ s2) and error results (&, Eqa,
etc.). This is probably because the drivable areas are more
distinct in this scenario with the undrivable areas covered by
white snow. Another possible reason for the lower Accel value

TABLE III
THE DRIVING STYLE REPRESENTED AS THE MEAN AND STANDARD DEVIATION
OF THE DRIVING ACCELERATION (7m,/s%) FOR THE TRAINING
DATASET AND VTGNET

Environments Training Data VTGNet

Sun 0.38 £ 0.34 0.40 £+ 0.35
Rain 0.39 + 0.35 0.29 £+ 0.24
Dusk 0.34 £ 0.31 0.35 £ 0.32
Night 0.32 + 0.34 0.32 £+ 0.30
Overcast 0.32 £ 0.33 0.34 + 0.29
Snow 0.21 +£ 0.25 0.26 + 0.22

* Planned Speed
[m/s]

N & o ® N & o ® N R 0 ®

N & o ®

Time (0~3 s

Sample results from different baselines and our VTGNet. The black

Fig. 7.
lines indicate the planned results and the green lines indicate the ground truth.
The red shaded areas represent the estimated uncertainty.

on snowy days is that the reference training data from humans
reflects that they tend to drive with less dynamics on slip-
pery roads in such weather, which affects our VTGNet trained
with imitation learning. We verify this idea by quantitatively
analyzing the driving styles of the training trajectories from
humans and the generated trajectories from VTGNet. We for-
mulate the driving style as the mean and standard deviation of
the driving accelerations, and the results are shown in Table I1I. It
can be seen that in most conditions the driving styles of humans
and VTGNet are quite similar, which accords with the principle
of imitation learning.

C. Qualitative Analysis

1) Comparison to Baselines: We compare VTGNet with the
baselines, and the results are shown in Fig. 7. It can be seen
that although CNN-FC generates smooth trajectories, it deviates
significantly from the ground truth values when taking turns in
Fig. 7(a). In Fig. 7(b), the ego-vehicle should slow down for a
pedestrian ahead, while CNN-FC maintains the current speed
and moves forward. CNN-LSTM performs better in terms of
errors, but the planned results from this model are rather jerky.
In general, VTGNet achieves the best results.

2) Results in Different Environments: Fig. 8 displays sample
qualitative results of VIGNet in 5 typical environments, in
which the challenging scene rainynight is presented in the last
row. Because of the raindrops on the camera lens, the halo
effects in this scene are sometimes conspicuous. It is worth
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Snow

() (b)

Fig. 8.

() (d

Sample qualitative results for our model VTGNet in various environments. Column (a) shows the results for turn left, and column (d) for turn right.

Column (b) shows the results for car following, and column (c) for lane keeping. The black lines indicate the planned results and the green lines indicate the ground

truth. The red shaded areas represent the estimated uncertainty.
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Fig. 9.  Error values of ablated models (M; — M3) and our VIGNet (My).

Lower values are better.

noting that this scene is not included in the training set, and
is only used to qualitatively test the generalization performance.
In general, we can see that our VIGNet is able to generate
collision-free trajectories under various lighting and weather
conditions. The performance is also reliable in some tough
scenarios. For example, in night-(d), the bus in the left area
presents a severe motion artifact, and VTGNet generates a safe
trajectory to turn right. In rainynight-(c), the motion artifact
is more severe but the generated results are still reasonable
and similar to the ground truth (with higher uncertainty). We
consider that the well-balanced training dataset of high diversity
in terms of lighting and weather conditions contributes to such
generalizable performance.

Additionally, we show some failure cases, indicated by ex-
treme uncertainties in rainynight-(b,d), where the input image
is heavily noised. In such scenarios, the system should drive the
vehicle more cautiously to avoid potential accidents.

D. Ablation Studies

We train and test a series of ablated models M ~ M3 to
show the benefits of the VTGNet design (My). M; removes

Fig. 10.

