
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 5, MAY 2024 4905

Evaluation of Range Sensing-Based Place
Recognition for Long-Term Urban Localization
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Yuxiang Sun , Member, IEEE, and Zhongqing Su

Abstract—Place recognition is a critical capability for au-
tonomous vehicles. It matches current sensor data with a pre-built
database to provide coarse localization results. However, the ef-
fectiveness of long-term place recognition may be degraded by
environment changes, such as seasonal or weather changes. To have
a deep understanding of this issue, we conduct a comprehensive
evaluation study on several state-of-the-art range sensing-based
(i.e., LiDAR and radar) place recognition methods on the Bore-
ase dataset, which encapsulates long-term localization scenarios
with stark seasonal variations and adverse weather conditions. In
addition, we design a novel metric to evaluate the influence of
matching thresholds on place recognition performance for long-
term localization. Our results and findings provide fresh insights
to the community and potential directions for future study.

Index Terms—Autonomous vehicles, long-term localization,
place recognition, range sensing, urban environments.

I. INTRODUCTION

P LACE recognition (PR) refers to determining whether the
current place has been visited previously against a pre-

built keyframe-based database [1]. Such capability is critical
for applications in mobile robots and autonomous vehicles,
such as global localization and loop closure in Simultaneous
Localization and Mapping (SLAM) [2], [3], [4], [5]. Significant
progress has been made in the last two decades for both vision-
based and range sensing-based methods [6], [7], [8]. However,
reliable long-term PR still remains a challenge in complex road
environments, where long-term variations frequently occur in
both geometry and visual appearance.
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Vision-based methods could be easily degraded due to dra-
matic changes in viewpoint, illumination, or weather condi-
tions [9], [10]. Recently, range sensors, such as LiDAR and
Frequency-Modulated Continuous Wave (FMCW) Radar have
shown reasonable robustness to diverse weather conditions.
Some methods have used them in SLAM and localization tasks
under diverse weather conditions [11], [12], [13], [14], [15],
[16], [17]. Radars are more robust to extreme weather conditions
(e.g., rain or snow) than LiDARs. This is because radars work
in GHz, which is lower than that of LiDARs (THz).

However, to what extent do weather conditions influence
radar- and LiDAR-based PR methods? We find that this ques-
tion has scarcely been investigated in existing literature, so we
attempt to answer it by comparing state-of-the-art (SOTA) range
sensing-based methods in this study. In addition to experiments,
we also design a novel evaluation metric to assess influences
caused by the matching thresholds [7] in long-term PR. The
motivation for us to design the new metric is that existing works
usually use the retrieval precision and recall [18], however, in
long-term PR, the performance might be degraded when using
the same matching threshold to determine whether a place has
been visited. For example, a threshold that can achieve high
precision and recall in summer might not provide satisfactory
performance in winter. We argue that a robust long-term PR
method should be able to achieve performance with acceptable
variations by using a general threshold under seasonal changes.

To the best of our knowledge, this is the first comprehensive
evaluation that explores the impact of seasonal and weather
variations on range sensing-based place recognition methods
in long-term scenarios, considering both performance metrics
and matching thresholds. Our contributions are as follows:

1) We design a novel metric to evaluate the influences of
matching thresholds on long-term place recognition per-
formance.

2) We conduct a comprehensive evaluation of SOTA range
sensing-based place recognition methods on a dataset with
long-term localization scenarios to explore the impact of
season and weather conditions.

3) We open-source our evaluation code and make the ex-
perimental results publicly available, which could inspire
further works in this area from the research community1.

This paper is organized as follows: Section II reviews re-
lated works; Section III presents related preliminaries on place

1[Online]. Available: https://github.com/Weixin-Ma/PR_Evaluation_Project
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recognition; Section IV describes our proposed metric;
Section V discusses the evaluation experiments; Conclusions
and future work are drawn in the last section.

II. RELATED WORK

This paper mainly focuses on single-shot PR methods using
360◦ LiDARs and radars. For filtering- or aggregating-based
approaches, as well as PR methods using Non-repetitive LiDAR,
readers may refer to the survey papers [1], [8].