Sample results from ablated models (M — M3) and our VTGNet
(M). The black lines indicate the planned results and the green lines indicate
the ground truth. The red shaded areas represent the estimated uncertainty.

the uncertainty estimation from M. My further removes the
self-attention module from M. M3 is a variant of M, which
adopts two LSTM modules to process image and movement
sequences, separately. We show the error values from these
models in Fig. 9. In general, the performance of the model
decreases from M to M3, indicating the rationality of our
VTGNet. The superiority of Mg over M is consistent with
the finding in [29] where modeling data uncertainty improves
prediction performance. On the other hand, M3 performs worse
than M, from which we can conclude that using a single LSTM
module to process the multi-modal information together would
help to generate more reasonable outputs. Furthermore, we show
a qualitative comparison in Fig. 10, where the results from M,
are both accurate and smooth.
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(b) ConvBlock-2

(c) ConvBlock-4

(d) ConvBlock-5

Fig.11.  Image feature visualization of our VTGNet. (a) The input RGB image.
(b—d) The averaged feature maps of some bottleneck convolutional layers in the
feature extractor.
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Fig. 12.  Attention distribution from our VTGNet in two typical scenarios. (a)
Turning at intersections. (b) Lane following.

E. Discussion and Reasoning

1) Feature Extractor Analysis: Compared with hand-crafted
feature extractors, one advantage of CNNss is that they can learn
to extract useful features automatically from raw RGB images.
We confirm this idea by visualizing the averaged feature maps
from a series of convolution layers of our model. The results are
shown in Fig. 11. We can see that the obvious extracted features
are the road boundaries, which are helpful for generating the
trajectories.

2) Attention Analysis: Here, we analyze the attention mech-
anism of our model using Fig. 12. We can see that when taking
turns (Fig. 12(a)), the observations at intersection entrances
(time step 3) are weighted with more attentions, which contains
more structural information of the surroundings. On the other
hand, when following lanes on roads, more recent observations
are assigned with more attention because the past observations
are rather redundant, providing no extra valuable information.

V. CLOSED-LOOP EXPERIMENTS IN THE CARLA
DRIVING SIMULATOR

In this section, we aim to determine whether our VTGNet
can perform more complicated tasks, such as recovering from
mistakes and driving in dynamic traffic. To this end, we conduct

closed-loop experiments in the CARLA driving simulator [37]
to further show its performance. CARLA is an open-source
simulator providing a high-fidelity dynamic world and different
vehicles with realistic physics.

A. Implementation Details

1) Domain Adaption to New Environments: Our prior model
is trained with the Robotcar dataset, which lacks reference trajec-
tories to recover from off-center or off-orientation mistakes. On
the other hand, the domain gap in terms of visual difference also
prevents us from directly deploying the model in CARLA. To
improve the performance, we first collect a new expert driving
dataset in CARLA, named VTG-Driving, and then refine our
model with this dataset to achieve domain adaption. During data
collection, we set random routes ranging from 300 m to 1500 m
in Town01 of CARLA and drive the vehicle at the desired speed
of 40 km/h. The direction command is given by a high-level
global planner of CARLA. To construct a dynamic environment,
we set five weather conditions: clear-day, clear-sunset, foggy-
day, rainy-day, and rainy-sunset. For each weather condition, we
run 100 episodes with dynamic roaming pedestrians and vehicles
that are controlled by the Al engine of CARLA. Furthermore,
we add random steering noise to the vehicle every 6 s to collect
error-recovery trajectories. The final dataset lasts 16.6 hours and
covers a driving distance of 288.7 km, which is also released for
public research.

2) Evaluation Benchmark: The prior benchmarks of
CARLA mainly concentrate on the ability to handle complex
visual appearances [37] or the ability to drive in urban traffic
with dynamic obstacles [18]. We extend these ideas and propose
amuch tougher benchmark AddNoise to also evaluate the ability
to recover from off-center/orientation errors. Similar to the data
collection process, we add random steering noise to the test
vehicle every 5 s that lasts 0.2~1.0 s. Moreover, we examine
the cross-platform ability by changing the training car to an
unseen motorcycle, which is smaller in size and has a smaller
turning radius and larger acceleration.