A. Range Sensing-Based Place Recognition

LiDAR-based PR methods usually design global descriptors
to compare the similarity between different LiDAR scans to
retrieve places. They can be generally divided into handcrafted
feature-based methods and data-driven methods. Early works
usually rely on handcrafted local features, such as mean sur-
face curvature [19] and local Normal Distribution Transform
(NDT) [20]. Differently, some researchers use semantic objects
to build their global descriptors instead of using low-level ge-
ometric information. Fan et al. [21] and Zhu et al. [22] both
used topological information of objects in environments to
build global descriptors. Instead of building global descriptors
on the extracted features, projection-based methods generate
global descriptors based on the projection results of raw point
clouds. M2DP [23] projects raw point cloud into multiple 2D
planes to extract Histogram descriptors. Scan Context [24] is
a typical bird-eye-view (BEV) projection-based method, where
a 2D matrix descriptor is used to embed the geometirc infor-
mation. Similarly, Scan Context++ [25], SSC [26], Intensity
Scan Context [27], DiSCO [28], RING++[29], and LiDAR-
Iris [30] all project point clouds into BEV, followed by dif-
ferent global descriptor extraction methods. Instead of using
handcrafted features, data-driven methods extract features from
point clouds using deep neural networks. Uy et al. proposed
PointNetVLAD [31], which uses NetVLAD [32] to aggregate
features extracted from PointNet [33] into a global descriptor.
MinkLoc3D [34] and its extension [35] use generalized-mean
pooling layer [36] to aggregate local features extracted from
sparse voxelized point could into global descriptors.

Radar-based PR remains a challenge due to its low spatial
resolution and noise. Gadd et al. [37] used sequence matching
to reduce influences of noise clusters in a single radar scan,
achieving a 30% boost in performance. The authors further
introduced a temporal data augmentation method to obtain a
more robust descriptor [38]. Suaftescu et al. [39] combined
cylindrical convolutions, anti-aliasing blurring, and azimuth-
wise max-pooling to extract more reliable features from polar
radar scans. Different from all the data-driven methods above,
Hong et al. [13] used M2DP [23] to extract global descriptors
from filtered 2D radar point clouds.

For long-term range sensing-based PR, there are few works.
Alijani et al. [40] evaluated a SOTA visual PR method GEM [36]
on the Oxford RobotCar dataset [41]. Their results show a
performance degradation of approximately 6% every 100 days.
Peltomaki et al. [42] fed LiDAR depth images into an im-
age retrieval method CNNRetr [43] to assess the performance

of long-term LiDAR PR. Instead of using depth images, Zy-
wanowski et al. [44] combined camera images and LiDAR inten-
sity images, which benefits the PR performance across weather
conditions. However, only one data-driven-based method and
one metric are evaluated in [42], [44]. Cao et al. [45] developed a
global descriptor from a cylindrical image representation of a 3-
D point cloud, which enhances robustness with a sequence-based
check. They later proposed a two-head classification network
for end-to-end long-term localization [46]. However, all these
methods [45], [46] require a sequence of LiDAR scans and
odometry to build a submap.

B. Performance Evaluation for Place Recognition

The evaluation of PR methods typically focuses on their
place retrieval performance. Machine learning metrics for clas-
sification tasks are widely adopted in PR. Popular metrics in-
clude Precision-recall curves [24], maximum F1 score [26], Re-
call@100% [31], Extended Precision (EP) [18], AUC-PR [28],
and Recall@N [7]. Given similarity values between every query
frame and their retrieved frame, different values of Precision
and Recall can be computed by varying the matching threshold.
The Precision-recall curve can be obtained by plotting Precision
against the Recall, which summarizes the trade-off between the
true positive rate and the positive predictive value using different
matching thresholds. Maximum F1 score, EP, and AUC-PR
are all computed from the Precision-recall curve, indicating the
performance of a PR method with a single value between 0 and
1. Recall@100% represents the Recall value at which Precision
drops from 100%, which shows the highest Recall that can
be reached before the first false positive occurs. Recall@N is
computed by dividing the number of query frames with correct
matches among the top-N retrieved frames by the total number
of query frames.