In this benchmark, the test vehicle should drive in empty
and dynamic (with other dynamic vehicles/pedestrians) environ-
ments against the noise introduced above. Each task corresponds
to 60 goal-directed episodes under the 5 weather conditions
introduced in Section V-Al. In each episode, the vehicle starts
from arandom position and is directed by a high-level planner to
reach the destination. The episode is considered to be successful
if the vehicle arrives at the destination within the time limit and
does not collide with other objects. Finally, the success rate is
used to measure the autonomous driving ability.

3) Baselinesfor Comparison: Wehave shown the superiority
of VTGNet in the area of end-to-end trajectory planning in Sec-
tion I'V. In this section, we further compare it with a recent SOTA
vision-based end-to-end control network named CILRS [18].
This model is trained with data unaffected by noise (filtered from
VTG-Driving) following the setup as detailed in the original
paper. We also train another model named CILRS++ on our full
dataset including the noise-recovery behaviors. The reference
expert actions for training are the original actions that are not
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TABLE IV
CLOSED-LOOP EVALUATION RESULTS ON SUCCESS RATE (%) IN THE CARLA DRIVING SIMULATOR

Training Conditions

New Vehicle

New Vehicle & Town

Traffic Empty Dynamic Empty Dynamic Empty Dynamic
CILRS [18] 1.7 33 8.3 33 10.0 33
CILRS++ 95.0 86.7 15.0 13.3 233 25.0
VTGNet 93.3 75.0 43.3 40.0 35.0 333

Normal driving

Recovery driving

(1) clear-day (2) foggy-day

Fig. 13.

Planned Speed

(3) clear-sunset (4) rainy-sunset

Closed-loop evaluation results of VTGNet in our AddNoise benchmark. Row-1 shows some normal driving behaviors: (a,b) turning at intersections, (c)

vehicle-following and (d) stopping for pedestrians. Row-2 shows recovery behaviors against off-center/orientation errors under different weather conditions. The
black lines indicate the planned results and the red shaded areas represent the estimated uncertainty.

overlaid with noise. Note that we replace the original image
processing backbone of these two models to MobileNet-V2 as
our VTGNet for fair comparison. For VTGNet, we design two
PID controllers for the test vehicles (car/motorcycle) to translate
the generated trajectory into driving actions.

B. Results

1) Quantitative Analysis: The evaluation results are shown
in Table IV. Although CILRS achieves good performance in
[18], with a reported success rate of 42%~97% in training con-
ditions, its performance degrades significantly in AddNoise and
the success rateis only 1.7%~3.3%. After being augmented with
training data that recovers from mistakes, CILRS++ performs
much better against the noisy test environment and achieves
higher success rate of 86.7%~95.0% in training conditions.
However, these two models performs badly on new platforms,
i.e.,amotorcycle in this work, and the highest success rate is only
25.0%. The reason is that the learned driving policies of end-
to-end control systems can only perform well on data collected
with specifically calibrated actuation setups, which also accords
with the statements in [16]. Actually, we observe a very shaky
and unstable driving performance of these two models where the

motorcycle often rushes to the roadside and collides with static
objects such as lamps and fences. Note that the new test town
(Town02) in CARLA contains less static objects on the roadside
than TownO1, and therefore the results for New Vehicle&Town
are better than for New Vehicle for CILRS++.

On the other hand, our VTGNet performs a little worse than
CILRS++ in training conditions (75.0%~93.3%) but achieves
much better generalization results on new vehicle and new
town. For example, the success rate of our model in dynamic
environments of the New Vehicle setup is 40.0%, which is
three times higher than that of CILRS++. We accredit such
superiority to our model architecture, which allows the control
module to flexibly adapt to different vehicle platforms. Since
the motorcycle has smaller turning angles, it is more susceptible
to the steering noises than the car is for Training Conditions
in our benchmark. Because of this, very large off-center and
off-orientation errors may occur after the noise process. For
example, the motorcycle is often disturbed onto sidewalks where
the road is out of sight, which is hard to recover and explains
the performance degradation from Training Conditions to New
Vehicle.

2) Qualitative Analysis: We show some driving snapshots
of VTGNet in Fig. 13. It shows that VTGNet not only adapts
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Fig. 14.
are informed with a high uncertainty output, which can be avoided with timely
human intervention. (d) A few failure cases can not be captured with the
estimated uncertainty. The black lines indicate the planned results and the red
shaded areas represent the estimated uncertainty.

Failure cases of our driving model. (a—c) Most failure cases (80%)

to different weather conditions but also possesses the ability to
perform reactive driving such as following a vehicle (Fig. 13(c))
and stopping for pedestrians (Fig. 13(d)). Furthermore, we
show its recovery behaviors in Fig. 13(b), where the ego-car
is autonomously recovering from off-center/orientation errors
disturbed by periodic steering noises. More related results are
shown in the supplemental videos?.

3) Benefits and Limitations of Uncertainty Estimation for
Safe Driving: We observe that 80% of failure cases in the bench-
mark results of VTGNet are informed with a high uncertainty
output, and thus can be avoided by timely human intervention,
as shown in Fig. 14(a—c). However, robust functional safety
measures are still beyond reach because in a few cases, the model
is too confident in its wrong prediction with low uncertainty, as
shown in Fig. 14(d), where the ego-vehicle collides with the ve-
hicle ahead without slowing down. Such limitations leave us pos-
sible avenues for future research on safer autonomous driving.

VI. CONCLUSION

In this paper, to improve the driving ability of current learning-
based methods in terms of safety measures and recovery behav-
iors against errors, we proposed an uncertainty-aware vision-
based trajectory generation network for AVs, named VTGNet.
For acceptable training and testing performance, we first created
a large-scale driving dataset from the original Robotcar dataset.
Then, we implemented the proposed network with a twofold
pipeline. The first part is a feature extractor composed of bottle-
neck CNN layers based on MobileNet-V2. The second part is a
trajectory generator, which consists of a self-attention module to
weight the redundant history information, and an LSTM module
to process the spatiotemporal features. The overall framework
was designed to take as input the front-view image and move-
ment sequences in the past 1.5 seconds with the intention com-
mand to generate feasible trajectories 3 seconds in the future. The
whole network is differentiable and was then trained end-to-end
using imitation learning. Third, we validated the robustness and
reliability of our proposed network under various weather and
lighting conditions by comparing it with 3 baselines and several
ablated models. Finally, we conducted extensive closed-loop
experiments in the CARLA driving simulator to demonstrate the
more advanced ability of VTGNet to recover from off-center/
orientation errors and cross-platform driving. Furthermore, we
showed that most of the failure cases can be avoided by timely

Zhttps://sites.google.com/view/vtgnet/

human-intervention with the estimated uncertainty, which is
beneficial to develop safety-critical driving systems.

Despite the success of the proposed network, there still exist
some limitations of our model. 1) Robust safety measures can
not be guaranteed even with the uncertainty estimation. More
studies are needed in this area to develop safer autonomous
driving systems. 2) The discrete high-level driving commands
are not suitable for more complex road topologies such as
intersections with more than one possibility to turn. Itis expected
to incorporate global route information to provide more detailed
driving intentions into the network. 3) Camera images may not
be reliable under extreme lighting conditions, as shown in Fig. 8-
(F1,F2). We cannot expect the system to generate acceptable
trajectories with such input data. Therefore, in the future, we
aim to develop a framework based on our current work to use
multi-modal information from complementary sensors such as
lidar, radar and a thermal camera. We believe that by doing so,
the system could be more robust in challenging environments.
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