C. Research Gap

Existing literature scarcely investigate and evaluate influences
of seasonal changes on the range sensing-based (i.e., both Li-
DAR and radar) PR methods. Meanwhile, existing evaluation
metrics almost focus on the performance from the perspective
of Precision and Recall. Influences of matching thresholds on the
performance in long-term conditions have also not been studied.

III. PRELIMINARIES

A. Problem Formulation of Place Recognition

Given a query LiDAR frame Q and a prior database Dref as
shown in Fig. 1, place recognition aims to determine whether
the frame Q has been visited previously in Dref or not. This
is determined by the similarity between Q and its most similar
frame in Dref . Once the similarity exceeds a predefined match-
ing threshold, the frame Q is determined as a positive match,
indicating its corresponding place has been visited previously
in Dref . Otherwise, the PR method considers the frame Q as a
negative match.
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Fig. 1. Problem formulation of place recognition. Given a query frame from
the current sensor data, place recognition methods determine whether it has been
previously visited by matching it with a pre-built database.

B. Precision, Recall, and F-Score

In PR, positive matches are fewer than negative matches.
Precision-recall curve has been widely used to evaluate this
imbalanced matching problem. Based on the matching results
and the ground-truth information, correct positive matches
are regarded as True-Positives (TP) whereas incorrect posi-
tive matches are regarded as False-Positives (FP). Similarly,
True-Negatives (TN) and False-Negatives (FN) represent correct
negative matches and incorrect negative matches, respectively.
Precision and Recall are computed by Precision = TP

TP+FP and
Recall = TP

TP+FN , respectively.
Precision is the ratio of correctly identified positive matches,

while Recall is the ratio of TP to actual positives. By adjusting the
matching threshold, we can compute corresponding precision
and recall values. The threshold typically ranges from the lowest
to the highest similarity (or distance). A Precision-recall curve,
plotting precision against recall, illustrates the trade-off between
them under different thresholds.

F-score, Fβ , is another widely used evaluation metric for PR,
especially F1 score. Fβ considers both precision and recall. It is
calculated by: Fβ = (1 + β2) · Precision · Recall

(β2· Precision )+ Recall , where β ∈
R+ is chosen to make Recall β times as important as Precision.
When β = 1, we have F1 score, which is the harmonic mean of
Precision and Recall.

IV. THE PROPOSED EVALUATION METRIC

The Precision-recall curve retains no information about
the matching threshold. Other common evaluation metrics,
like maximum F1 score, EP, and AUC-PR, all summarize a
Precision-recall curve into a single value between 0 and 1
to indicate the performance of a PR method. Therefore, the
matching threshold information is missed. This information is
important for long-term PR since a reliable long-term PR method
is expected to achieve similar performance with a general match-
ing threshold.

To assess such ability of a PR method, an intuitive idea is
to keep the matching threshold unchanged and measure the
performance variations for a PR method. For example, given

Fig. 2. Example for how to compute the proposed AwC-FT (i.e., the area
of gray area). The normalized AwC-FT , AwC-FT is the ratio of the original
AwC-FT to the area of the purple dashed box.

a PR method, we can set a constant matching threshold and
calculate metrics like Precision, Recall, or F-score for different
sequences. The variations of the values of each metric can show
the performance variations of a PR method. However, only the
performance variation at a single point (i.e., the matching thresh-
old) is evaluated. Meanwhile, it is not easy to select a specific
value for the matching threshold. First, a higher/lower matching
threshold will result in lower/higher Recall and higher/lower
Precision across all the testing sequences, creating an illusion
that the matching threshold has little influence on the perfor-
mance variations. Second, the range of similarity values of the
query results for different PR methods might be very different
even using the same testing sequence. So it may be very difficult
to find a specific threshold to fairly compare the influences of the
matching threshold on the performance of different PR methods.

To solve these problems, we use the statistical result of the
performance variations of a PR method instead of the perfor-
mance variations at a single point. Considering the performance
metrics, we choose to use the F-score since it provides a more
comprehensive evaluation of a PR method by considering both
Precision and Recall. Note that it is also acceptable to use other
metrics like Precision and Recall here. Specifically, we introduce
the metric AwC-FT , Area within Curves for FT-curves. For a
given reference sequence Seq-j and a query sequence Seq-k,
where k ∈ {1, 2, . . .,M} is the index of the query sequence, a
F-score Threshold curve (FT-curve) can be obtained by plotting
F-score values against the matching thresholds. This is illus-
trated by the red, green, or blue curves in Fig. 2. In long-term
PR, the reference sequence and the query sequence are usually
different in terms of collection dates and environmental con-
ditions, i.e., j �= k. We denote {FT k}j as the set of FT-curves
that use different query sequencesSeq-kwith the same reference
sequence Seq-j. AwC-FT can be computed based on the set
{FT k}j :

AwC-FT ≈
N−1∑
i=1

Δi +Δi+1

2
× (ti+1 − ti) ,

Δi = Max (Si)−Min (Si) , Si =
{
fk
i

}
j
. (1)
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where N is the number of matching thresholds. ti is the i-th
matching threshold. We use matching similarity (i.e., probabil-
ity) instead of descriptor distance to determine the value for
ti, which can ensure the ideal maximum value and minimum
value for ti are 1 and 0, respectively. {fk

i }j is the set of F-score
values from the set {FT k}j when matching threshold equals
to ti. Max(·) and Min(·) are respectively the maximum and
minimum values of the given set. Δi is the maximum difference
of the F-score values when the matching threshold equals ti. An
example for AwC-FT (β = 1) calculation is shown in Fig. 2.
Three different sequences (i.e., the red, green, and blue curve)
are used as query sequences to form FT-curves {FT k}j . {f1

i ,
f2
i , f3

i } areF1 score values from the set {FT k}j when ti = 0.8.
We have Δi = f1

i − f3
i . The value of AwC-FT equals to the

area of the gray area shown in Fig. 2.
To simplify the calculation, we make the matching threshold ti

as a discrete uniform distribution U{a, b}. Let skl ∈ [0, 1] be the
similarity between l-th frame of query sequence Seq-k and the
retrieved frame from the given reference sequence, then {skl }j
is the set of matching similarities for all frames from query
sequence Seq-k when using Seq-j as the reference. Values of a
and b can be calculated as following:

a = Min
(
Min

({
s1l
}
j

)
, . . . ,Min

({
sMl
}
j

))
. (2)

b = Max
(
Max

({
s1l
}
j

)
, . . . ,Max

({
sMl
}
j

))
. (3)

Therefore, ti+1 − ti can be simplified as to b−a
N . Equation (1)

can be rewritten as:

AwC-FT ≈ b− a

N
×
(
Δ1

2
+

N−1∑
i=2

Δi +
ΔN

2

)
. (4)

The calculated AwC-FT is then normalized by dividing
((b− a)× (1− 0)). The normalized AwC-FT is defined
as AwC-FT ∈ [0, 1], representing the ratio of the original
AwC-FT and the area of the purple dashed box, as shown in
Fig. 2.

AwC-FT ≈ 1

N
×
(
Δ1

2
+

N−1∑
i=2

Δi +
ΔN

2

)
. (5)

The AwC-FT metric approximately represents the average
performance variations of a PR method when conducting place
recognition using different query sequences (i.e., query se-
quences collected on different date and weather conditions) and
the same reference sequence, with the same matching thresholds.
Theoretically, a larger value of AwC-FT indicates that the
performance of the PR method is more sensitive to the matching
thresholds under seasonal changes in long-term scenarios. Since
AwC-FT only represents the performance variation, it is better
to use the metric and the other metrics (e.g., MaximumF1 score)
at the same time for more comprehensive evaluation results. In
this paper, we use theF1 score forAwC-FT . Unless specifically
stated, otherwise all experimental results related to AwC-FT
are calculated based on the F1 score.

TABLE I
DETAILS OF THE EVALUATION SEQUENCES

V. THE EVALUATIONS

A. Dataset and Experimental Setup

KITTI [48], Oxford Radar [49], and MulRan [50] are ur-
ban environment datasets that have been widely used in range
sensing-based PR. However, none of these datasets contain both
season and weather variations, since their collection dates span
less than 3 months. Alternatively, we use Boreas Dataset [47],
which includes more than 350 km of data collected by driving
a repeated route over one year. Seasonal variations and adverse
weather conditions, such as rain and snowstorms, can be found
in the dataset. As for sensor configurations, the data-collection
vehicle has a camera, a 360◦ radar, a 128-beam LiDAR, and
GPS/IMU. Similar to [12], we select 6 sequences with stark
weather variations for evaluation. Sample weather variations
can be found in Fig. 3. We down-sample LiDAR frames to the
scan frequency of the 360◦ radar (i.e., 4 Hz). The down-sampled
sequences are further filtered to keep the distance between two
consecutive frames not less than 1 m. Details of the evaluation
sequences can be found in Table I.

We use several SOTA open-sourced PR methods: Scan Con-
text [24], LiDAR-Iris [30], MinkLoc3Dv2 [51], and Overlap-
Transformer [52]. Scan Context and LiDAR-Iris are handcrafted
feature-based methods. They both extract descriptors from the
projection results of point clouds, while LiDAR-Iris compares
the similarity between two LiDAR frames in the frequency do-
main. MinkLoc3Dv2 and OverlapTransformer are data-driven
methods, while their loss functions are based on localization
and overlap, respectively. We use the default parameters for
Scan Context and LiDAR-Iris provided by the authors. Follow-
ing the existing long-term PR works [40], [42], we fine tune
MinkLoc3Dv2 and OverlapTransformer on another sequence
2020-12-18 which is different from all the other evaluation
sequences.

During evaluation, we alternately use each sequence as the
reference sequence, and the remaining five sequences as the
query sequence. For example, ifSeq-01 is the reference,Seq-02
to 06 are queries. Alternatively, if Seq-02 is the reference,
Seq-01, 03, 04, 05, and 06 are queries. This allows testing of
long-term PR performance under various seasonal conditions,
like recognizing places on rainy days against a snowy day
database, or vice versa. Specifically, we denote a sequence
pair as 〈k, j〉, which contains a query sequence Seq-k and
a reference sequence Seq-j. {〈k, j〉}j is the set of sequence
pairs that have the same reference sequence Seq-j. Here we

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 04:21:29 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: EVALUATION OF RANGE SENSING-BASED PLACE RECOGNITION FOR LONG-TERM URBAN LOCALIZATION 4909

Fig. 3. Examples of seasonal variations across sequences from Boreas Dataset [47]. All the sequences are collected along the same route on different dates.
Pictures in each row are captured in the same place. Sequence 2020-12-18 is used to fine tune the data-driven place recognition methods. All the other sequences
are used for evaluation.

have j, k ∈ {01, 02, 03, 04, 05, 06} and j �= k, representing the
6 evaluation sequences by the order of collection date. Fol-
lowing [40] and [42], we conduct all experiments using the
top-1 retrieval results, i.e., only the retrieved frame with the
highest similarity is used. In accordance with prior research [24]
and [30], a matching detection is classified as a true positive if
the ground-truth pose distance between the query frame and the
matched frame is less than 4 m.

B. Evaluation With Widely-Used Metrics

For a given PR method and 〈k, j〉, we evaluate its performance
with several widely-used metrics: maximum F1 score, EP, and
Recall@1. The experimental results are displayed in Table II.
We also calculate the average values and standard deviations of
the above metrics for each {〈k, j〉}j to show the variations of
PR performance.

LiDAR-Iris achieves the best performance in terms of all the
metrics under all the seasonal conditions. The average values
of the maximum F1 score, EP, and Recall@1 are all higher
than 99.5% with a small standard deviation (less than 0.5%)
except the average of EP when using sequence Seq-03 as the
reference (i.e., 97.83%). Scan Context also shows a competitive
performance. There is only a minor decline observed across all
the evaluation metrics. We can find prominent degradation for
both OverlapTransformer and MinKLoc3Dv2.

According to Recall@1 values, there are respectively around
60% and 50% of the matching results that are correct for Over-
lapTransformer and MinkLock3Dv2, while more than 96% and
97% of the matching results are positive for Scan Context and
LiDAR-Iris under all seasonal conditions. EP provides a good
summary on bothPR0 (i.e., the Precision at the minimum Recall
value) and RP100 (i.e., the Recall value where the Precision
drops from 100%) [18]. When EP is less than 0.5,PR0 is less than
1.0, meaning there exist false positives even using the highest
matching threshold and the PR method can never provide a
matching result at 100% Precision. We can see that the averages

of EP for both MickLoc3Dv2 and OverlapTransformer in almost
{〈k, j〉}j are less than 0.5, while the average values of EP for
both Scan Context and LiDAR-Iris are both larger than 0.94.
This shows that Scan Context and LiDAR-Iris can reach a higher
Recall without any false positives.

Intuitively, when the seasonal and weather conditions change
between query and reference sequences, the performance of a PR
method should vary. Interestingly, such performance variations
are almost negligible for LiDAR-Iris. For instance, when using
a snowstorm sequence Seq-03 as the reference, there was only
a slight decrease in Recall@1 compared to using the other
sequences as references. Regarding Scan Context, there is an
average performance degradation of about 8% in EP when using
Seq-03 as the reference. Meanwhile, unlike LiDAR-Iris, the
values of average EP and Recall@1 for Scan Context both
decrease when using the snowstorm Seq-03 as reference se-
quence. Similar trends of performance variations can also be
found in the results for OverlapTransformer and MinkLoc3Dv2.
However, such degradation is more dramatic than that for Scan
Context and LiDAR-Iris. For example, for OverlapTransformer,
the maximum F1 score and Recall@1 decrease by about 40%
on average when using Seq-03 as a reference sequence. Such
degradation is even more prominent for MinkLoc3Dv2, which
is more than 50%.

Our results show that the SOTA handcrafted feature-based Li-
DAR methods can be robust to seasonal variations in long-term
PR. Two SOTA data-driven methods (i.e., OverlapTransformer
and MinkLoc3Dv2) demonstrate a heightened sensitivity to
seasonal variations. We guess the main reason is that these
two networks were initially designed and trained using other
datasets that vary from Boreas Dataset in terms of both scene
layouts and sensor configuration (i.e., resolution and installation
position). Limited by the network generalizability, the overall
performance degrades than those reported in [51] and [52].
In addition, insufficient training data collected under different
weather conditions may result in a significant performance
variation during evaluations.
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TABLE II
PR PERFORMANCE FOR DIFFERENT {〈k, j〉}j

C. Influences by Matching Thresholds

In the last part, we evaluate the performance of several SOTA
LiDAR PR methods by using three widely-used metrics. Such
evaluation provides a general statement about how good the
performance can be. In this section, we evaluate a long-term PR
method from a new perspective by using the proposed metric.
For every {〈k, j〉}j , we compute its AwC-FT , as shown in
Table III. The results are also visualized in Fig. 4.

We summarize the main findings as follows: Firstly, using
the same matching thresholds, the average F1 score variations
for handcrafted feature-based methods is smaller than those
for data-driven methods. As shown in Table III, the aver-
age AwC-FT values for LiDAR-Iris and Scan Context are

TABLE III
RESULTS OF AwC-FT FOR DIFFERENT {〈k, j〉}j
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Fig. 4. FT-curves {FTk} for different {〈k, j〉}j using several SOAT LiDAR-based PR methods. Sequences ID on the left refers to the used reference sequence.
Figures in each column are based on the same PR method.

much smaller than those for OverlapTransformer and Min-
kLoc3Dv2. Such variations can be also observed in Fig. 4.
Secondly, we interestingly find that AwC-FT decreases when
the reference sequence Seq-j for {〈k, j〉}j is significantly dif-
ferent from all the other query sequence Seq-k. Specifically,
the snowstorm sequence Seq-03 differs from all the other se-
quences in terms of weather conditions. When using Seq-03 as
the reference sequence, the variation in performance is much
smaller than those results when using the other sequences as
the reference, as shown in the third row in both Table III
and Fig. 4.

Considering practical applications, AwC-FT not only can
evaluate the influence of matching thresholds on the perfor-
mance of different PR methods in long-term localization but also
can directly benefit the choice of reference sequences. For ex-
ample, from Table III, we can find that the performance variation
is the smallest when using Seq-03 as a reference. However, the
average values for maximum F1 score, EP, and R@1 are smaller
than those when using the other sequences as reference (see
Table II). In other words, usingSeq-03 as the reference sequence
leads to a poor yet stable result in long-term PR. In addition, the
absolute performances for all the methods are very close when
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TABLE IV
AVERAGE OF RECALL@1 (%) FOR DIFFERENT REGIONS FOR DIFFERENT {〈k, j〉}j

Fig. 5. Example of the segmented regions along the route. × refers to the
locations used to segment each sequence into three different regions.

using Seq-01, 02, 04, 05, and 06 as references. It is reasonable
to select any of them as the reference. Nevertheless, when using
Seq-02 as the reference sequence, we find that the AwC-FT
values for all the methods are the smallest. So, choosing Seq-02
as the reference achieves a robust and competitive long-term
performance.

Overall, the experimental results show that the performance
influenced by different matching thresholds vary across hand-
crafted feature-based and data-driven methods. The proposed
metric can effectively evaluate such influence to show the ro-
bustness of the methods to the matching thresholds. Moreover,
it can also benefit the choice of reference sequence.

D. Matching Similarity Distributions

In large-scale environments, there may be significant vari-
ations in geometry across different regions, such as building
styles and road layouts. These variations can directly influence
the performance of PR methods. To assess influences of these
variations on PR performance, we divide each query sequence
into distinct regions based on ground-truth poses. Specifically,
there are three different regions, denoted as Region-01 (campus
region), Region-02 (main-road region), and Region-03 (side-
road region), as shown in Fig. 5. Region-01 and 03 exhibit fewer
dynamic objects, such as vehicles and pedestrians, whereas
Region-02 is highly dynamic with many moving vehicles. De-
tails about the frames of each region on different sequences can
be found in Table V.

For each sequence pair 〈k, j〉 from the set {〈k, j〉}j , we
first compute the Recall@1 for each region, i.e., the ratio of
positive matches within a specific region to the number of query
frames within the same region. We then compute the average

TABLE V
FRAME NUMBER OF EACH SEGMENTED REGION FOR DIFFERENT

SEQUENCES

of Recall@1 for each region. Results are displayed in Table IV.
Values in each row are computed using the same {〈k, j〉}j . To
better present the differences in matching results in different
regions, we visualize some examples of the matching similarity
distributions along the trajectory of query sequence as heat maps,
as shown in Fig. 6.

In general, LiDAR-Iris demonstrates superior performance
across all three regions, particularly in Region-03 where the av-
erage of Recall@1 approaches nearly 100% for all {〈k, j〉}j . As
expected, for all the methods, the average Recall@1 of Region-
02 is generally lower than those of the other two regions. This can
be also supported by the matching similarity distributions in dif-
ferent regions as shown in Fig. 6. The heat map colors indicating
the similarity of matching results in Region-02 are lighter than
those in Region-01 and Region-03. This is particularly notice-
able in the results for LiDAR-Iris (i.e., second row) and the radar-
based Scan Context (i.e., fifth row). Compared to the handcrafted
feature-based methods, the average Recall@1 for Region-02 sig-
nificantly decreases when using the data-driven methods. This
suggests, to some extent, that the influences of dynamic objects
on Recall@1 is more pronounced for data-driven methods.

Based on our experimental results, the handcrafted feature-
based methods are more robust to the variations in geometry
across different regions in large-scale environments.

E. Comparisons With Radar-Based Methods

Due to the robustness to diverse weather conditions, radar has
recently gained a lot of attention, showing significant potential
in long-term localization. However, radar suffers from multiple
sources of artifacts and clutters, for example, speckle noise,
receiver saturation, and multi-path reflections. So, we first use
the filtering method [53] to reduce noise. The filtered points are
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Fig. 6. Examples of top-1 matching similarity distributions. All the results are based on the same reference sequence, Seq-01. The sequence ID on the top refers
to the query sequence used in each column.

then transferred from 2D radar images into 3D point clouds while
the z-coordinate is set as 1 for all the filtered points. We then
use the generated point clouds as inputs to run Scan Context and
LiDAR-Iris. Results for maximum F1 score, EP, and Recall@1
are displayed in Table VI.

Different from LiDAR-based methods, radar-based Scan
Context outperforms the radar-based LiDAR-Iris. The

radar-based Scan Context exhibits improvements in both
maximum F1 score and Recall@1 compared to the
LiDAR-based Scan Context. The average values of maximum
F1 score and average values of Recall@1 for different {〈k, j〉}j
are all larger than 99.6% and 99.0%, respectively. The value
of average EP increases in almost {〈k, j〉}j . Regarding
radar-based LiDAR-Iris, the decrease of the maximum F1 score
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Fig. 7. FT-curves {FTk} for different {〈k, j〉}j using different radar-based
PR methods. Sequence ID on the left refers to the used reference sequence in
each row. Figures in each column are based on the same method.

and Recall@1 can be deemed insignificant. From the perspective
of EP, there is about a 10% drop. We conjecture the reason
could be the loss of height information in the radar-based point
cloud, which is important for LiDAR-Iris to generate its global
descriptor. Surprisingly, these two handcrafted feature-based
LiDAR methods show good generalizability on radar
sensors.

As expected, radar-based methods show small performance
variations using the same matching thresholds in long-term

TABLE VI
PR PERFORMANCE FOR DIFFERENT {〈k, j〉}j USING RADAR-BASED METHODS

scenarios. As shown in Table III, the average AwC-FT values
for radar-based Scan Context and radar-based LiDAR-Iris are
4.07% and 5.26%, respectively, which are greatly less than
the other LiDAR-based methods. These results indicate that
in radar-based methods, influences of matching thresholds on
long-term performance are typically smaller compared to those
of the LiDAR-based method.

As for influences of geometry variation across different re-
gions on PR performance in large-scale environments, we find
that the average Recall@1 values for different regions are very
close. For almost {〈k, j〉}j , the values of average Recall@1 for
different regions are all more than 99% (see Table VII). We guess
the primary reason is that radar possesses specific penetration
capabilities, enabling it to reliably observe through various
obstacles, such as moving vehicles. However, the heat map
colors indicating the similarity of matching results in Region-02
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TABLE VII
AVERAGE OF RECALL@1 (%) FOR DIFFERENT REGIONS FOR DIFFERENT

{〈k, j〉}j USING DIFFERENT RADAR-BASED PR METHODS

tend to be lighter than those in Region-01 and Region-03, as
shown in the last two rows of Fig. 6. So, geometry difference,
such as building layout and traffic conditions, still makes place
recognition more difficult.

The above comparisons show the potential of radar-based
methods in long-term scenarios, which is expected to achieve
robust performance using general matching thresholds under
diverse conditions.

VI. CONCLUSION AND FUTURE WORK

In this study, we conduct a comprehensive evaluation of
range sensing-based long-term place recognition in large-scale
urban environments. We propose a novel metric to evaluate the
influences of matching thresholds on long-term performance,
which provides a new perspective of evaluation. Our exper-
imental results provide the following important findings: i)
current SOTA handcrafted feature-based LiDAR PR methods
are more robust to season and weather variations in long-term
and large-scale scenarios; ii) with a general matching threshold,
current SOTA data-driven LiDAR-based PR methods tend to
provide results with larger variations in long-term scenarios;
iii) the variation in geometry information across different re-
gions in large-scale environments, such as building layouts
and traffic conditions, can lead to performance degradation.
Such degradation is much smaller in handcrafted feature-based
LiDAR methods; iv) radar-based PR methods show potential
in long-term and large-scale scenarios, which achieve superior
robustness under diverse weather and traffic conditions. How-
ever, only urban environments are evaluated in this work. We
believe more long-term datasets with diverse scenarios, such as
wild and rural environments, can provide more insights into the
community. Meanwhile, it will be interesting to investigate the
performance of current SOTA range sensing-based and visual
PR methods under more extreme weather conditions (e.g., hails
and hurricanes) and longer time span (e.g., 3 years and 5 years).
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